UNCLASSIFIED

RM No. E6L05

Source of Acquisition CASI Acquired

NACA

RESEARCH MEMORANDUM

for the CANCELLED

Classification

Air Materiel Command, Army Air Forces

CHANGED TO

By authority of <u>NACA</u> Changed by 1/2

erenautics, Navy Department

PERFORMANCE INVESTIGATION OF TG-180 COMBUSTOR

I - INSTRUMENTATION, ALTITUDE OPERATIONAL LIMITS

AND COMBUSTION EFFICIENCY

By Eugene V. Zettle and William P. Cook

Aircraft Engine Research Laboratory Cleveland, Ohio

This decreased contains electrical information effecting the gotiques Cosence of the Relies Clairs while the bereing of Restriction/Classification Cancelled uply to ear 5.22.25 States, a.e. c. 05990 States attach at book logally and discuss who is execute

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

'S Company of the Com NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

for the

Air Materiel Command, Army Air Forces

and the

Bureau of Aeronautics, Navy Department PERFORMANCE INVESTIGATION OF TG-180 COMBUSTOR

I - INSTRUMENTATION, ALTITUDE OPERATIONAL LIMITS

AND COMBUSTION EFFICIENCY

By Eugene V. Zettle and William P. Cook

SUMMARY

A brief investigation has been made of the performance of a single combustor of the TG-180 turbojet engine to determine (a) the altitude operational limits of the engine for two fuels (AN-F-32 and AN-F-28), (b) combustion efficiencies at various simulated conditions of altitude and engine speeds, (c) combustor-outlet temperature distribution for several altitudes at constant engine speed, and (d) the combustor total pressure drop.

The limits with AN-F-32 fuel were found to be approximately 60,000 feet for an engine speed of 6000 rpm and approximately 38,000 feet for an engine speed of 4000 rpm. The results indicated that the altitude operational limits with AN-F-32 fuel are higher over the largest part of the engine-speed range than with AN-F-28 fuel. A combustion efficiency of 92 percent was obtained at rated engine speed (7600 rpm) and an altitude of 20,000 feet with AN-F-32 fuel. A change in altitude from 20,000 to 60,000 feet showed a 20-percent decrease in combustion efficiency while the engine was operating at 7600 rpm; whereas, at an engine speed of 4000 rpm a change of altitude from 10,000 to 40,000 feet showed a 52-percent decrease in combustion efficiency.

INTRODUCTION

A performance investigation is being conducted at the NACA Cleveland laboratory on a single combustor of the TG-180 turbojet engine. This report describes the arrangement of the apparatus and instrumentation and also presents the altitude operational limits of the combustor for two fuels (AN-F-32 and AN-F-28), combustion efficiencies at various simulated conditions of altitude and engine speed, combustor-outlet temperature-distribution plots for several altitudes at constant engine speed, and a combustor pressure-drop correlation.

APPARATUS AND INSTRUMENTATION

The combustion chamber of a TG-180 turbojet engine was connected to the laboratory-air supply, as diagrammatically shown in figure 1. Air quantity and pressure were regulated by remote-centrol valves upstream and downstream of the combustion chamber. The desired inletair temperature was obtained by the use of an electric air preheater, which was automatically regulated to maintain a constant inlet-air temperature.

The combustor-inlet section and the combustor itself were furnished by the manufacturer. The combustor-outlet section, which was fabricated at the Cleveland laboratory, duplicates that of the engine. Two observation windows located axially along the combustor made possible the visual observation of combustion characteristics.

The number and location of instruments at the instrumentation planes shown in figure 1 are tabulated as follows:

Type of instrument	Number of instruments Instrumentation plane					
	Α	В	C	. D		
One-thermocouple rake Three-tube total-pressure rake Five-tube total-pressure rake Five-thermocouple rake Static-pressure orifice connection	2 3	400 400 400 400 400 400 400 400 400	7	3		

All measurements were taken at the center of equal areas. Locations of the points of measurement at the respective instrumentation planes are shown in figure 2 and the instrumentation details are shown

J

in figure 3. Temperatures were indicated by self-balancing potentiometers; air flow was measured by A.S.M.E. square-edge orifices and fuel flow by a rotameter. All instruments were calibrated. No attempt was made to correct the thermocouple readings for stagnation effects. A photograph of the combustor and instrumentation is shown in figure 4.

METHODS

Tests were conducted on the combustor covering a range of simulated altitudes from 10,000 to 60,000 feet and simulated engine speeds from 3500 to 7600 rpm. Combustor inlet-air conditions were maintained for each altitude and engine speed point selected at values determined from the engine-performance investigation made in the Cleveland altitude wind tunnel at zero ram conditions (reference 1). The required operating conditions from reference 1, the actual test conditions, and the results obtained are listed in table I. At each altitude and engine-speed point investigated, an attempt was made to obtain an average combustor-outlet temperature equal to or greater than that required for normal engine operation at that point. For each simulated engine-speed point there was an altitude above which the required combustor-outlet-gas temperature could not be obtained. The altitude operational limits were determined for both AN-F-28 and AN-F-32 fuels. The combustion efficiencies over the range of engine operational speeds and altitudes were determined with AN-F-32 fuel.

RESULTS

The altitude operational limits obtained using AN-F-28 and AN-F-32 fuels, respectively, are shown in figures 5 and 6 where altitude is plotted against engine speed. The solid curves separate the region where the combustor-outlet temperatures obtainable were sufficient for normal operation of the TG-180 combustor from the region where either the combustor-outlet temperatures obtainable were insufficient for operation of the engine or where burner blowout occurred. Figure 6(b) includes lines of constant combustion efficiency. The constant temperature-rise efficiency lines were obtained by interpolating between the data points. The altitude operational limits using AN-F-32 fuel were found to be approximately 60,000 feet for an engine speed of 6000 rpm and approximately 38,000 feet for an engine speed of 4000 rpm (fig. 6). The results indicate that the altitude operational limits with AN-F-32 fuel are higher over the largest part of the engine-speed range than with -urge

CONFIDENTIAL

AN-F-28 fuel. The maximum difference reaches 10,000 feet; however, as the rated engine speed (7600 rpm) is approached the difference in limits between the two fuels is nearly eliminated.

The variation of the combustion efficiency with altitude for engine speeds of 4000 and 7600 rpm using AN-F-32 fuel is shown in figure 7. Combustion efficiency is defined as the ratio of the measured total-temperature rise across the combustor to the theoretical total-

temperature rise across the combustor $\frac{\Delta T_m(A-B)}{\Delta T_t}$ (reference 2). A

combustion efficiency of 92 percent was obtained at rated engine speed (7600 rpm) and an altitude of 20,000 feet. A change of altitude from 20,000 to 60,000 feet showed a 20-percent decrease in combustion efficiency while the engine was operating at a speed of 7600 rpm; whereas, at an engine speed of 4000 rpm a change of altitude from 10,000 to 40,000 feet showed a 52-percent decrease in combustion efficiency.

The effect of the variation of fuel-air ratio on combustor performance at an operating point chosen near the dead-band for AN-F-28 fuel is shown in figure 8.

The temperature distribution at instrumentation plane B-B (fig. 1) for a simulated engine speed of 7600 rpm and representing two simulated altitudes (50,000 and 55,000 ft) using AN-F-32 fuel is shown in figure 9. Three temperature-distribution patterns taken at simulated altitudes of 20,000, 50,000, and 55,000 feet and at a simulated speed of 7600 rpm using AN-F-28 fuel are presented in figure 10.

It can be shown from the momentum equation for a constant cross-sectional-area combustor that the total-pressure drop across the combustor expressed as a fraction of impact pressure is a linear function of the ratio of inlet-to-outlet gas densities. The impact pressure was calculated at the inlet to the combustor assuming that the inlet area was equal to the maximum cross-sectional area of the combustor. When the pressure drop is related to the maximum cross-sectional area of the combustor, useful comparisons can be made with the pressure drop in other combustors of different geometry. Figure 11 shows total-pressure drop expressed as a fraction of impact pressure $\Delta P/q$ plotted against inlet-to-outlet density ratio $\rho_{\Lambda}/\rho_{\rm R}$.

SUMMARY OF RESULTS

From an investigation of the performance characteristics of a TG-180 combustor the following results were obtained:

- 1. The altitude operational limits with AN-F-32 fuel were found to be approximately 60,000 feet for an engine speed of 6000 rpm and approximately 38,000 feet for an engine speed of 4000 rpm. The results indicated that the altitude operational limits with AN-F-32 fuel are higher over the largest part of the engine-speed range than with AN-F-28 fuel.
- 2. A combustion efficiency of 92 percent was obtained at rated engine speed (7600 rpm) and an altitude of 20,000 feet with AN-F-32 fuel. A change of altitude from 20,000 to 60,000 feet showed a 20-percent decrease in combustion efficiency while the engine was operating at 7600 rpm; whereas, at an engine speed of 4000 rpm a change of altitude from 10,000 to 40,000 feet showed a 52-percent decrease in combustion efficiency.

Aircraft Engine Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland. Ohio.

Eugene V. Zettle, Mechanical Engineer.

William P. Cook, Mechanical Engineer.

Approved:

Walter T. Olson, Chemist.

Benjamin Pinkel, Physicist.

vab

REFERENCES

- 1. Fleming, William A.: Altitude-Wind-Tunnel Tests of the General Electric TG-180 Jet-Propulsion Engine. I Performance and Windmilling Drag Characteristics. NACA MR No. E5J14, Army Air Forces, 1945.
- 2. Turner, L. Richard, and Lord, Albert M.: Thermodynamic Charts for the Computation of Combustion and Mixture Temperatures at Constant Pressure. NACA TN No. 1086, 1946.

TABLE I - SUMMARY OF STATIC PERFORMANCE DATA FOR TG-180 COMBUSTOR

(g) an gan an a		Simulated conditions		Required operating conditions ²				Actual test conditions and results						
Run (1)	speed (rpm)	Altitude (ft) AL ADVISOR		Inlet static pres- sure (in. Hg abso- lute)	Combus- tor- outlet average temper- ature (OF)	Combus- tor- inlet average temper- ature (°F)	Mass flow (lb/ sec)	Inlet static pres- sure (in. Hg abso- lute)	Combus- tor- outlet average temper- ature (°F)	Fuel- air ratio	Combus- tor- inlet average temper- ature (OF)	Average temper- ature rise (OF)	Temper- ature- rise effi- ciency (per- cent)	
2 3 4 5	4500 5000 5000 5500 5000	40,000 40,000 45,000 45,000 50,000	1.12 1.29 1.04 1.20	10.5 12.4 10.0 11.8 7.7	620 670 670 750 670	39 68 67 97 68 97	1.11 1.30 1.00 1.24 .82	10.4 12.4 9.7 11.7 7.5	420 627 616 897 579	0.0152 .0107 .0117 .0194 .0112 .0158	35 66 67 90 67	385 561 549 807 512	0,35 .72 .65 .63 .63	
6 7 8 9 10	5500 6000 6500 7600 5000 6000	50,000 50,000 50,000 50,000 55,000	.95 1.05 1.13 1.26 .67	8.9 10.9 11.4 16.9 6.4 8.5	750 860 1010 1465 670 860	130 162 240 67 129	.96 1.05 1.14 1.27 .68	8.8 10.7 11.4 16.9 6.3 8.3	965 1137 1464 558 780	.0219 .0212 .0237 .0107	120 160 238 67 132	845 977 1226 491 648	.57 .68 .78 .63	
12 13 14 15 16	6500 7000 7600 6000 6500 7000	55,000 55,000 55,000 60,000 60,000	.93 .97 1.01 .66 .71	9.7 11.0 12.5 6.8 7.9 9.1	1010 1180 1465 860 1010 1182	162 198 239 130 162 198	.93 .98 1.04 .68 .71 .76	9.9 10.6 12.2 6.8 7.7 9.1	1145 1111 1317 586 982 1068	.0223 .0210 .0246 .0126 .0187 .0232	162 196 240 136 164 198	983 915 2077 450 818 870	.65 .64 .66 .50 .63	
18 19 20 21 22	4000 4500 7600 7000 6000	30,000 35,000 30,000 30,000 30,000	1.45 1.37 3.17 2.98 2.56	14.1 13.2 42.1 36.0 26.9	650 625 1440 1200 900	34 40 262 218 150	1.43 1.38 3.12 3.04 2.56	13.9 13.1 40.0 35.8 27.0	767 755 1636 1741 1620	.0166 .0167 .0225 .0249 .0250	35 39 251 223 148	732 716 1385 1518 1472	.62 .60 .93 .93 .89	
23 24 25 26 27	5000 4000 4000 7600 7000	30,000 30,000 35,000 40,000	1.96 1.45 1.20 2.04 1.94	19.1 14.1 11.5 27.3 23.6	710 650 600 1465 1180	87 34 14 240 198	1.98 1.45 1.20 1.98 1.96	19.3 14.2 11.5 26.9 23.6 17.4	1306 703 669 1540 1581 1303	.0222 .0140 .0139 .0223 .0234 .0214	67 34 14 242 194 129	1219 669 655 1298 1387 1174	.81 .67 .66 .87 .88	
28 29 30 31 32	5000 5000 4500 4000 5000	40,000 40,000 40,000 40,000 45,000	1.69 1.29 1.12 .95 1.04	17.6 12.4 10.5 9.0 10.0	860 670 625 600 670	130 68 39 14 67	1.66 1.30 1.12 .95 1.06	17.4 12.4 10.4	1115 611 	.0214 .0219 .0124 .0208 .0131	129 64 28 14 64	1051 583 	.70 .65	

					·		Υ		~~~~		·		T******
1	1		ł				}					}	
33	4500	45,000	0.90	8.5	625	39	0.91	8.6	753	0.0181	44	709	0.56
34	7600	50,000	1.26	16.9	1465	240	1.26	16.9	1559	.0268	240	1319	.76
35	7000	50,000	1.20	14,6	1180	198	1.18	14.4	1172	.0203	203	969	.71
36	6000	50 ,000	1.05	10.9	860	130	1.00	9.9	1177	.0236	125	1052	.67
37	5000	50,000	.82	7.7	670	68	.83	7.6	794	.0208	68	726	.52
38	4500	50,000	.69	6.6	625	39	.69	6.6			39		
39	5000	55,000	. 67	6.4	670	67	. 67	6.2	627	.0193	68	553	.42
40	7600	60,000	.76	10.5	1465	240	.76	10.5	1333	.0260	240	1093	, 65
41	7000	60,000	.75	9.1	1180	198	.75	9.2	1139	.0248	195	944	, 58
42	6000	60,000	.66	6.8	860	130	.66	6.9	1005	.0239	130	875	.55
43	5000	60,000	. 50	4.8	670	68	.51	4.8	612	.0218	76	536	.36
44	4000	20,000	2.02	21.0	740	67	2.02	20.7	779	.0132	76	703	.76
45	3000	20,000	1.46	17.1	750	28	1.46	16.9	777	.0146	22	755	.72
46	5500	60,000	. 59	5.7	750	97	. 60	5.7		.0119	102		
47	5500	55,000	.80	7.3	750	97	.80	7.3	692	.0174	100	592	.49
48	7000	55,000	.97	11.0	1180	197	.98	10.9	1133	.0220	198	1035	.71
49	7600	55,000	1.04	12.6	1465	239	1.05	12.6	1375	.0259	243	1132	.67
50	4000	25,000	1.76	17.4	700	50	1.77	17.3	690	.0129	49	641	.70
51	4000	15,000	2.38	24.9	780	83	2.39	24.8	752	.0113	82	670	.83
52	4000	10,000	2.78	29.1	840	99	2.79	29.1	837	.0119	94	743	.88
53	4000	40,000	.95	9.0	600	14	.98	8.7	495	.0168	14	481	. 41
54	4000	35,000	1.18	11.6	600	14	1.18	11.5	614	.0162	13	601	.52
55	4000	30,000	1.45	14.1	650	34	1.44	13.9	679	.0154	34	645	.59
56	4000	20,000	2.02	21.0	740	67	2.03	20.9	778	.0121	68	710	.82
57	7600	60,000	.76	10.5	1465	240	.77	10.4	1412	.0234	242	1170	.76
58	7600	55,000	1.00	12.4	1465	24C	1.00	12.5	1500	.0265	240	1260	.73
59	7600	50,000	1.26	16.9	1465	240	1.27	16.8	1490	.0242	238	1252 *	.79
60	7600	45,000	1.63	20.7	1465	240	1.64	20.8	1506	.0235	238	1268	.62
61	7600	40,000	2.04	27.3	1465	240	2.05	27.1	1476	.0209	239	1237	.88
62	7600	35,000	2,59	34.6	1465	240	2.60	34.7	1489	.0207	242	1247	.90
63	7600	30,000	3.17	42.1	1440	262	3.15	42.0	1383	.0191	260	1123	,87
64	7600	25,000	3.86	51.2	1460	278	3.89	50.5	1433	.0195	279	1154	.88
65	7600	20,000	4,57	60 . 6	1475	299	4.57	60.4	1454	.0180	299	1155	.95
66	6000	50,000	1.05	10.9	860	130	1.06	10.9	920	.0159	131	789	.70
67	6000	50,000	1.05	10.9	860	130	1.07	11.0	997	.0191	131	866	.65
68	6000	50,000	1.05	10.9	860	130	1.05	10.9	1097	.0232	132	965	.61
69	6000	50,000	1.05	10.9	860	130	1.06	10.7	1176	.0252	130	1046	,62
70	6000	50,000	1.05	10.9	860	130	1.05	10.9		.0263	130		
71	3500	30,000	1.11	8.0	650	11	1.11	8.0	437	.0189	12	1125	.32
72	6500	60,000	.71	7.9	1010	162	.73	7.8	1096	.0220	163	933	.64
73	6000	50,000	1.06	10.9	860	131	1.06	11.0	586	.0095	131	455	.66
74	6000	50,000	1.06	10.9	860	132	1.06	11.0	796	.0122	132	664	.75
	5555	30,000					1		1				

 $^1\mathrm{Runs}$ 1-19, 66-70, 73, and 74 with AN-F-28 fuel; other runs with AN-F-32 fuel. $^2\mathrm{Prom}$ reference 1.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

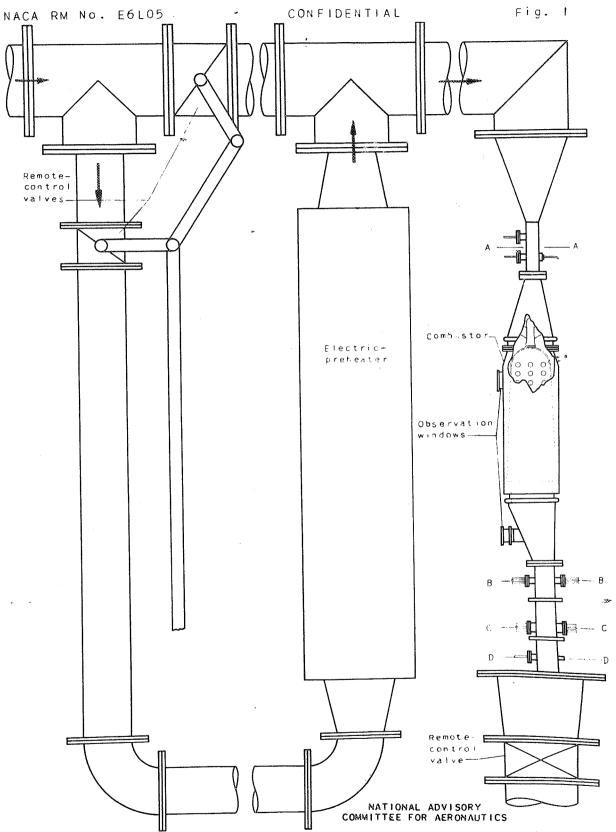
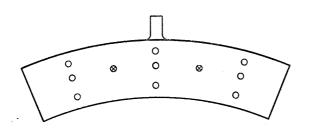
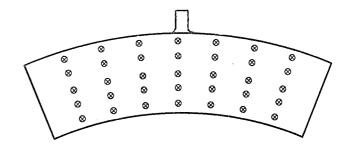
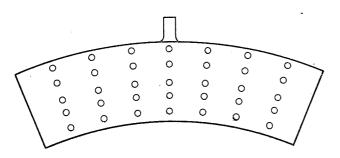
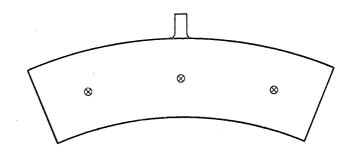



Figure 1. - Schematic diagram showing test rig and instrumentation positions used in investigation of TG-180 combustor.


CONFIDENTIAL

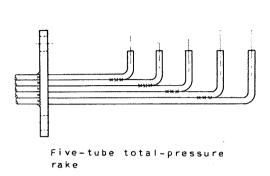
 \sim

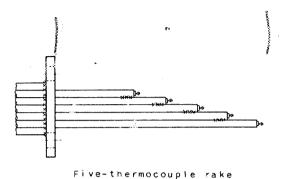

CONFIDENTIAL


Plane A-A

Plane B-B

Plane C-C


Plane D-D


- Total-pressure orifice
- Thermocouple

Static-pressure orifice

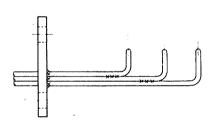
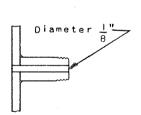
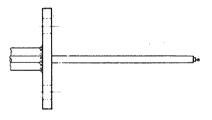

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Figure 2. - Location of instruments at several instrumentation planes.




True thermocoupre take

Three-tube total-pressure rake

Static-pressure connection

One-thermocouple rake

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 3. - Instrumentation details.

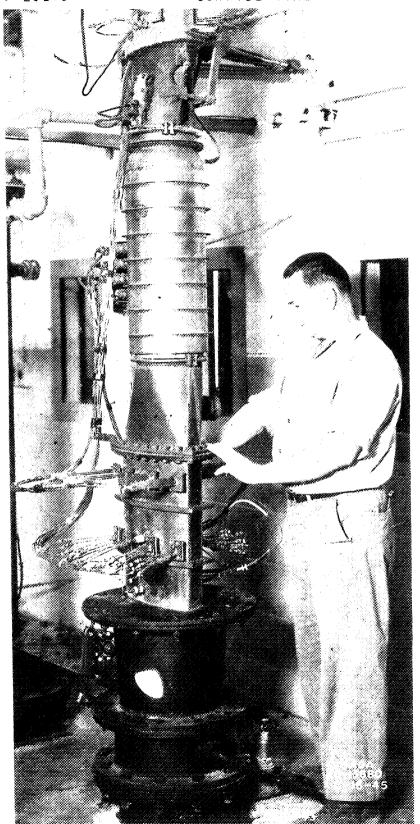


Figure 4. - Photograph of test rig, showing instrumentation positions.

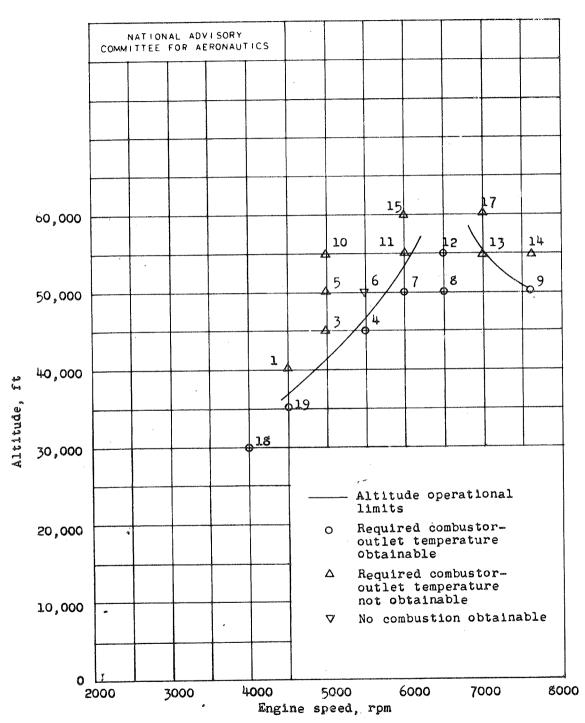
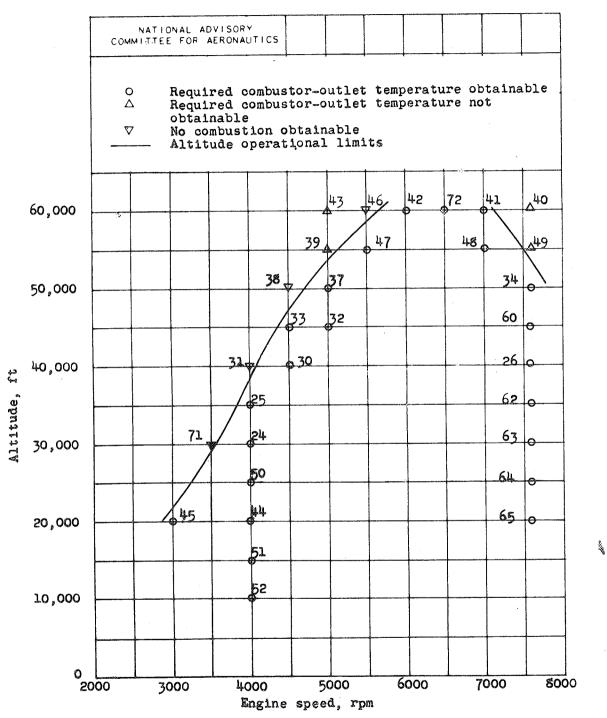
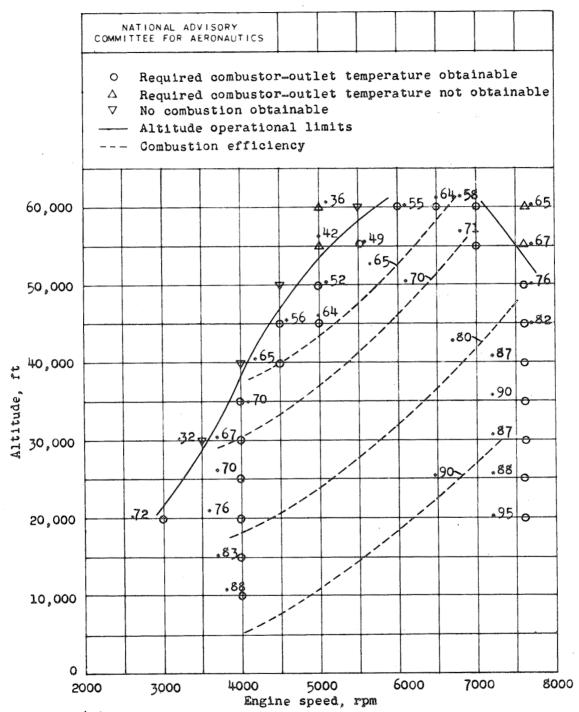




Figure 5: - Altitude operational limits for TG-180 combustor using AN-F-28 fuel. Zero ram. (Numbers refer to run numbers in table I.)

(a) Runs. (Numbers refer to run numbers in table I.)

Figure 6. - Altitude operational limits for TG-180 combustor using AN-F-32 fuel. Zero ram.

(b) Combustion efficiencies (Numbers refer to combustion efficiencies.)
 Figure 6. - Concluded. Altitude operational limits for TG-180 combustor using AN-F-32 fuel. Zero ram.

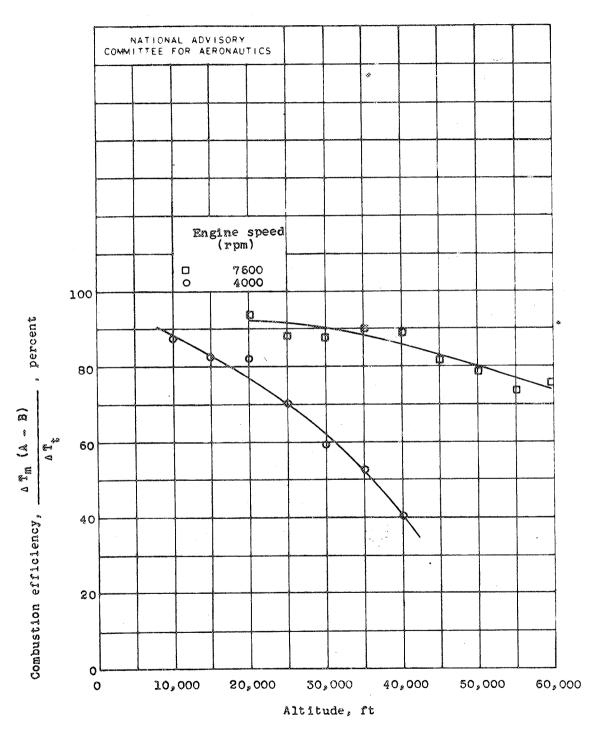


Figure 7. - Effect of variation of altitude on combustion efficiency in TG-180 combustor using AN-F-32 fuel. Zero ram.

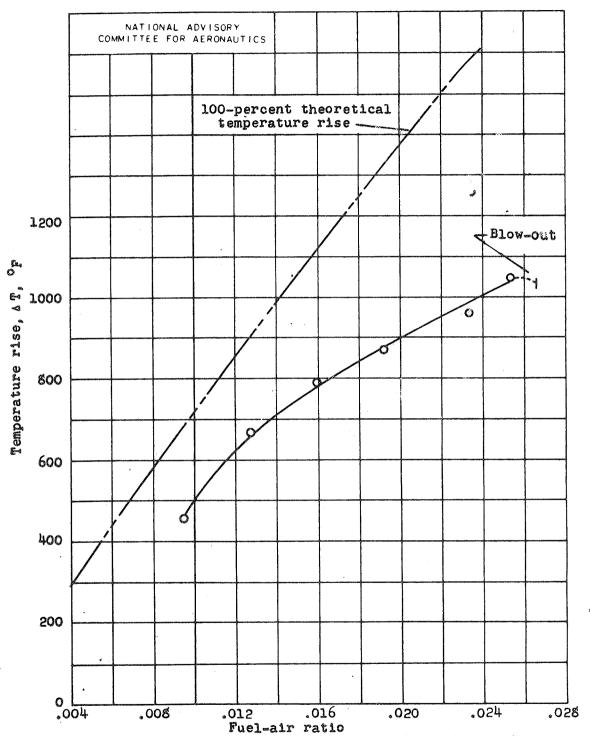
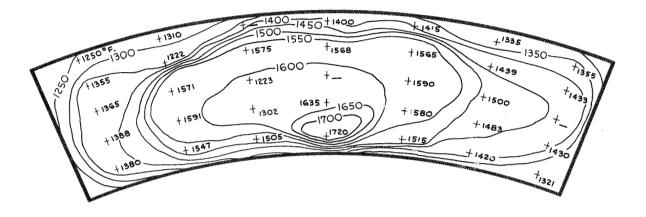
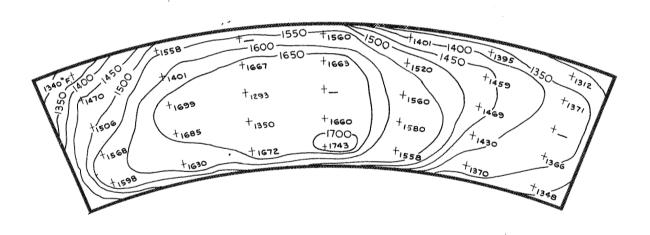
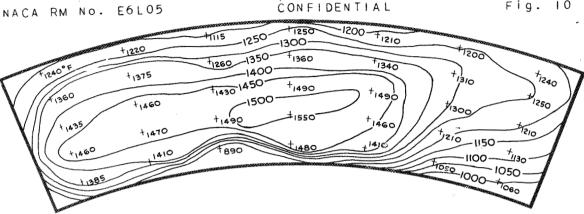
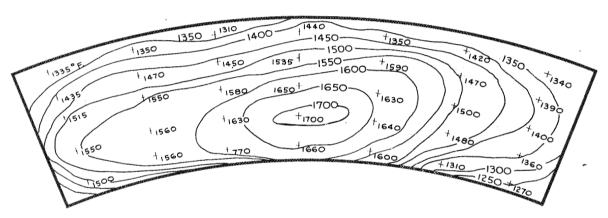
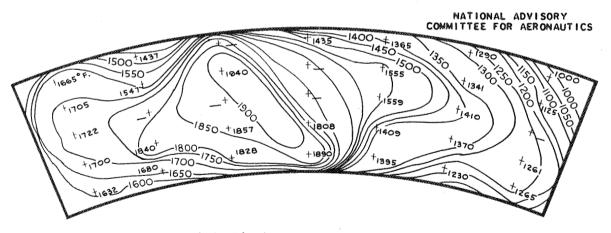




Figure 8. - Effect of variation of fuel-air ratio on temperature rise at operating conditions near dead-band in TG-180 combustor. Fuel, AN-F-28, engine speed, 6000 rpm; simulated altitude, 50,000 feet.


(a) Simulated altitude, 55,000 feet.


(b) Simulated altitude, 50,000 feet.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS


Figure 9. - Temperature-distribution pattern at instrumentation plane B-B in TG-180 combustor using AN-F-32 fuel. Engine speed, 7600 rpm.

(a) Simulated altitude, 55,000 feet.

(b) Simulated altitude, 50,000 feet.

(c) Simulated altitude, 20,000 feet.

Figure 10. - Temperature-distribution pattern at instrumentation plane B-B in TG-180 combustor using AN-F-28 fuel. Engine speed, 7600 rpm.

Figure 11. - Total-pressure drop across TG-180 combustor expressed as fraction of impact pressure plotted against inlet-to-outlet density ratio.

မှ

-A L

UNCLASSIFIED

UNCLASSIFIED