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Figure 2. Extraction, Translation, and Correlation are run as parallel tasks.

Beowulf cluster to process separate
scans in parallel until all scans have
been processed. Due to the single-
stream sequential playback of the
Markb data, some ramp-up time is re-
quired before all nodes can have access
to required scan data. Core functions of
each processing step are accomplished
using optimized C programs. The coor-
dination and execution of these pro-
grams across the cluster is accom-
plished using Pearl scripts, PostgreSQL

commands, and a handful of miscella-
neous system utilities.

Markb data modules are loaded on
Markb Data systems playback units, one
per station. Data processing is started
when the operator scans the Mark5 sys-
tems and runs a script that reads vari-
ous configuration files and then cre-
ates an experiment-dependent status
database used to delegate parallel tasks
between nodes and storage areas (see
Figure 2). This script forks into three

processes: extract, translate, and corre-
late. Each of these processes iterates on
available scan data and updates the sta-
tus database as the work for each scan
is completed.

The extract process coordinates and
monitors the transfer of data from each
of the Markbs to the Beowulf RAID stor-
age systems. The translate process mon-
itors and executes the data conversion
processes on available scan files, and
writes the translated files to the slave
nodes. The correlate process monitors
the execution of SoftC correlation
processes on the slave nodes for scans
that have completed translation.

A comparison of the JVC and the
legacy Block II correlator outputs reveals
they are well within a formal error, and
that the data are comparable with re-
spect to their use in flight navigation.
The processing speed of the JVC is im-
proved over the Block II correlator by a
factor of 4, largely due to the elimina-
tion of the reel-to-reel tape drives used
in the Block II correlator.

This work was done by Stephen P. Rogstad,
Andre P. Jongeling, Susan G. Finley, Leslie A.
White, Gabor E. Lanyi, John E. Clark, and
Charles E. Goodhart of Caltech for NASA's Jet
Propulsion Laboratory. For more information,
contact iaoffice@jpl.nasa.gov. NPO-46279

¢3 Hybrid NN/SVM Computational System for Optimizing Designs

The NN and the SVM help each other “learn” in an iterative process.
Ames Research Center, Moffett Field, California

A computational method and system
based on a hybrid of an artificial neural
network (NN) and a support vector ma-
chine (SVM) (see figure) has been con-
ceived as a means of maximizing or min-
imizing an  objective  function,
optionally subject to one or more con-
straints. Such maximization or mini-
mization could be performed, for exam-
ple, to optimize solve a data-regression
or data-classification problem or to opti-
mize a design associated with a response
function. A response function can be
considered as a subset of a response sur-
face, which is a surface in a vector space
of design and performance parameters.
A typical example of a design problem
that the method and system can be used
to solve is that of an airfoil, for which a
response function could be the spatial
distribution of pressure over the airfoil.
In this example, the response surface
would describe the pressure distribu-

NASA Tech Briefs, May 2009

tion as a function of the operating con-
ditions and the geometric parameters of
the airfoil.

The use of NNs to analyze physical
objects in order to optimize their re-
sponses under specified physical condi-
tions is well known. NN analysis is suit-
able for multidimensional interpolation
of data that lack structure and enables
the representation and optimization of
a succession of numerical solutions of
increasing complexity or increasing fi-
delity to the real world. NN analysis is
especially useful in helping to satisfy
multiple design objectives. Feedforward
NNs can be used to make estimates
based on nonlinear mathematical mod-
els. One difficulty associated with use of
a feedforward NN arises from the need
for nonlinear optimization to deter-
mine connection weights among input,
intermediate, and output variables. It
can be very expensive to train an NN in

cases in which it is necessary to model
large amounts of information.

Less widely known (in comparison
with NNs) are support vector machines
(SVMs), which were originally applied in
statistical learning theory. In terms that
are necessarily oversimplified to fit the
scope of this article, an SVM can be char-
acterized as an algorithm that (1) effects
a nonlinear mapping of input vectors
into a higher-dimensional feature space
and (2) involves a dual formulation of
governing equations and constraints.
One advantageous feature of the SVM
approach is that an objective function
(which one seeks to minimize to obtain
coefficients that define an SVM mathe-
matical model) is convex, so that unlike
in the cases of many NN models, any
local minimum of an SVM model is also
a global minimum.

In the SVM approach as practiced
heretofore, underlying featurespace co-
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A Hybrid NN/SVM System offers capabilities greater than those of an NN or a conventional SVM alone.

ordinates or functions must be specified.
In the NN approach as practiced hereto-
fore, resampling of data is needed to im-
plement a process, known in the art as
model hybridization, in which a superior
neural network is generated from the
synaptic-connection weight vectors of
multiple neural networks that yield local
minima with acceptably low errors. What
is needed is a machine-learning algorithm
that combines the desirable features of
the NN and SVM approaches and does
not require intimate a priori familiarity
with operational details of the object to be
optimized. Preferably, the algorithm
should automatically provide a character-
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ization of many or all of the aspects in fea-
ture space needed for the analysis.

A hybrid NN/SVM system (see fig-
ure) accepts inputs in the form of pa-
rameter values, which are regarded as
independent coordinates in an input
vector space. In the construction of the
SVM, the input coordinates are
mapped into a feature space of appro-
priately greater dimensionality, wherein
the coordinates include computed
combinations (e.g., powers and/or
polynomials) of the input space coordi-
nates. The NN is initially programmed
with  random synaptic-connection
weights and used to construct inner

products for the SVM. The inner prod-
ucts are, in turn, used to compute La-
grange multipliers. A training error as-
sociated with the connection weights
and Lagrange multipliers is calculated.
If the training error is too large, one or
more connection weights are changed
and all of the foregoing (except the ini-
tial programming with random
weights) steps are repeated. If the train-
ing error is not too large, the connec-
tion weights and the Lagrange multipli-
ers are accepted as optimal.

An important advantage of this sys-
tem over a conventional SVM is that
the feature-space coordinates that
must be specified a priori are deter-
mined by the NN subsystem. More-
over, the feature-space coordinates are
generated by the NN subsystem to cor-
respond to the data at hand; in other
words, the feature space provided by
the NN subsystem evolves to match or
correspond to the data. A feature
space that evolves in this manner is re-
ferred to as “data-adaptive.” The fea-
ture-space coordinates generated by
the NN subsystem can be easily aug-
mented with additional feature-space
coordinates (combinations of parame-
ters) and kernel functions provided by
the user.

This work was done by Man Mohan
Rai of Ames Research Center. Further infor-
mation is contained in a TSP (see page 1).

This invention has been patented by NASA
(U.S. Patent No. 6,961,719). Inquiries con-
cerning rights for the commercial use of this
invention should be addressed to the Ames
Technology Partnerships Division at (650)
604-2954. Refer to ARC-14586.
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