CONFERMINAL Copy RM SE54106 # RESEARCH MEMORANDUM for the Bureau of Aeronautics, Department of the Navy PRELIMINARY ALTITUDE PERFORMANCE DATA OF J71-A2 TURBOJET ENGINE AFTERBURNER By James W. Useller and William E. Mallett Lewis Flight Propulsion Laboratory Cleveland, Ohio Restriction/Classification This material contains inter Cancelled of the espionage laws, Title it manner to unauthorized person the United States within the meaning dission or revelation of which in any # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON ZASSIAMIL 2 2 1954 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS # RESEARCH MEMORANDUM for the Bureau of Aeronautics, Department of the Navy PRELIMINARY ALTITUDE PERFORMANCE DATA OF J71-A2 TURBOJET ENGINE AFTERBURNER By James W. Useller and William E. Mallett #### SUMMARY The performance and operational characteristics of the J71-A2 turbojet-engine afterburner were investigated for a range of altitudes from 23,000 to 60,000 feet at a flight Mach number of 0.9 and at flight Mach numbers of 0.6, 0.9, and 1.0 at an altitude of 45,000 feet. The combustion performance and altitude operational limits, as well as the altitude starting characteristics have been determined. #### INTRODUCTION At the request of the Bureau of Aeronautics, Department of the Navy, an investigation of the performance and operational characteristics of the J71-A2 turbojet engine afterburner was undertaken in an NACA Lewis laboratory altitude test chamber. A prior investigation of the unaugmented performance of the J71-A2 engine is reported in reference 1. The afterburner performance was investigated for a range of altitudes from 23,000 to 60,000 feet at a flight Mach number of 0.9 and for flight Mach numbers of 0.6, 0.9, and 1.0 at an altitude of 45,000 feet and is presented herein. The combustion temperature and efficiency of the afterburner have been determined for a range of altitudes at a flight Mach number of 0.9. The operational limits of maximum altitude, lean blowout, and maximum equivalence ratio have been determined, as well as the altitude starting characteristics of the afterburner. # APPARATUS AND PROCEDURE Afterburner configuration. - The J71-A2 afterburner has a nominal length of 11 feet and diameter of 40 inches. A schematic diagram of CONTIDENTIAL OUR POTTONS 777 دٌمُّ دُ the afterburner showing the location of the various components is presented in figure 1. A photograph of the afterburner and engine installed in the altitude test chamber is shown in figure 2. A sketch of the afterburner showing the ignitors, flame holder, and fuel spray system is shown in figure 3(a). Two afterburner ignitors were located 180° apart immediately downstream of the turbine outlet. The ignitor was a tube with seven orifices equally spaced radially. A photograph of one of the ignitors is shown in figure 3(b). Ignition was accomplished by providing a momentary supply of fuel through the orifices. For comparative purposes, an NACA "hot-streak" ignitor was also used during this investigation. The NACA ignitor consisted of a single atomizing nozzle which supplied a momentary burst of fuel into a localized region of the combustor immediately upstream of the turbine. The afterburner fuel system consisted of 22 dual spray bars (shown in fig. 3(c)) equally spaced circumferentially at a station 8.5 inches upstream of the flame holder. Each portion of the dual spray bar was separately manifolded and provided with a flow divider that controlled the fuel distribution according to the pressure necessary for good atomization. During this investigation the fuel-flow rates and supply pressures were such that only the primary segment of each spray bar was used. The flame holder was of the 2-ring, staggered V-gutter type, and blocked 30 percent of the annular area. A sketch of the flame holder is shown in figure 3(a). The average gas velocity at the afterburner inlet was 370 feet per second. The afterburner cooling liner was corrugated to increase its strength and was perforated from the flame holder to a distance 32 inches downstream of the flame holder. Cooling air ducted from the turbine discharge flowed through the perforated section of the afterburner wall into the combustion chamber. The afterburner exhaust nozzle had a continuously variable area that ranged from approximately 2.5 to 4.5 square feet. An afterburner control system consisting of an amplifier and a servo-valve actuator continually adjusted the exhaust-nozzle area to maintain a maximum turbine discharge gas temperature of 1670 R as indicated by the manufacturer's thermocouples. Engine and installation. - The afterburner investigated is an integral part of the J71-A2 turbojet engine. The investigation was conducted in an NACA altitude test chamber in which pressures and temperatures simulating altitude flight conditions were supplied to the engine inlet. Altitude pressures were simulated at the engine exhaust. The engine has a bifurcated inlet, a 16-stage, axial-flow compressor, a cannular-type combustor, and a 3-stage turbine. The engine has a nominal unaugmented thrust rating of 10,200 pounds while operating at a rotor speed of 6100 rpm and a turbine discharge gas temperature of 1670° R as indicated by the manufacturer's thermocouples. Fuel conforming to MIL-F-5624a (grade JP-4) specification was used in both the engine and the afterburner. The lower heating value of the fuel was 18,700 Btu per pound and the hydrogen-carbon ratio was 0.169. Instrumentation. - The afterburner inlet conditions were surveyed by 25 total-pressure and 25 total-temperature probes in addition to 12 manufacturer's thermocouples. When an average gas temperature of 1670 R was indicated by the manufacturer's thermocouples, the more complete survey with the 25 NACA thermocouples averaged only 1620 R. The cooling air-flow rate was measured in the afterburner cooling shroud by four total-pressure probes and a single stream static-pressure probe. A water-cooled rake at the exhaust-nozzle inlet containing 14 total-pressure probes placed on centers of equal area provided a survey of the after-burner exhaust conditions. The ejector passage was instrumented with nine total-pressure, three static-pressure, and three thermocouple probes. Standard engine instrumentation was provided to measure the air flow, engine fuel flow, and thrust. A detailed description of the engine instrumentation is contained in reference 1. <u>Procedure</u>. - The afterburner performance was investigated at the following simulated flight conditions with the engine operating at rated rotor speed and turbine discharge gas temperature. | Altitude, ft | Flight | Mach | number | |------------------|--------|------------|--------| | 23,000
35,000 | | 0.9 | | | 45,000 | 0.6, | 0.9, | 1.0 | | 55,000
60,000 | | 0.9
0.9 | | | 00,000 | | 0.0 | | Data were obtained at each flight condition for a range of equivalence ratios (percent of stoichiometric fuel-air ratio) from approximately 0.2 to 1.0. The range of afterburner fuel-air operation as limited by the control system was determined. Also, the maximum and minimum range of operation of the afterburner with the control system removed was investigated. The lean limit was established by cessation of the combustion, while the rich limit was imposed by the maximum area of the exhaust nozzle. Data were obtained at these flight conditions both with and without the exhaust-nozzle ejector in position. Afterburner ignition was attempted at each flight condition with the manufacturer's ignitor and the NACA "hot-streak" ignitor. A list of the symbols used in this report is contained in appendix A and an explanation of the method of calculations is presented in appendix B. #### DATA PRESENTATION The experimental data are grouped according to the index presented in table I. The over-all engine-afterburner performance in terms of augmented net thrust ratio and specific fuel consumption is presented in figure 4. The afterburner performance is presented in figures 5 and 6. To obtain sufficient data to compute the combustion temperature and efficiency of figure 6, it was necessary to remove the ejector configuration. It was therefore possible to evaluate the jet thrust loss imposed by installation of the ejector; this ejector-induced thrust loss is shown in figure 7. Afterburner operational characteristics are shown in figures 8 to 10. The maximum operable altitude and range of operable equivalence ratio are shown in figure 8. The limits of operation imposed by the afterburner control system have been included on the figure to permit comparison with the region of operation possible with manual throttle control. The afterburner altitude starting limits using the manufacturer's ignitor and the NACA "hot-streak" ignitor are compared in figure 9. The afterburner operational limits have been superimposed on this figure. Representative longitudinal temperature distributions along the afterburner shell are shown in figure 10. The decrease in wall temperature approximately 90 inches downstream of the burner inlet is due to the cooling provided by the exhaust-nozzle ejector. The ejector cooling flow was approximately 1.5 percent of engine flow, and the afterburner internal shell cooling flow rate was between 3 and 6 percent of the engine air flow. A tabulation of the performance data obtained in this investigation is presented in table II. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, October 7, 1954 77.77 # APPENDIX A # SYMBOLS The following symbols are used in this report: - C_{j} nozzle flow coefficient - Fe unaugmented engine net thrust, 1b - F, augmented jet thrust, 1b - F_n augmented net thrust, 1b - f/a fuel-air ratio - g acceleration due to gravity, 32.17 ft/sec² - M Mach number - P total pressure, lb/sq ft abs - p static pressure, lb/sq ft abs - R gas constant, 1546 ft-lb (molecular wt)(lb)(OR) - sfc specific fuel consumption, lb/hr/lb - T total temperature, OR - V velocity, ft/sec - Wa air flow, lb/sec - Wf fuel flow, lb/hr - W_g weight flow, lb/sec - γ ratio of specific heats - η efficiency - φ equivalence ratio # Subscripts: - ab afterburner - e engine - O free stream - 2 compressor inlet - 3 compressor outlet - 5 turbine outlet - 9 exhaust-nozzle inlet #### APPENDIX B #### CALCULATIONS Equivalence ratio. - The afterburner equivalence ratio is defined as the percent of stoichiometric fuel-air ratio in the afterburner where the afterburner fuel-air ratio is defined as follows: $$\left(\frac{f}{a}\right)_{ab} = \frac{\frac{W_{f,e} + W_{f,ab}}{W_{a,5}} - \left(\eta_{e} \frac{W_{f,e}}{W_{a,5}}\right)}{1 - \left[\frac{\eta_{e} \left(\frac{W_{f,e}}{W_{a,5}}\right)}{0.0674}\right]}$$ (1) The equivalence ratio is then $$\varphi = \frac{(f/a)_{ab}}{0.0674} \tag{2}$$ where 0.0674 is the stoichiometric fuel-air ratio for the fuel used. Augmented thrust ratio. - The augmented thrust ratio is based on the normal thrust of the standard engine configuration, afterburner not operating, as calculated at the same turbine-outlet conditions as the augmented thrust and introducing the 5.5-percent loss in total pressure caused by the drag in the afterburner. For the case of augmented net thrust the function is as follows: $$F_n/F_e = \frac{\text{Net thrust with afterburning}}{\text{Normal net thrust}}$$ (3) Over-all specific fuel consumption. - The over-all specific fuel consumption is based on the augmented net thrust and the sum of the engine and afterburner fuels. Combustion efficiency. - The combustion efficiency of the afterburner was determined as a ratio of the actual to ideal temperature rise across the afterburner. The actual combustion temperature $T_{\rm Q}$ was calculated from the gas flow, the measured thrust, and a pressure survey at station 9, using the jet thrust equation as follows: $$T_9 = \left(\frac{F_{j}}{W_{g,9}}\right)^2 \left(\frac{g}{C_{j}\sqrt{gR}}\right)^2 \left(\frac{V}{\sqrt{gRT}}\right)^2$$ (4) Values of the effective velocity parameter $\left(\frac{V}{\sqrt{gRT}}\right)$ were obtained from reference 2 using the appropriate values for γ_9 . The combustion efficiency defining equation is as follows: $$\eta_{ab} = \frac{\Delta T_{5-9(actual)}}{\Delta T_{5-9(ideal)}}$$ (5) where the ideal temperature rise was determined by the method of reference 3. # REFERENCES - 1. Useller, James W., and Mallett, William E.: Preliminary Altitude Performance Data for the J71-A2 (X-26) Turbojet Engine. NACA RM SE54H06, 1954. - 2. Turner, L. Richard, Addie, Albert N., and Zimmerman, Richard H.: Charts for the Analysis of One-Dimensional Steady Compressible Flow. NACA TN 1419, 1948. - 3. Mulready, Richard C.: The Ideal Temperature Rise Due to the Constant Pressure Combustion of Hydrocarbon Fuels. M.I.T. Meteor Rep. UAC-9, Res. Dept., United Aircraft Corp., July 1947. (BuOrd Contract NOrd 9845.) # TABLE I. - FIGURE INDEX | Figure | Dependent variable | Independent variable | | | | | | | |--------------------------------|--|---|--|--|--|--|--|--| | 1
2
3(a)
3(b)
3(c) | Schematic diagram of afterburner Photograph of afterburner installation Afterburner component parts; flame holder and spray bars in position Manufacturer's afterburner ignitor Afterburner fuel spray bar | | | | | | | | | | Over-all Engine Perfor | mance | | | | | | | | 4(a) | Augmented net thrust ratio variation with altitude | Afterburner equivalence ratio | | | | | | | | 4(b) | Over-all net thrust specific fuel consumption variation with altitude | Afterburner equivalence ratio | | | | | | | | 4(c) | Augmented net thrust ratio variation with flight Mach number | Afterburner equivalence ratio | | | | | | | | 4(d) | Over-all net thrust specific fuel consumption variation with flight Mach number | Afterburner equivalence ratio | | | | | | | | | Afterburner Performa | ince | | | | | | | | 5
6(a)
6(b) | Afterburner total pressure loss
Combustion temperature
Combustion efficiency | Afterburner equivalence ratio
Afterburner equivalence ratio
Afterburner equivalence ratio | | | | | | | | | Effect of Ejector on Per | formance | | | | | | | | 7 | Ejector jet thrust loss | Afterburner equivalence ratio | | | | | | | | Operational Characteristics | | | | | | | | | | 8
9
10 | Afterburner operational limits
Afterburner ignition limits
Local afterburner shell temperature | Afterburner equivalence ratio Afterburner equivalence ratio Distance downstream from turbine outlet | | | | | | | TABLE II. - ALTITUDE PERFORMANCE DATA OF J71-A2 TURBOJET ENGINE-AFTERBURNER. | Run | Assinal
altitude,
ft | Nominal
Mach
number,
M _O | Altitude
pressure,
po,
lb
sq ft abs | Engine-
inlet
total
pressure,
P ₂ ,
lb
sq ft abs | Engine- inlet total temper- ature, T ₂ , o _R | Compressor- outlet total pressure, Pg, 1b sq ft abs | Compressor-
outlet
total
tempera-
ture,
T3,
oR | P ₅ ,
lb
sq ft sbs | Turbine outlet total temperature, T5, OR | Nozzle inlet total pressure, Pg, lb sq ft abs | Cooling
shroud
total
temper-
ature,
on | Engine
air flow
Wa'2'
lb/sec | Engine
fuel
flow
Wf,e'
ib/hr | After-
burner
fuel
flow,
Wf,ab'
lb/hr | Augmented
jet
thrust,
Fj,
1b | Augmented
net
thrust,
Pn'
1b | |--|----------------------------|--|--|---|--|--|--|--|--|---|---|---|--|---|---|--| | | | Г | | | | 700 | With ejector | configura
3218 | 1633 | 2984 | 798 | 108.12 | 5780 | 6,715 | 9.865 | 6889 | | 1
2
3
4
5
6
7 | 23,000 | 0.9 | 891
889
892
889
890
894
895 | 1495
1500
1502
1501
1496
1494
1503 | 541
539
541
539
541
540
541 | 11,360
11,309
11,382
11,310
11,359
11,346
11,378 | 1033
1028
1053
1029
1033
1030
1083 | 3211
3203
3187
3205
3200
3235 | 1635
1627
1632
1628
1631
1630
1645 | 2970
2944
2907
2918
2892
2966 | 719
754
805
756
757 | 108.74
108.33
108.96
108.09
108.10 | 5760
5820
5710
5800
5760
5840 | 7,145
8,820
12,050
13,450
15,815
17,990 | 10,089
10,549
11,198
11,453
11,740
12,067 | 6855
7335
7955
8249
8554
8867 | | 8
9
10
11
12 | 35,000 | 0.9 | 503
509
508
509
503 | 824
826
825
824 | 456
459
460
461 | 7,283
7,223
7,229
7,228 | 939
947
948
947
948 | 2157
2069
2052
2056
2071 | 1565
1637
1645
1 6 37
1641 | 2032
1935
1905
1897
1909 | 781
802
835
873
915 | 69.46
69.38
69.30
69.22 | 3885
3930
3910
3910
3930 | 3,000
3,615
4,830
5,990
6,090 | 5,996
6,209
6,731
7,018 | 4134
4363
4876
5173 | | 13
14
15
16
17 | | | 507
503
507

505 | 825
837
826
829
834 | 460
464
459
456
466 | 7,218
7,241
7,261
7,255
7,186 | 947
952
947
944
954 | 2064
2067
2069

2052 | 1639
1641
1636
1630
1638 | 1900
1888
1895

1866 | 810
856
826
869
929 | 69.42
69.62
69.38
70.13
68:33 | 3955
3930
3955
3950
3955 | 7,275
8,445
8,460
9,730
9,750 | 7,274
7,621
7,516
7,561 | 5418
5714
5664
5724 | | 18
19
20
21
22
23
24 | 45,000 | 0.6 | 305
305
305
308
305
304
304 | 385
386
384
386
385
386
388 | 422
423
425
423
422
422
431 | 3,572
3,565
3,541
3,568
3,570
3,569
3,510 | 910
910
913
913
911
910
918 | 1004
1002
999
1008
1005
1004
995 | 1646
1650
1646
1647
1645
1646
1644 | 924
915
910
915
910
911
897 | 919
1018
1017
1035
1013
991
1035 | 33.75
33.64
33.50
33.70
33.63
33.83
33.33 | 2034
2034
2034
2034
2045
2040
2003 | 1,950
2,940
3,420
4,005
4,510
5,100
5,750 | 2,954
3,254
3,306
3,415
3,479
3,585
3,585 | 2336
2640
2696
2809
2869
2994
2919 | | 25
26
27
28
29 | 45,000 | 0.9 | 315
310
312
311
312 | 518
510
512
517
513 | 462
461
458
461
463 | 4,456
4,471
4,453
4,467
4,406 | 946
947
938
947
948 | 1282
1250
1311
1270
1272 | 1649
1650
1651
1651
1643 | 1193
1157
1199
1172
1161 | 866
923
887
940
917 | 42.84
42.11
42.26
42.83
42.17 | 2415
2460
2472
2466
2460 | 2,095
2,115
3,540
3,790
4,635 | 3,802
3,779
4,231
4,386
4,450 | 2640
2645
3098
3208
3313 | | 30
31
32
33
34 | | | 312
312
317
315
317 | 517
512
516
510
517 | 460
463
458
465
458 | 4,444
4,449
4,490
4,410
4,478 | 947
949
943
953
945 | 1265
1263
1270
1251
1261 | 1650
1646
1651
1646
1648 | 1163
1147
1162
1133
1153 | 908
909
935
903
802 | 42.82
42.31
42.82
61.75
43.16 | 2460
2443
2489
2415
2495 | 4,830
5,040
5,900
6,820
7,110 | 4,578
4,511
4,695
4,618
4,820 | 3407
3370
3547
3502
3661 | | 35
36
37 | 45,000 | 1.0 | 305
305
305 | 573
575
573 | 473
473
473 | 4,866
4,860
4,838 | 958
960
958 | 1365
1378
1366 | 1631
1634
1634 | 1259
1260
1246 | 904
899
1030 | 46.42
46.57
46.28 | 2670
2642
2659 | 3,085
4,130
5,045 | 4,603
4,945
5,078 | 3193
3526
3672 | | 38
39
40
41 | 50,000 | 0.9 | 244
250
243
250 | 399
397
399
397 | 463
455
463
463 | 3,450
3,529
3,469
3,464 | 953
948
952
955 | 979
998
982
961 | 1650
1646
1651
1647 | 901
911
891
877 | 892
886
979
980 | 32.50
33.08
32.70
32.74 | 1924
1945
1924
1918 | 1,190
1,735
2,800
3,295 | 2,665
2,915
3,223
3,273 | 1796
2059
2343
2420 | | 42
43
44
45 | | | 245
251
253
254 | 399
399
399
399 | 463
464
464
462 | 3,440
3,467
3,481
3,479 | 955
955
955
955 | 976
972
978
977 | 1646
1650
1647
1650 | 875
882
875
874 | 955
1016
943
852 | 32.65
32.76
32.67
32.67 | 1929
1918
1924
1935 | 3,705
4,200
5,040
5,910 | 3,394
3,404
3,484
3,502 | 2525
2551
2638
2659 | | 48
49
50 | 55,000 | 0.9 | 174 ^a
186 ^a
189 ^a
186 ^a
215 | 317
316
316
316
316
318 | 449
465
453
460
454 | 2,805
2,726
2,776
2,733
2,734 | 998
967
953
958
952 | 781
753
764
759
767 | 1658
1655
1650
1648
1648 | 723
682
696
690
698 | 932
936
967
934
939 | 26.61
26.01
26.44
26.14
26.36 | 1580
1540
1565
1535
1565 | 1,295
1,830
2,460
2,130
2,170 | 2,329
2,424
2,668
2,549
2,530 | 1609
1720
1954
1841
1814 | | 51
52
53
54 | | | 199 ³
229 ⁸
196 ⁸
206 ^a | 315
317
316
316 | 458
461
452
453 | 2,745
2,745
2,808
2,799 | 961
960
952
956 | 753
761
772
768 | 1653
1651
1653
1653 | 685
679
698
692 | 987
885
963
915 | 25.95
25.91
26.60
26.38 | 1545
1545
1580
1575 | 2,835
2,940
3,415
3,950 | 2,662
2,663
2,884
2,892 | 1963
1963
2186
2182 | | 55
56
57
58 | 60,000 | 0.9 | 162 ^a
163 ^a
203 ^a
165 ^a | 246
247
254
246 | 461
461
462
463 | 2,161
2,164
2,180
2,129 | 966
966
968
969 | 586
580
584
566 | 1646
1646
1651
1646 | 541
527
532
511 | 948
975
969
962 | 20.30
20.15
20.94
20.16 | 1220
1225
1246
1194 | 1,240
1,560
1,650
1,835 | 1,802
1,879
1,956
1,936 | 1%62
1343
1379
1397 | | 59
60
61
62 | | | 158 ^a
205 ^a
173 ^a
173 ^a | 247
248
248
247 | 468
461
467
462 | 2,146
2,046
2,166
2,162 | 974
968
974
969 | 565
562
570
582 | 1648
1649
1648
1649 | 511
514
513
523 | 961
989
994
982 | 20.01
20.41
20.08
20.19 | 1190
1221
1204
1225 | 2,020
2,310
2,325
2,625 | 1,991
2,068
2,027
2,133 | 1458
1514
1490
1593 | | 63
64 | 23,000 | 0.9 | 895
895 | 1520
1519 | 549
552 | 11,130 | 1036
1040 | 3159
3161 | 1638
1638 | 2906
2886 | === | 105.78
105.97 | 5670
5640 | 8,150
10,080 | 10,265
10,715 | 7050
7518 | | 65
66
67 | | | 895
899
899 | 1526
1522
1522 | 555
555
554 | 11,051
11,053
11,061 | 1044
1046
1043 | 3117
3119
3128 | 1637
1639
1643 | 2831
2821
2817 | === | 105.78
105.58
105.34 | 5575
5620
5820 | 12,140
14,185
16,500 | 11,096
11,326
11,547 | 7882
8140
8371 | | 68
69
70
71
72 | 35,000 | 0.9 | 497
490
494
494
497 | 834
832
839
834
837 | 459
460
461
462
459 | 7,297
7,304
7,329
7,274
7,297 | 941
942
943
943
941 | 2112
2103
2110
2099
2102 | 1649
1644
1647
1639
1640 | 1948
1925
1919
1900
1902 | === | 69.35
69.26
69.65
69.28
69.46 | 4015
3995
4015
3995
4040 | 5,260
7,280
9,220
11,170
13,080 | 7,114
7,619
8,014
8,159
8,265 | 5219
5700
6084
6244
6363 | | 73
74
75
76
77
78 | 45,000 | 0.9 | 301
304
301
301
302
302 | 524
517
517
529
515
515 | 461
460
460
459
463
458 | 4,548
4,518
4,517
4,587
4,485
4,516 | 950
949
949
947
952
946 | 1316
1274
1281
1320
1262
1279 | 1659
1652
1656
1657
1648
1653 | 1218
1161
1159
1191
1136
1154 | | 43.27
42.40
42.85
43.98
42.07
42.65 | 2511
2500
2506
2546
2489
2517 | 2,660
4,000
5,510
6,740
6,640
8,120 | 4,061
4,513
4,817
5,134
4,900
5,032 | 2838
3342
3618
3886
3730
3851 | | 79
80
81
82
83
84
85 | 50,000 | 0.9 | 237
238
238
258
258
239
239
239 | 410
409
410
410
410
408
409 | 457
458
459
460
459
460
458 | 3,575
3,569
3,553
3,541
3,528
3,529
3,558 | 949
949
951
951
951
952
950 | 1006
993
996
987
989
981
996 | 1650
1648
1646
1649
1651
1649
1649 | 925
905
902
892
884
881
893 | | 33.88
33.79
33.88
53.56
33.75
33.47
33.74 | 1997
1986
1982
1971
1966
1976
1982 | 1,880
2,520
3,190
3,825
4,525
5,120
5,405 | 3,132
3,389
3,564
3,678
3,767
3,818
3,870 | 2180
2445
2615
2738
2826
2888
2933 | | 86
87
88
89
90 | 55,000 | 0.9 | 2198
2228
2258
2248
2288
2248 | 319
321
319
321
321
321 | 457
456
456
456
456
457 | 2,784
2,782
2,782
2,784
2,804
2,811 | 953
954
981
953
953
957 | 764
776
761
779
767
790 | 1654
1655
1652
1649
1649
1665 | 697
704
688
702
688
711 | | 26.24
25.51
26.27
26.57
26.57
26.53 | 1594
1560
1570
1575
1575
1605 | 1,790
2,328
2,835
3,370
3,915
4,900 | 2,483
2,707
2,777
2,908
2,980
3,081 | 1773
1985
2066
2183
2262
2357 | | 92
93
94
95
96 | 60,000 | 0,9 | 206 ^a
208 ^a
210 ^a
213 ^a
213 ^a | 249
250
248
249
249 | 457
457
457
458
457 | 2,176
2,175
2,171
2,175
2,175 | 960
960
964
963
960 | 583
597
590
592
590 | 1651
1652
1647
1651
1655 | 528
535
528
527
523 | | 20.59
20.64
20.24
20.42
20.59 | 1226
1221
1237
1221
1228 | 1,615
1,880
2,165
2,375
2,585 | 1,981
2,047
2,124
2,152
2,186 | 1425
1488
1579
1600
1630 | aExhaust nozzle choked; thrust corrected to NACA standard altitude pressure. Figure 1. - Schematic diagram of J71-A2 turbojet engine afterburner showing location of various components. CONFIDENTIAL Figure 2. - J71-A2 turbojet engine afterburner installed in altitude test chamber. (a) Sketch showing afterburner flame holder and spray bars in position. Figure 3. - J71-A2 turbojet engine afterburner component parts. CONFIDENTIAL (b) Manufacturer's afterburner ignitor. Figure 3. - Continued. J71-A2 turbojet engine afterburner component parts. (c) Afterburner fuel spray bar. Figure 3. - Concluded. J71-A2 turbojet engine afterburner component parts. CONFIDENTIAL Figure 4. J71-A2 turbojet engine afterburner performance variation with altitude and flight Mach number. (d) Overall specific fuel consumption variation with flight Mach number. Figure 4. J71-A2 turbojet engine afterburner performance variation with altitude and flight Mach number. # CONFIDENTIAL CONFIDENTIAL. Figure 5. J71-A2 turbojet engine afterburner total pressure loss variation with afterburner equivalance ratio. Figure 6. J71-A2 turbojet engine afterburner combustion performance variation with altitude. # CONFIDENTIAL 20 Figure 7. Jet thrust loss due to ejector configuration on J71-A2 turbojet engine afterburner. $P_9/p_0 = 3.57$ Figure 8. J71-A2 turbojet engine afterburner operational limits and afterburner control system limits of operation. Figure 9. Area of afterburner ignition using the manufacturer's ignitor and the NACA "hot streak" ignitor. Figure 10. Local afterburner shell temperature distribution along length of the afterburner during operation at several equivalence ratios. # - CONFIDENTIAL # PRELIMINARY ALTITUDE PERFORMANCE DATA OF J71-A2 # TURBOJET ENGINE AFTERBURNER James W. Useller Aeronautical Research Scientist Propulsion Systems William E. Mallett William E. Mallett Aeronautical Research Scientist Propulsion Systems Approved: H. Dean Wilsted Aeronautical Research Scientist Propulsion Systems Bruce T. Lundin Chief Engine Research Division NACA RM SE54J06 # FORWARD To permit expeditious transmittal of performance data to those concerned, figures and a tabulation of "Preliminary Data" are presented herein. Preliminary Data are test data that have not received the complete analysis and extensive cross-checking normally given a set of NACA data before release.