

# **RESEARCH MEMORANDUM**

for the

Bureau of Aeronautics, Department of the Navy

ADDITIONAL RESULTS ON THE STATIC LONGITUDINAL AND LATERAL

STABILITY CHARACTERISTICS OF A 0.05-SCALE MODEL

OF THE CONVAIR F2Y-1 AIRPLANE

AT HIGH SUBSONIC SPEEDS

TED NO. NACA DE 383

By Kenneth P. Spreeman and Albert G. Few, Jr.

Langley Aeronautical Laboratory Langley Field, Va.

Restriction/Classification This material contat of the espionage laws manner to an unauthor

se of the United States within the meaning ansmission or revelation of which in any

# 

**UG\_1** 0 1954

To be returned **to** the files of the National Committee

> for Agrication Walkington, D.C.

NACA RM SL54H05

## NATIONAL ADVISORY CONNUNCEMENTS NO. NATIONAL ADVISORY CONNUNCEMENTS NO.

#### RESEARCH MEMORANDUM

#### for the

Bureau of Aeronautics, Department of the Navy

ADDITIONAL RESULTS ON THE STATIC LONGITUDINAL AND LATERAL

STABILITY CHARACTERISTICS OF A 0.05-SCALE MODEL

OF THE CONVAIR F2Y-1 AIRPLANE

AT HIGH SUBSONIC SPEEDS

TED NO. NACA DE 383

By Kenneth P. Spreeman and Albert G. Few, Jr.

#### SUMMARY

Additional results on the static longitudinal and lateral stability characteristics of a 0.05-scale model of the Convair F2Y-1 water-based fighter airplane were obtained in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.92. The maximum angle-ofattack range (obtained at the lower Mach numbers) was from  $-2^{\circ}$  to 25°. The sideslip-angle range investigated was from  $-4^{\circ}$  to  $12^{\circ}$ . The investigation included effects of various arrangements of wing fences, leading-edge chord-extensions, and leading-edge notches. Various fuselage fences, spoilers, and a dive brake also were investigated.

From overall considerations of lift, drag, and pitching moments, it appears that there were two modifications somewhat superior to any of the others investigated: One was a configuration that employed a full-chord fence and a partial-chord fence located at 0.63 semispan and 0.55 semispan, respectively. The second was a leading-edge chord-extension that extended from 0.68 semispan to 0.85 semispan in combination with a leading-edge notch located at 0.68 semispan.

With  $\pm 10^{\circ}$  aileron, the estimated wing-tip helix angle was reduced from 0.125 at a Mach number of 0.50 to 0.088 at a Mach number of 0.92, with corresponding rates of roll of 4.0 and 5.2 radians per second. The upper aft fuselage dive brake, when deflected  $30^{\circ}$  and  $60^{\circ}$ , reduced the rudder effectiveness about 10 to 20 percent and about 35 to 50 percent, respectively.



#### INTRODUCTION

A preliminary investigation at high subsonic speeds of the longitudinal and lateral stability characteristics of a 0.05-scale model of the Convair F2Y-1 water-based fighter airplane was conducted by the National Advisory Committee for Aeronautics and has been reported in reference 1.

At the request of the Bureau of Aeronautics, Department of the Navy, the NACA has conducted an additional series of tests at high subsonic speeds of the static longitudinal and lateral stability characteristics of this model. The principal purpose of this investigation was to establish a wing or fuselage fix that would eliminate or at least delay the longitudinal instability encountered at high subsonic speeds and high angles of attack by this model. The investigation included the effects of various arrangements of wing fences, leading-edge chord-extensions, and leading-edge notches. Various fuselage fences, spoilers, and dive brakes were also tested.

The tests were conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.92, with corresponding Reynolds numbers, based on the wing mean aerodynamic chord, from  $3.3 \times 10^6$  to  $4.3 \times 10^6$ .

#### COEFFICIENTS AND SYMBOLS

The stability system of axes used for the presentation of the data, together with an indication of the positive directions of forces, moments, and angles, is shown in figure 1. All moments are referred to the 30-percent-chord point of the mean aerodynamic chord.

qSb

 $C_{L}$  lift coefficient,  $\frac{Lift}{qS}$ 

 $C_{\rm D}$  drag coefficient,  $\frac{\rm Drag}{\rm qS}$ 

$$C_{m}$$
 pitching-moment coefficient,  $\frac{\text{Pitching moment}}{qS\bar{c}}$   
 $C_{l}$  rolling-moment coefficient,  $\frac{\text{Rolling moment}}{qS\bar{c}}$ 

NACA RM SL54H05

| C <sub>n</sub>                               | yawing-moment coefficient, Yawing moment qSb                                  |
|----------------------------------------------|-------------------------------------------------------------------------------|
| Cy                                           | lateral-force coefficient, $\frac{\text{Lateral force}}{\text{qS}}$           |
| đ                                            | dynamic pressure, $\rho V^2/2$ , lb/sq ft                                     |
| S                                            | wing area, 1.42 sq ft                                                         |
| C                                            | mean aerodynamic chord of wing, $\frac{2}{5}\int_{0}^{b/2}c^{2}dy$ , 1.069 ft |
| с                                            | local wing chord, parallel to plane of symmetry, ft                           |
| Ъ                                            | wing span, 1.76 ft                                                            |
| ρ                                            | air density, slugs/cu ft                                                      |
| V                                            | free-stream velocity, ft/sec                                                  |
| М                                            | Mach number                                                                   |
| R                                            | Reynolds number of wing based on $\bar{c}$                                    |
| α                                            | angle of attack of fuselage reference line, deg                               |
| β                                            | angle of sideslip, deg                                                        |
| δ                                            | control surface deflection, deg                                               |
| pb/2V                                        | wing-tip helix angle, radians                                                 |
| p                                            | rolling velocity, radians/sec                                                 |
| $C_{lp} = \frac{\partial c_l}{\partial c_l}$ | , per radian                                                                  |

L/D lift-drag ratio

Subscripts:

b base of model fuselage

e elevon

r rudder

4

- max maximum
- min minimum

#### MODEL DESIGNATIONS

- B fuselage
- C canopy
- V fin
- W wing; W also used with following subscripts:

| Fl             | fence l |
|----------------|---------|
| F3             | fence 3 |
| F4             | fence 4 |
| F5             | fence 5 |
| F6             | fence 6 |
| <sup>F</sup> 7 | fence 7 |
| Nl             | notch 1 |
| No             | notch 2 |

#### MODEL AND APPARATUS

A drawing of the 0.05-scale model of the Convair F2Y-l airplane employed in this investigation is presented in figure 2. Details of the various fences, chord-extensions, notches, and spoilers employed on the model are shown in figures 3 to 7. Included in figure 7 is a sketch of the fuselage fairing at the aft end of the model. Figure 8 shows the faired duct inlet plugs employed on the model. Details of the upper aft fuselage dive brake are shown in figure 9. Photographs of the model are shown in figure 10.





The model was tested on the sting-type support system shown in figure lO(c). With this system, the model was remotely operated through ranges of either angle of attack or sideslip. A strain-gage balance mounted inside the fuselage was used to measure the forces and moments on the model.

#### TESTS AND CORRECTIONS

The investigation was made in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.50 to 0.92 at angles of attack ranging from about  $-2^{\circ}$  to  $25^{\circ}$  and through a sideslip range from  $-4^{\circ}$  to  $12^{\circ}$ .

The blockage, jet-boundary, buoyancy, and base pressure corrections are the same as those discussed in reference 1. Values of base-pressure-drag coefficient  $C_{\mathrm{D}_{b}}$  for average test conditions are presented in figure 11. The corrected model drag data were obtained by adding the base-pressure-drag coefficient to the drag coefficient determined from the strain-gage measurements.

The variation of mean Reynolds number with Mach number for the model of this investigation is presented in figure 12.

#### RESULTS AND DISCUSSION

The bulk of the data obtained in this investigation is presented in figures 13 to 35; an index of the figures is given in table I. Additional data that are not presented in figures 13 to 35 are tabulated in tables II to VII. Data presented as configuration 1A in figures 13 and 14 were taken from figure 8 in reference 1 to facilitate evaluation of the flexibility of the elevator restraining members. Data presented for configuration 1B (basic model, no fixes of any nature) in figures 15, 17, and 20 were also taken from figure 8 in reference 1. Note that fences 1 and 3 are the same as fences 1 and 3 of reference 1; fence 2 of reference 1 was not used in this investigation. The slopes presented in figure 35 have been averaged over a lift-coefficient range of about 0 to 0.4. In order to expedite the publication of these data, only a brief analysis is included herein.

#### Lift

The lift characteristics of the model were not greatly altered by any change in wing fences, leading-edge chord-extensions, and notches,



except that in the higher lift range the fixes generally resulted in somewhat more linear characteristics. (See parts (a) of figs. 15, 17, and 20.) The lift-curve slopes of configurations 10 and 20 presented in figure 35 are fairly representative of all configurations. The reductions in  $\partial C_L / \partial \alpha$  (about 10 to 15 percent) for the trimmed condition are in reasonably good agreement with values obtained in reference 1 for configuration 1A.

#### Drag

Any alteration to the basic model (configuration 1B, parts (b) of figs. 15, 17, and 20) usually increased the minimum drag coefficient except for configuration 21, wherein the jet inlets were plugged with a smooth fairing - which resulted in reductions of  $C_{D_{min}}$  of about 0.003 to 0.004. (See fig. 20(b).) In the medium lift-coefficient range, however, addition of fences, leading-edge chord-extensions, or notches usually gave some reductions in drag. The leading-edge chord-extension alone (configuration 4, fig. 15) appeared to be the most effective modification in this respect.

Compared with the basic model (configuration 1B, fig. 35) the drag due to lift  $\partial C_D / \partial C_L^2$  was reduced about 10 to 20 percent by fences 1 plus 3 (configuration 10) and the leading-edge chord-extension plus notch 1 (configuration 20). In the trimmed condition,  $\partial C_D / \partial C_L^2$  was increased about 15 to 45 percent relative to the condition for  $\delta_e = 0^\circ$ .

#### Lift-Drag Ratios

The addition of fences 1 and 3 (configuration 10) or the leadingedge chord-extension and notch 1 (configuration 20) resulted in a very slight increase in  $(L/D)_{max}$  over that of the basic model (configuration 1B). (See fig. 35.) Trimming the model at the assumed center-ofgravity location (0.30c) generally reduced the lift-drag ratios about 10 to 20 percent. (See figs. 34 and 35.) These values check very closely those obtained with configuration 1A in reference 1, indicating that trimming the model would result in a loss of about 10 to 20 percent in lift-drag ratios for any of the configurations tested.

#### Pitching Moment

As previously pointed out in reference 1, for the basic model (configuration 1B, parts (c) and (d) of fig. 15), regions of longitudinal



instability were found to exist at a lift coefficient of about 0.40 throughout the Mach number range investigated. All the combinations of wing fences, leading-edge chord-extensions, and notches delayed the instability to considerably higher lift coefficients and angles of attack (usually to values of  $C_L$  of 0.6 to 0.8 or angles of attack of  $14^{\circ}$ to 16°; see parts (c) and (d) of figs. 15, 17, and 20). However, the departures from linearity in the medium lift and angle-of-attack range still are probably undesirable on the basis of pitching-motion considerations. (See ref. 2 for a detailed discussion of the pitch-up problem.) Inverting the model appeared to give small improvements in the pitch characteristics at the lower Mach numbers but at a Mach number of 0.92 the characteristics of the model appeared to be slightly worse when inverted than when in the normal position. (See parts (c) and (d) of fig. 15.) The addition of the fuselage fences and spoilers gave little change in the pitching-moment characteristics of the model. (See fig. 26(b).)

Fences 1 and 3, and the leading-edge chord-extension plus notch 1 (configurations 10 and 20, respectively), provided a slight forward shift in the aerodynamic-center location (about 1 to 2 percent at Mach numbers of 0.85 and 0.92). (See fig. 35.)

From overall considerations of lift, drag, and pitching moments, it appears that configurations 10 and 20 were the most desirable; consequently, all analysis and summary figures are based on these two configurations.

#### Elevator Effectiveness

The results obtained for various elevator settings (parts (d) of figs. 22 and 23) indicate that the elevator effectiveness for small settings and the lower Mach numbers held up well throughout the lift-coefficient range; however, at a Mach number of 0.92 some appreciable losses were incurred at the higher lift coefficients. At zero lift, small elevator deflections gave gradual increases with Mach number in the effectiveness parameter  $\left(\frac{\partial C_m}{\partial \delta_e}\right)_{C_L=0}^{-1}$ , (from about -0.0052 at M = 0.50)

to -0.006 at M = 0.90). (See fig. 32.) These values are in good agreement with those obtained in reference 1 for configuration 1A.

In assessing the elevator effectiveness it should be noted that some flexibility in the elevator restraining members did exist. However, comparisons with a heavier dummy gage and with the elevator securely locked by soldering the elevon actuators to the actuator fairings indicated that the effects of flexibility were small. (See



7



parts (c) and (d) of figs. 13 and 14.) A slight variation in the elevator setting introduced by changes in the elevator restraining members may account for the small shift in the pitching moments at zero lift and in the lift coefficients at zero angle of attack.

#### Aileron Effectiveness

The results of deflecting the ailerons to  $\pm 5^{\circ}$  and  $\pm 10^{\circ}$  are presented in figure 29. From these data and using values of  $C_{lp}$  from reference 3 for a  $60^{\circ}$  delta wing-body combination, the wing-tip helix angle and rate of roll were calculated for trim conditions at an altitude of 10,000 feet and a wing loading of 32 pounds per square foot. The results of these calculations, presented in figure 33, indicate that with  $\pm 10^{\circ}$  aileron the wing-tip helix angle was reduced from 0.125 at a Mach number of 0.50 to 0.088 at a Mach number of 0.92, with corresponding rates of roll of 4.0 and 5.2 radians per second.

#### Effect of Dive Brake on Rudder Effectiveness

Results for a rudder deflection of  $10^{\circ}$ , with upper aft fuselage divebrake deflections of  $30^{\circ}$  and  $60^{\circ}$ , are presented in figure 30. From these data and data published in reference 1 without dive brakes, it appears that the  $30^{\circ}$  setting reduced the rudder effectiveness about 10 to 20 percent; whereas the  $60^{\circ}$  setting reduced this parameter about 35 to 50 percent.

Additional tests to determine the static longitudinal and lateral stability characteristics of various wing and fuselage modifications on a 0.05-scale model of the Convair F2Y-1 water-based fighter airplane at high subsonic speeds indicate the following conclusions:

1. The lift characteristics of the model were not greatly altered by any change in wing fences, leading-edge chord-extensions, and notches.

2. From overall considerations of drag and pitching moments, it appears that there were two modifications somewhat superior to any of the others investigated: first, a configuration that employed a fullchord fence and a partial-chord fence located at 0.63 semispan and 0.55 semispan, respectively; and, second, a leading-edge chord-extension that extended from 0.68 semispan to 0.85 semispan in combination with a leading-edge notch located at 0.68 semispan.



NACA RM SL54H05

3. With  $\pm 10^{\circ}$  aileron, the estimated wing-tip helix angle was reduced from 0.125 at a Mach number of 0.50 to 0.088 at a Mach number of 0.92, with corresponding rates of roll of 4.0 and 5.2 radians per second.

4. The upper aft fuselage dive brake, when deflected  $30^{\circ}$  and  $60^{\circ}$ , reduced the rudder effectiveness about 10 to 20 percent and about 35 to 50 percent, respectively.

Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., July 21, 1954.

Kennett P. Spreemann Kenneth P. Spreemann

Kenneth P. Spreemann Aeronautical Research Scientist

albert J. Few, Jr.

Albert G. Few, Jr. Aeronautical Research Scientist

Approved: homan a. Harris

Thomas A. Harris Chief of Stability Research Division

ecc

#### REFERENCES

- Spreemann, Kenneth P., and Few, Albert G., Jr.: Preliminary Investigation of the Static Longitudinal and Lateral Stability Characteristics of a 0.05-Scale Model of the Convair F2Y-1 Airplane at High Subsonic Speeds - TED No. NACA DE 383. NACA RM SL54Al2, Bur. Aero., 1954.
- Campbell, George S., and Weil, Joseph: The Interpretation of Nonlinear Pitching Moments in Relation to the Pitch-Up Problem. NACA RM L53I02, 1953.
- 3. Wiggins, James W.: Wind-Tunnel Investigation at High Subsonic Speeds To Determine the Rolling Derivatives of Two Wing-Fuselage Combinations Having Triangular Wings, Including a Semiempirical Method of Estimating the Rolling Derivatives. NACA RM L53L18a, 1954.



9

| - |  |  |  |
|---|--|--|--|
| - |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

TABLE I.- INDEX OF FIGURES PRESENTING DATA

|        |                            |                                                                          |                                                                                                                                  |                                                                              |                                                               |                             |                       |                         |                                 | and the second                                        |                                                                                                                          |
|--------|----------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|-----------------------|-------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Figure | Configuration              | Fences                                                                   | Chord-extension                                                                                                                  | Notch                                                                        | Dive<br>brake                                                 | δ <sub>e</sub> , d<br>Right | eg<br>Left            | δ <sub>r</sub> ,<br>deg | Actuator<br>and<br>fairing      | Remarks                                                                                                                                                 | Tabulated data                                                                                                           |
| 13     | 1A<br>2<br>3               | l at 0.63b/2<br>l at 0.63b/2<br>l at 0.63b/2                             | None<br>None<br>None                                                                                                             | None<br>None<br>None                                                         | None<br>None<br>None                                          | 000                         | 000                   | 000                     | 8 8 8                           | Original elevon strain gage<br>Dummy elevon strain gage<br>Dummy elevon strain gage<br>plus lock                                                        |                                                                                                                          |
| 14     | 1A<br>2<br>3               | l at 0.63b/2<br>l at 0.63b/2<br>l at 0.63b/2                             | None<br>None<br>None                                                                                                             | None<br>None<br>None                                                         | None<br>None<br>None                                          | -5<br>+5<br>-5              | -5<br>-5<br>-5        | 0<br>0<br>0             | On<br>On<br>On                  | Original elevon strain gage<br>Dummy elevon strain gage<br>Dummy elevon strain gage<br>plus lock                                                        |                                                                                                                          |
| 15     | 18<br>4<br>5               | None<br>None<br>None                                                     | None<br>0.60b/2 to 0.77b/2<br>0.60b/2 to 0.77b/2                                                                                 | None<br>None<br>None                                                         | None<br>None<br>None                                          | 0<br>0<br>0                 | 000                   | 000                     | On<br>On<br>On                  | Actuator fairing on lower<br>wing surface                                                                                                               |                                                                                                                          |
| 16     |                            | None                                                                     | None                                                                                                                             | None                                                                         | None                                                          |                             | 0                     |                         | 011<br>Om                       |                                                                                                                                                         | M = 0.50  (table TI)                                                                                                     |
| 10     | é                          | 1 at $0.650/2$ , 3 at $0.350/2$                                          | None                                                                                                                             | None                                                                         | None                                                          | ō                           | ŏ                     | ŏ                       | On                              |                                                                                                                                                         | M = 0.50 and 0.92<br>(table II)                                                                                          |
|        | 9<br>10                    | 1 at 0.63b/2, 3 at 0.45b/2<br>1 at 0.63b/2, 3 at 0.55b/2                 | None<br>None                                                                                                                     | None<br>None                                                                 | None<br>None                                                  | 0<br>0                      | 0<br>0                | 0<br>0                  | On<br>On                        |                                                                                                                                                         |                                                                                                                          |
| 17     | 1B<br>10                   | None<br>1 at 0.630/2, 3 at 0.555/2                                       | None<br>None                                                                                                                     | None<br>None                                                                 | None<br>None                                                  | 0<br>0                      | 0<br>0                | 0<br>0                  | Or:<br>On                       |                                                                                                                                                         |                                                                                                                          |
| 18     | 11<br>12<br>13<br>14       | 4 at 0.58b/2<br>4 at 0.63b/2<br>4 at 0.68b/2<br>5 at 0.68b/2             | None<br>None<br>None<br>None                                                                                                     | None<br>None<br>None<br>None                                                 | None<br>None<br>None<br>None                                  | 0000                        | 0<br>0<br>0<br>0      | 0000                    | 110<br>110<br>110<br>110<br>110 |                                                                                                                                                         |                                                                                                                          |
| 19     | 15                         | 4 at 0.68b/2                                                             | None                                                                                                                             | None                                                                         | None                                                          | 0                           | 0                     | 0                       | On                              |                                                                                                                                                         | $C_{L}$ , $C_{D}$ , $M = 0.50$ and $0.92$                                                                                |
|        | 16<br>17<br>18             | 3 at 0.55b/2<br>1 at 0.63b/2, 6 at 0.45b/2<br>1 at 0.63b/2, 7 at 0.55b/2 | None<br>None                                                                                                                     | None<br>None<br>None                                                         | None<br>None<br>None                                          | 0<br>0<br>0                 | 0<br>0<br>0           | 0<br>0<br>0             | On<br>On<br>On                  |                                                                                                                                                         | $C_L$ and $C_D$ (table III)<br>$C_L$ and $C_D$ (table III)<br>$C_L$ and $C_D$ (table III)<br>$C_L$ and $C_D$ (table III) |
| 50     | 1B<br>19<br>20<br>21       | None<br>None<br>None<br>None                                             | None<br>None<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2                                                                         | None<br>1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2         | None<br>None<br>None<br>None                                  | 0<br>0<br>0                 | 0<br>0<br>0<br>0      | 0<br>0<br>0             | On<br>On<br>On<br>On            | Inlets plugged with smooth fairing                                                                                                                      |                                                                                                                          |
| 21     | 22<br>23                   | None<br>None                                                             | 0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2                                                                                         | l<br>l plus 2                                                                | None<br>None                                                  | 0<br>0                      | 0                     | 0<br>0                  | 0ff<br>0ff                      | Notch 1 at 0.68b/2<br>Notch 1 at 0.68b/2,<br>notch 2 at 0.17b/2                                                                                         |                                                                                                                          |
| 22     | 10<br>10                   | 1 at 0.63b/2, 3 at 0.55b/2<br>1 at 0.63b/2, 3 at 0.55b/2                 | None<br>None                                                                                                                     | None<br>None                                                                 | None<br>None                                                  | -5<br>-10                   | -5<br>-10             | 00                      | On<br>On                        |                                                                                                                                                         |                                                                                                                          |
| 23     | 20<br>20<br>20<br>20<br>20 | None<br>None<br>None<br>None                                             | 0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2                       | 1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2 | None<br>None<br>None                                          | 0<br>-2<br>-5<br>-10        | 0<br>-2<br>-5<br>-10  | 0<br>0<br>0<br>0        | On<br>On<br>On<br>On            |                                                                                                                                                         |                                                                                                                          |
| 24     | 20<br>22<br>24<br>25<br>26 | None<br>None<br>None<br>None<br>None                                     | 0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2 | 1<br>1<br>1<br>1 plus 2                                                      | None<br>30 <sup>0</sup><br>30 <sup>0</sup><br>30 <sup>0</sup> | 0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>0 | 00000                   | On<br>Off<br>On<br>Off<br>Off   | Notch 1 at 0.68b/2<br>Notch 1 at 0.68b/2,<br>notch 2 at 0.17b/2 | M = 0.92 (table IV)                                                                                                      |

| • |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

#### TABLE I.- INDEX OF FIGURES PRESENTING DATA - Concluded

| Fimme  | Configuration              | Fonces                             | Chord_extension                                                                                            | Notch                                                                        | Dive                         | <sub>δe</sub> , α | leg            | δ <sub>r</sub> , | Actuator             | Remarks                                                                                                                                               | Tabulated data                                                                   |
|--------|----------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|-------------------|----------------|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| rigure | COULT BUT & CION           | Fences                             | onor q-extension                                                                                           | Noven                                                                        | brake                        | Right             | Left           | deg              | fairing              |                                                                                                                                                       |                                                                                  |
| 25     | 20<br>24<br>27             | None<br>None<br>None               | 0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2                                             | 1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2                                 | 00<br>300<br>600             | 000               | 0<br>0<br>0    | 0<br>0<br>0      | On<br>On<br>On       |                                                                                                                                                       |                                                                                  |
| 26     | 20<br>28                   | None<br>None                       | 0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2                                                                   | 1 at 0.68b/2<br>1 at 0.68b/2                                                 | None<br>None                 | 0                 | 0<br>0         | 00               | On<br>On             | Upper 1/4-inch fuselage<br>spoiler 8.6 inches                                                                                                         | CL, CD, at M = 0.85<br>and 0.92 (table V)                                        |
|        | 29                         | None                               | 0.686/2 to 0.856/2                                                                                         | 1 at 0.68b/2                                                                 | None                         | 0                 | 0              | 0                | On                   | Upper 1/4-inch fuselage<br>spoiler 3.25 inches                                                                                                        | $C_{L}$ and $C_{D}$ (table V)                                                    |
|        | 30                         | None                               | 0.68b/2 to 0.85b/2                                                                                         | 1 at 0.68b/2                                                                 | None                         | 0                 | 0              | 0                | On                   | Upper 1/8-inch fuselage<br>spoiler 3.25 inches                                                                                                        | $C_{\rm L}$ and $C_{\rm D}$ (table V)                                            |
|        | 31                         | None                               | 0.680/2 to 0.850/2                                                                                         | 1 at 0.68b/2                                                                 | None                         | 0                 | 0              | 0                | On                   | Lower 1/8-inch fuselage<br>spoiler 2.5 inches<br>from duct exit                                                                                       | $C_{\rm L}$ and $C_{\rm D}$ (table V)                                            |
|        | 32                         | None                               | None                                                                                                       | None                                                                         | None                         | 0                 | 0              | 0.               | On                   | Fuselage faired at aft                                                                                                                                | $C_{L}$ , $C_{D}$ , $M = 0.50$                                                   |
|        | 33                         | None                               | 0.68b/2 to 0.85b/2                                                                                         | 1 at 0.68b/2                                                                 | None                         | 0                 | 0              | 0                | On                   | Upper 1/4-inch fuselage<br>fence 0 inch from                                                                                                          | $C_L$ and $C_D$ (table V)                                                        |
|        | 34                         | None                               | 0.68b/2 to 0.85b/2                                                                                         | 1 at 0.68b/2                                                                 | None                         | 0                 | 0              | 0                | On                   | Upper 1/4-inch fuselage<br>fence 3.25 inches<br>from duct exit                                                                                        | $C_{L}$ and $C_{D}$ (table V)                                                    |
| 27     | 35                         | None                               | None                                                                                                       | None                                                                         | None                         | 0                 | 0              | 0                | On                   | Transition strip<br>at 0.05 <del>c</del>                                                                                                              |                                                                                  |
| 28     | 36                         | None                               | None                                                                                                       | None                                                                         | None                         |                   |                |                  |                      | Body-canopy alone                                                                                                                                     |                                                                                  |
| 29     | 20<br>20<br>20             | None<br>None<br>None               | 0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2                                             | 1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2                                 | None<br>None<br>None         | 0<br>5<br>10      | 0<br>-5<br>-10 | 0000             | On<br>On<br>On       | Lateral data<br>Lateral data<br>Lateral data                                                                                                          | $C_{L}$ , $C_{D}$ , $C_{m}$ (table VI)<br>$C_{L}$ , $C_{D}$ , $C_{m}$ (table VI) |
| 30     | 27<br>27<br>24             | None<br>None<br>None               | 0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2                                             | 1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2                                 | 60°<br>60°<br>30°            | 0<br>0<br>0       | 000            | 0<br>10<br>0     | Qn<br>On<br>On       | Iateral data<br>Iateral data<br>Iateral data                                                                                                          | $C_L$ , $C_D$ , $C_m$ (table VII)<br>$C_L$ , $C_D$ , $C_m$ (table VII)           |
| 31     | 20<br>20<br>20<br>20<br>20 | None<br>None<br>None<br>None       | 0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2<br>0.68b/2 to 0.85b/2 | 1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2<br>1 at 0.68b/2 | None<br>None<br>None<br>None | 0<br>0<br>0<br>0  | 0000           | 0000             | On<br>On<br>On<br>On | Lateral data, $\alpha = 0^{\circ}$<br>Lateral data, $\alpha = 4^{\circ}$<br>Lateral data, $\alpha = 6^{\circ}$<br>Lateral data, $\alpha = 12^{\circ}$ |                                                                                  |
| 32     | 10<br>20                   | 1 at 0.63b/2, 3 at 0.55b/2<br>None | None<br>0.68b/2 to 0.85b/2                                                                                 | None<br>1.at 0.68b/2                                                         | None<br>None                 |                   |                | 0<br>0           | On<br>On             | Elevator effectiveness<br>Elevator effectiveness                                                                                                      |                                                                                  |
| 33     | 20                         | None                               | 0.68b/2 to 0.85b/2                                                                                         | 1 at 0.68b/2                                                                 | None                         |                   |                | 0                | On                   | Helix angle and rate<br>of roll                                                                                                                       |                                                                                  |
| 34     | 10<br>20                   | 1 at 0.63b/2, 3 at 0.55b/2<br>None | None<br>0.68b/2 to 0.85b/2                                                                                 | None<br>1 at 0.68b/2                                                         | None<br>None                 |                   |                | 0<br>0           | On<br>On             | Lift-drag ratios<br>Lift-drag ratios                                                                                                                  |                                                                                  |
| 35     | 10<br>20                   | 1 at 0.63b/2, 3 at 0.55b/2<br>None | None<br>0.68b/2 to 0.85b/2                                                                                 | None<br>1 at 0.68b/2                                                         | None<br>None                 |                   |                | 00               | On<br>On             | Summary<br>Summary                                                                                                                                    |                                                                                  |

. 11

| Configuration 7<br>M = 0.50                                                                                         |                                                                                                               |                                                                                                                             |                                                                                                                 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| a, deg                                                                                                              | CL                                                                                                            | CD                                                                                                                          | Cm                                                                                                              |  |  |  |
| -2.11<br>06<br>2.01<br>4.08<br>6.17<br>8.24<br>10.33<br>12.43<br>14.53<br>16.61<br>18.68<br>20.70<br>22.75<br>24.68 | -0.091<br>019<br>.065<br>.155<br>.256<br>.350<br>.443<br>.543<br>.646<br>.716<br>.760<br>.818<br>.886<br>.827 | 0.0199<br>.0168<br>.0174<br>.0227<br>.0348<br>.0538<br>.0786<br>.1123<br>.1559<br>.1982<br>.2420<br>.2911<br>.3537<br>.3695 | -0.0062<br>0098<br>0144<br>0204<br>0256<br>0291<br>0363<br>0363<br>0365<br>0352<br>0352<br>0442<br>0543<br>0637 |  |  |  |

TABLE II. - ADDITIONAL DATA SUPPLEMENTING FIGURE 16

|                                                                                                                     | Configuration 8                                                                                               |                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                      |                                                                                                                                                                 |                                                                                                                                                 |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                     | M =                                                                                                           | 0.50                                                                                                                                 |                                                                                                                 |                                                                                                                                                                                 | M =                                                                                                                                                  | 0.92                                                                                                                                                            |                                                                                                                                                 |  |
| α, deg                                                                                                              | CL                                                                                                            | CD                                                                                                                                   | Cm                                                                                                              | α, deg                                                                                                                                                                          | CL                                                                                                                                                   | С <sub>D</sub>                                                                                                                                                  | Cm                                                                                                                                              |  |
| -2.11<br>05<br>2.05<br>4.09<br>6.17<br>8.25<br>10.33<br>12.43<br>14.52<br>16.61<br>18.72<br>20.75<br>22.78<br>24.71 | -0.074<br>001<br>.109<br>.176<br>.271<br>.368<br>.456<br>.550<br>.648<br>.732<br>.797<br>.840<br>.883<br>.851 | 0.0193<br>.0167<br>.0188<br>.0237<br>.0361<br>.0556<br>.0803<br>.1138<br>.1556<br>.2015<br>.2527<br>.3013<br>.3531<br>.3531<br>.3807 | -0.0078<br>0118<br>0164<br>0226<br>0281<br>0321<br>0358<br>0381<br>0392<br>0406<br>0331<br>0407<br>0452<br>0607 | $\begin{array}{c} -2.31 \\ -1.24 \\16 \\ .90 \\ 1.97 \\ 3.06 \\ 4.13 \\ 5.21 \\ 6.31 \\ 7.40 \\ 8.46 \\ 9.57 \\ 10.62 \\ 11.69 \\ 12.79 \\ 13.85 \\ 14.85 \\ 15.97 \end{array}$ | -0.126<br>076<br>023<br>.027<br>.083<br>.143<br>.202<br>.261<br>.319<br>.372<br>.427<br>.476<br>.524<br>.524<br>.574<br>.625<br>.666<br>.762<br>.786 | 0.0231<br>.0200<br>.0183<br>.0180<br>.0190<br>.0219<br>.0267<br>.0334<br>.0432<br>.0547<br>.0686<br>.0843<br>.1024<br>.1216<br>.1433<br>.1649<br>.1992<br>.2207 | -0.0028<br>0076<br>0123<br>0177<br>0226<br>0283<br>0345<br>0399<br>0429<br>0464<br>0526<br>0541<br>0587<br>0680<br>0680<br>0710<br>0958<br>0895 |  |

\_\_\_\_\_



|                                                                                                                     | Configuration 15                                                                                              |                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                            |                                                                                                                                                                                                              |                                                                                                                 |                                                                                                                                      |                                                                                                                                                        |                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                     | M =                                                                                                           | 0.50                                                                                                               |                                                                                                         | M = 0.85                                                                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                                                                              |                                                                                                                 | M =                                                                                                                                  | 0.92                                                                                                                                                   |                                                                                                                                         |
| α, deg                                                                                                              | CL                                                                                                            | CD                                                                                                                 | Cm                                                                                                      | α, deg                                                                                                                                                                                                              | CL                                                                                                                                                                                         | С <sub>D</sub>                                                                                                                                                                                               | a, deg                                                                                                          | CL                                                                                                                                   | CD                                                                                                                                                     | cm                                                                                                                                      |
| -2.11<br>06<br>2.02<br>4.08<br>6.18<br>8.27<br>10.36<br>12.46<br>14.54<br>16.63<br>18.73<br>20.81<br>22.87<br>24.85 | -0.086<br>019<br>.066<br>.162<br>.269<br>.358<br>.463<br>.561<br>.648<br>.736<br>.829<br>.908<br>.967<br>.952 | 0.0160<br>.0126<br>.0136<br>.0324<br>.0508<br>.0789<br>.1134<br>.1533<br>.2006<br>.2567<br>.3163<br>.3773<br>.4140 | -0.0048<br>0093<br>0134<br>0190<br>0241<br>0264<br>0282<br>0343<br>0359<br>0394<br>0434<br>0477<br>0513 | $\begin{array}{c} -2.28\\ -1.21\\ -0.14\\ .93\\ 2.008\\ 4.16\\ 5.23\\ 6.32\\ 7.42\\ 8.52\\ 9.61\\ 10.73\\ 11.89\\ 12.93\\ 14.03\\ 15.11\\ 16.14\\ 17.21\\ 18.26\\ 19.28\\ 20.28\\ 21.26\\ 19.28\\ 22.16\end{array}$ | $\begin{array}{c} -0.118\\066\\023\\ .032\\ .078\\ .134\\ .189\\ .247\\ .304\\ .410\\ .462\\ .514\\ .569\\ .626\\ .666\\ .694\\ .734\\ .831\\ .845\\ .851\\ .845\\ .851\\ .841\end{array}$ | 0.0187<br>.0157<br>.0141<br>.0138<br>.0146<br>.0216<br>.0283<br>.0370<br>.0481<br>.0610<br>.0761<br>.0936<br>.1141<br>.1367<br>.1584<br>.1793<br>.2040<br>.2522<br>.2638<br>.2855<br>.3110<br>.3228<br>.3423 | -2.29<br>-1.23<br>14<br>.99<br>3.07<br>4.15<br>5.25<br>6.35<br>1.50<br>9.58<br>10.65<br>11.67<br>12.73<br>14.77 | -0.124<br>076<br>021<br>.027<br>.081<br>.143<br>.203<br>.265<br>.323<br>.326<br>.323<br>.265<br>.323<br>.563<br>.684<br>.754<br>.801 | 0.0198<br>.0166<br>.0151<br>.0146<br>.0159<br>.0240<br>.0313<br>.0416<br>.0535<br>.0688<br>.0856<br>.1053<br>.1053<br>.1282<br>.1521<br>.1819<br>.2077 | -0.0016<br>0066<br>0113<br>0206<br>0267<br>0324<br>0370<br>0399<br>0472<br>0524<br>0583<br>0654<br>0583<br>0659<br>0899<br>1061<br>1132 |

| TABLE | III | ADDITIONAL | DATA | SUPPLEMENTING | FIGURE | 19 |
|-------|-----|------------|------|---------------|--------|----|

| Configuration 16<br>M = 0.85                                                                                                                                                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| α, deg                                                                                                                                                                                                   | $c_{\rm L}$                                                                                                                                                                                                  | СD                                                                                                                                                                                                                                                          |  |  |  |  |  |
| -2.28<br>-1.21<br>14<br>.92<br>1.99<br>3.07<br>4.15<br>5.22<br>6.31<br>7.39<br>8.51<br>9.59<br>10.69<br>11.78<br>8.55<br>15.04<br>16.117<br>18.23<br>19.28<br>20.304<br>17.17<br>18.23<br>22.15<br>23.05 | -0.111<br>065<br>016<br>.033<br>.135<br>.188<br>.246<br>.305<br>.305<br>.406<br>.461<br>.513<br>.560<br>.614<br>.682<br>.721<br>.763<br>.795<br>.842<br>.846<br>.849<br>.846<br>.849<br>.808<br>.817<br>.781 | 0.0212<br>.0189<br>.0175<br>.0172<br>.0183<br>.0206<br>.0246<br>.0317<br>.0406<br>.0246<br>.0317<br>.0406<br>.0511<br>.0643<br>.0797<br>.0963<br>.11359<br>.1636<br>.1866<br>.2130<br>.2689<br>.2879<br>.2689<br>.2879<br>.3074<br>.31346<br>.3146<br>.3404 |  |  |  |  |  |

ì

| Configuration 17<br>M = 0.85                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                              |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| α, deg                                                                                                                                                                                                                        | СL                                                                                                                                                                                                           | CD                                                                                                                                                                                                           |  |  |  |  |  |
| $\begin{array}{c} -2.29\\ -1.22\\15\\ .91\\ 1.98\\ 3.06\\ 4.14\\ 5.22\\ 6.309\\ 8.47\\ 9.55\\ 10.65\\ 7.39\\ 8.47\\ 9.555\\ 11.79\\ 13.87\\ 14.96\\ 16.03\\ 17.10\\ 18.17\\ 19.20\\ 20.21\\ 21.12\\ 22.07\\ 23.05\end{array}$ | -0.113<br>064<br>029<br>.029<br>.081<br>.138<br>.192<br>.251<br>.304<br>.402<br>.455<br>.507<br>.501<br>.601<br>.655<br>.710<br>.655<br>.710<br>.761<br>.792<br>.800<br>.804<br>.811<br>.788<br>.775<br>.789 | 0.0215<br>.0187<br>.0170<br>.0168<br>.0207<br>.0249<br>.0315<br>.0400<br>.0501<br>.0631<br>.0775<br>.0941<br>.1345<br>.1577<br>.1840<br>.2111<br>.2356<br>.2562<br>.2749<br>.2955<br>.3074<br>.3199<br>.3443 |  |  |  |  |  |

| Configuration 18<br>M = 0.85                                                                                                                                                                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                              |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| α, deg                                                                                                                                                                                                  | $c_{\rm L}$                                                                                                                                                                                                       | С <sub>D</sub>                                                                                                                                                                                               |  |  |  |  |  |  |
| -2.28<br>-1.22<br>14<br>.92<br>1.99<br>3.07<br>4.14<br>5.22<br>6.31<br>7.40<br>8.58<br>9.58<br>10.69<br>11.77<br>12.86<br>13.90<br>16.08<br>17.17<br>18.21<br>19.24<br>20.27<br>21.22<br>22.14<br>23.04 | $\begin{array}{c} -0.109 \\063 \\013 \\ .035 \\ .083 \\ .139 \\ .195 \\ .256 \\ .303 \\ .404 \\ .455 \\ .531 \\ .569 \\ .625 \\ .671 \\ .719 \\ .749 \\ .784 \\ .800 \\ .820 \\ .828 \\ .813 \\ .801 \end{array}$ | 0.0209<br>.0187<br>.0170<br>.0168<br>.0181<br>.0249<br>.0319<br>.0395<br>.0498<br>.0628<br>.0771<br>.0988<br>.1174<br>.1392<br>.1613<br>.1875<br>.2106<br>.2358<br>.2572<br>.2807<br>.3193<br>.3358<br>.3485 |  |  |  |  |  |  |

| Configuration 26<br>M = 0.92                                                                                                             |                                                                                                                                      |                                                                                                                                                        |                                                                                                                                        |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| a, deg                                                                                                                                   | $C_{L}$                                                                                                                              | CD                                                                                                                                                     | Cm                                                                                                                                     |  |  |  |  |  |  |
| -2.26<br>-1.20<br>13<br>.93<br>2.01<br>3.09<br>4.17<br>5.24<br>6.30<br>7.43<br>8.51<br>9.60<br>10.62<br>11.65<br>12.69<br>13.68<br>14.83 | -0.137<br>083<br>031<br>.020<br>.078<br>.141<br>.206<br>.271<br>.334<br>.382<br>.440<br>.492<br>.568<br>.634<br>.700<br>.770<br>.798 | 0.0252<br>.0214<br>.0195<br>.0187<br>.0198<br>.0232<br>.0284<br>.0365<br>.0475<br>.0574<br>.0713<br>.0864<br>.1087<br>.1307<br>.1555<br>.1859<br>.2067 | 0.0042<br>0024<br>0123<br>0123<br>0175<br>0238<br>0318<br>0388<br>0470<br>0457<br>0512<br>0538<br>0698<br>0846<br>0961<br>1147<br>1054 |  |  |  |  |  |  |

### TABLE IV.- ADDITIONAL DATA SUPPLEMENTING FIGURE 24

-

TABLE V.- ADDITIONAL DATA SUPPLEMENTING FIGURE 26

|                                                                                                                                                                                | Configuration 28                                                                                                                                     |                                                                                                                                                                                                              |                                                                                                                         |                                                                                                                              |                                                                                                                                                                        |                                                                                                                                                 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                                                                                                                                                | M = 0.85                                                                                                                                             |                                                                                                                                                                                                              |                                                                                                                         | M =                                                                                                                          | 0.92                                                                                                                                                                   |                                                                                                                                                 |  |  |  |  |  |
| a, deg                                                                                                                                                                         | CL                                                                                                                                                   | СD                                                                                                                                                                                                           | a, deg                                                                                                                  | $C_{\rm L}$                                                                                                                  | ℃D                                                                                                                                                                     | Cm                                                                                                                                              |  |  |  |  |  |
| $\begin{array}{c} -2.33\\ -1.26\\19\\ .87\\ 1.93\\ 3.02\\ 4.09\\ 5.17\\ 6.26\\ 7.35\\ 8.46\\ 9.56\\ 10.66\\ 11.78\\ 12.87\\ 13.98\\ 15.08\\ 16.11\\ 17.17\\ 18.22 \end{array}$ | -0.117<br>069<br>021<br>.024<br>.075<br>.130<br>.183<br>.243<br>.295<br>.351<br>.400<br>.450<br>.455<br>.610<br>.653<br>.680<br>.718<br>.716<br>.807 | 0.0245<br>.0216<br>.0200<br>.0196<br>.0236<br>.0236<br>.0236<br>.0236<br>.0236<br>.0341<br>.0424<br>.0531<br>.0424<br>.0531<br>.0453<br>.0953<br>.0953<br>.1162<br>.1380<br>.1601<br>.1807<br>.2344<br>.2623 | -2.37<br>-1.32<br>25<br>.81<br>1.88<br>2.96<br>4.04<br>5.21<br>7.32<br>8.44<br>9.54<br>10.63<br>12.66<br>13.73<br>14.76 | -0.122<br>072<br>019<br>.028<br>.074<br>.136<br>.191<br>.251<br>.313<br>.369<br>.419<br>.478<br>.551<br>.607<br>.730<br>.788 | 0.0279<br>.0249<br>.0236<br>.0244<br>.0271<br>.0289<br>.0335<br>.0393<br>.0483<br>.0588<br>.0718<br>.0588<br>.0718<br>.0878<br>.096<br>.301<br>.1595<br>.1819<br>.2113 | -0.0107<br>0173<br>0225<br>0264<br>0299<br>0370<br>0425<br>0482<br>0516<br>0516<br>0544<br>0539<br>0576<br>0712<br>0799<br>0951<br>0997<br>1105 |  |  |  |  |  |

| Conf                                                                                                                             | Configuration 29<br>M = 0.85                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| α, đeg                                                                                                                           | CL                                                                                                                                                                                                                                                   | CD                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |
| -2.28<br>-1.13<br>2.008<br>4.15<br>5.234<br>4.55<br>5.344<br>9.07<br>12.02<br>14.02<br>15.16<br>17.29<br>14.12<br>16.12<br>18.29 | -0.130<br>084<br>051<br>.012<br>.064<br>.119<br>.174<br>.284<br>.340<br>.393<br>.444<br>.507<br>.618<br>.661<br>.726<br>.736<br>.739<br>.839<br>.439<br>.577<br>.618<br>.661<br>.726<br>.739<br>.739<br>.739<br>.739<br>.739<br>.739<br>.739<br>.739 | 0.0274<br>.0243<br>.0223<br>.0213<br>.0222<br>.0242<br>.0242<br>.0242<br>.0242<br>.0428<br>.0428<br>.0428<br>.0428<br>.0428<br>.0428<br>.0534<br>.0428<br>.0534<br>.0428<br>.0534<br>.0428<br>.0429<br>.0498<br>.1422<br>.1643<br>.1924<br>.2120<br>.2453<br>.2737 |  |  |  |  |  |  |  |  |

Configuration 30 M = 0.85



|                                                                                                                                                              | Configuration 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |                                                                                                            |                                                                                                       |                                                                                                                             |                                                                                                                           |                                                                                                             |                                                                                                                                      |                                                                                                                                               |                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| <b>M</b> = 0.85                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |                                                                                                            |                                                                                                       | M = 0.50                                                                                                                    | )                                                                                                                         |                                                                                                             |                                                                                                                                      | M = 0.92                                                                                                                                      | 2                                                                                                                               |
| a, deg                                                                                                                                                       | СL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | СЪ                                                                                                                                                                                                                             | a, deg                                                                                                     | $C_{L}$                                                                                               | С <sub>D</sub>                                                                                                              | Cm                                                                                                                        | α, deg                                                                                                      | CL                                                                                                                                   | с <sub>D</sub>                                                                                                                                | Cm                                                                                                                              |
| $\begin{array}{c} -2.29\\ -1.23\\16\\ .90\\ 1.96\\ 3.11\\ 5.19\\ 6.37\\ 8.456\\ 10.67\\ 12.84\\ 20.09\\ 17.15\\ 18.20\\ 20.22\\ 22.05\\ 23.00\\ \end{array}$ | $\begin{array}{c} -0.106\\060\\013\\ .037\\ .087\\ .198\\ .255\\ .311\\ .366\\ .3836\\ .486\\ .558\\ .614\\ .688\\ .780\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ .801\\ $ | 0.0211<br>.0183<br>.0169<br>.0170<br>.0182<br>.0256<br>.0327<br>.0419<br>.0532<br>.0945<br>.1173<br>.1383<br>.1663<br>.1273<br>.1383<br>.1663<br>.2924<br>.2924<br>.2172<br>.2398<br>.2632<br>.2924<br>.3172<br>.3491<br>.3557 | -2.13<br>07<br>1.99<br>4.06<br>6.15<br>8.24<br>12.53<br>16.68<br>10.34<br>12.53<br>16.68<br>22.83<br>24.84 | -0.089<br>010<br>.073<br>.164<br>.273<br>.374<br>.459<br>.536<br>.633<br>.727<br>.811<br>.860<br>.982 | 0.0220<br>.0175<br>.0183<br>.0240<br>.0582<br>.0841<br>.1162<br>.1569<br>.2054<br>.2054<br>.2564<br>.2564<br>.3824<br>.4325 | -0.0099<br>0145<br>0193<br>0260<br>0319<br>0362<br>0329<br>0301<br>03377<br>0388<br>0443<br>0443<br>04477<br>0561<br>0612 | -2.33<br>-1.26<br>197<br>.87<br>1.94<br>3.09<br>5.127<br>7.356<br>9.559<br>10.58<br>12.64<br>13.71<br>14.74 | -0.125<br>073<br>023<br>.029<br>.083<br>.146<br>.207<br>.269<br>.331<br>.384<br>.428<br>.428<br>.551<br>.624<br>.688<br>.735<br>.788 | 0.0239<br>.0204<br>.0187<br>.0200<br>.0235<br>.0283<br>.0354<br>.0450<br>.0568<br>.0698<br>.0698<br>.0852<br>.1080<br>.1314<br>.1787<br>.2058 | -0.0060<br>0111<br>0157<br>0210<br>0265<br>0395<br>0450<br>0506<br>0537<br>0529<br>0536<br>0694<br>0884<br>0978<br>1010<br>1120 |

| TABLE V | V | ADDITIONAL | DATA | SUPPLEMENTING | FIGURE | 26 | - | Concluded |
|---------|---|------------|------|---------------|--------|----|---|-----------|
|---------|---|------------|------|---------------|--------|----|---|-----------|

| Conf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Configuration 33<br>M = 0.85                                                                                                        |                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| a, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_{L}$                                                                                                                             | СD                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| $\begin{array}{c} -2.29\\ -1.23\\15\\ .91\\ 1.99\\ 3.07\\ 4.15\\ 5.23\\ 6.33\\ 7.42\\ 8.52\\ 9.62\\ 10.73\\ 11.82\\ 12.90\\ 14.01\\ 15.08\\ 16.14\\ 17.18\\ 18.25\\ 19.27\\ 20.29\\ 21.13\\ 22.17\\ 20.19\\ 32.17\\ 32.17\\ 32.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\ 33.17\\$ | -0.115<br>020<br>.029<br>.034<br>.2478<br>.2984<br>.3547<br>.2984<br>.3547<br>.45955<br>.636751<br>.7714<br>.8852<br>.8182<br>.8182 | 0.0210<br>.0182<br>.0167<br>.0162<br>.0174<br>.0200<br>.0246<br>.0314<br>.0391<br>.0504<br>.0632<br>.0945<br>.1188<br>.1408<br>.1620<br>.1892<br>.2077<br>.2313<br>.2616<br>.2882<br>.3153<br>.3159<br>.3144 |  |  |  |  |  |  |  |

|   | Conf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iguration<br>M = 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 <b>3</b> 4                                                                                                                                                                                                 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | a, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ъ                                                                                                                                                                                                            |
| - | -2.29<br>-1.25<br>.99<br>3.14<br>5.6.74<br>9.00<br>10.15<br>16.15<br>17.26<br>8.90<br>10.15<br>12.26<br>10.15<br>12.26<br>10.15<br>12.26<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.20<br>12.2 | $\begin{array}{c} -0.111\\ -0.065\\ -0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\ 0.029\\$ | 0.0208<br>.0181<br>.0165<br>.0162<br>.0245<br>.0245<br>.0398<br>.0511<br>.0638<br>.0787<br>.0962<br>.1180<br>.1414<br>.1624<br>.1830<br>.2092<br>.1795<br>.2681<br>.2935<br>.2681<br>.2935<br>.3282<br>.3454 |

16

:

|                                                                                                                               | Configuration 20, $\delta_e = \pm 5^{\circ}$                                                                                  |                                                                                                                                      |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           |                                                                                                              |                                                                                                                                               |                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                               | M =                                                                                                                           | 0.50                                                                                                                                 |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           | M = 0.92                                                                                                     |                                                                                                                                               |                                                                                                                                |
| a, deg                                                                                                                        | CL,                                                                                                                           | CD                                                                                                                                   | Cm                                                                                                              | α, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CD                                                                                                                                                                                                           | Cm                                                                                                                                                                                                                                                                                                                                                              | α, deg                                                                                                    | CL                                                                                                           | CD                                                                                                                                            | Cm                                                                                                                             |
| -3.44<br>-1.37<br>.82<br>2.90<br>4.99<br>7.08<br>9.17<br>11.28<br>13.37<br>15.47<br>17.57<br>19.67<br>21.76<br>23.78<br>24.68 | -0.149<br>069<br>.013<br>.098<br>.190<br>.385<br>.484<br>.585<br>.985<br>.484<br>.567<br>.764<br>.865<br>.945<br>.995<br>.873 | 0.0264<br>.0193<br>.0172<br>.0277<br>.0427<br>.0427<br>.0427<br>.0427<br>.1313<br>.1753<br>.2249<br>.2877<br>.3505<br>.3950<br>.3853 | -0.0050<br>0099<br>0145<br>0245<br>0274<br>0284<br>0298<br>0331<br>0371<br>0405<br>0492<br>0588<br>0568<br>0663 | -3.56<br>-2.46<br>-1.38<br>29<br>1.88<br>2.98<br>4.06<br>7.38<br>9.06<br>7.38<br>12.98<br>1.12<br>9.01<br>15.18<br>17.23<br>16.18<br>17.23<br>16.18<br>17.23<br>19.02<br>14.01<br>15.18<br>19.23<br>19.23<br>19.23<br>19.23<br>19.23<br>19.23<br>19.23<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19.25<br>19. | -0.185<br>133<br>085<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>035<br>172<br>288<br>336<br>448<br>556<br>5609<br>127<br>764<br>355<br>7764<br>3835<br>7764<br>3835<br>7764<br>3835<br>7764<br>3835<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>7764<br>8355<br>8565<br>7764<br>8355<br>7764<br>8355<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>8565<br>7764<br>8355<br>7764<br>8355<br>8555<br>7764<br>8355<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7764<br>83555<br>7765<br>7764<br>83555<br>7765<br>77655<br>77764<br>83555<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>77775<br>7777575<br>7777575<br>7777575<br>7777575<br>777757575<br>77775757575757575757575757575757575757 | 0.0299<br>.0242<br>.0208<br>.0188<br>.0188<br>.0206<br>.0245<br>.0390<br>.0390<br>.0494<br>.0643<br>.0773<br>.0927<br>.1140<br>.1366<br>.1615<br>.1862<br>.2310<br>.2624<br>.2873<br>.3074<br>.3330<br>.3425 | -0.0031<br>0068<br>0149<br>0179<br>0214<br>0256<br>0297<br>0341<br>0362<br>0385<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0403<br>0405<br>0405<br>0405<br>0405<br>0405<br>0405<br>0405<br>0405<br>0452<br>0452<br>0535<br>0470<br>0502<br>0587<br>0628<br>0636<br>0679<br>0782 | -3.61<br>-2.50<br>-1.40<br>-32<br>.788<br>2.99<br>4.11<br>5.21<br>5.45<br>9.67<br>10.77<br>12.97<br>14.07 | -0.203<br>149<br>099<br>046<br>.063<br>.123<br>.192<br>.246<br>.371<br>.429<br>.494<br>.5624<br>.677<br>.739 | 0.0320<br>.0263<br>.0231<br>.0200<br>.0205<br>.0235<br>.0289<br>.0349<br>.0444<br>.0562<br>.0702<br>.0885<br>.1127<br>.1337<br>.1569<br>.1858 | 0.0023<br>0009<br>0061<br>0120<br>0163<br>0218<br>0277<br>0397<br>0451<br>0517<br>0588<br>0650<br>0846<br>0886<br>0940<br>1055 |

| TABLE | VI | ADDITIONAL | DATA | SUPPLEMENTING | FIGURE | 29 |
|-------|----|------------|------|---------------|--------|----|

|                                                                                                                     | Configuration 20, $\delta_e = \pm 10^\circ$                                                          |                                                                                                                             |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                   |                                                                                           |                                                                                                                                                        |                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                     | M =                                                                                                  | 0.50                                                                                                                        |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M ==                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                            | M = 0.92                                                                                                          |                                                                                           |                                                                                                                                                        |                                                                                                                                 |
| a, deg                                                                                                              | CL                                                                                                   | CD                                                                                                                          | Çm                                                                                                                           | α, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $C_{\rm L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cm                                                                                                                                                                                                                                                                                                                                                                                         | α, deg                                                                                                            | CL                                                                                        | C <sub>D</sub>                                                                                                                                         | Cm                                                                                                                              |
| -2.13<br>07<br>2.01<br>4.09<br>6.19<br>8.29<br>10.39<br>12.48<br>14.59<br>16.68<br>18.81<br>20.86<br>22.93<br>24.84 | -0.117<br>043<br>038<br>.129<br>.228<br>.423<br>.513<br>.616<br>.715<br>.824<br>.878<br>.934<br>.866 | 0.0292<br>.0246<br>.0247<br>.0282<br>.0396<br>.0575<br>.0839<br>.1153<br>.1567<br>.2056<br>.2660<br>.3180<br>.3770<br>.3917 | -0.0074<br>-0119<br>-0165<br>-0219<br>-0258<br>-0274<br>-0290<br>-0318<br>-0348<br>-0386<br>-0442<br>-0456<br>-0492<br>-0678 | -2.30<br>-1.214<br>2.324<br>2.314<br>5.345<br>5.64758<br>9.10.9984<br>1.1319<br>1.1455<br>1.18956<br>2.246<br>2.14556<br>1.1319<br>1.14556<br>1.1284<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.26556<br>1.265566<br>1.265566<br>1.265566<br>1.265566<br>1.265566<br>1.265566<br>1.265566<br>1.265566<br>1.265566<br>1.265566<br>1.265566 | -0.141<br>-0.956<br>-0.0057<br>-1.0046<br>-0.057<br>-1.1694<br>-0.057<br>-1.1694<br>-0.057<br>-1.1694<br>-0.057<br>-1.1694<br>-0.057<br>-1.1694<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0.057<br>-0 | 0.0315<br>.0285<br>.0269<br>.0269<br>.0292<br>.0319<br>.0383<br>.0470<br>.0583<br>.0470<br>.0597<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0697<br>.0775<br>.0697<br>.0998<br>.1209<br>.0998<br>.1209<br>.0995<br>.2945<br>.3176<br>.3390<br>.3395<br>.3375<br>.3375<br>.33757 | -0.0027<br>-0078<br>-0120<br>-0158<br>-0207<br>-0266<br>-0294<br>-0334<br>-0369<br>-0383<br>-0383<br>-0388<br>-0379<br>-0372<br>-0372<br>-0404<br>-0531<br>-0527<br>-0518<br>-0509<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-0539<br>-05689<br>-05689<br>-0577<br>-0640<br>-0684<br>-0773 | -2.33<br>-1.24<br>94<br>2.017<br>4.28<br>5.50<br>7.61<br>2.017<br>8.39<br>0.21<br>5.50<br>12.21<br>13.34<br>15.56 | -0.155<br>102<br>005<br>.005<br>.196<br>.2516<br>.2506<br>.316<br>.4395<br>.6188<br>.7490 | 0.0327<br>.0292<br>.0270<br>.0276<br>.0292<br>.0365<br>.0421<br>.0365<br>.0421<br>.0520<br>.0566<br>.0786<br>.0960<br>.1157<br>.1413<br>.1990<br>.2240 | -0.0015<br>0049<br>0112<br>0169<br>0234<br>0385<br>0419<br>0486<br>0549<br>0635<br>0666<br>0689<br>0850<br>1010<br>1120<br>1160 |



| Configuration 27, $\delta_{\Gamma} = 10^{\circ}$                                                                    |                                                                                                |                                                                                                                             |                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   |                                                                                                       |                                                                                                                       |                                                                                                                                                        |                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M = 0.50                                                                                                            |                                                                                                |                                                                                                                             |                                                                                                                        | M = 0.85                                                                                                                                                                                 |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                   | M = 0.92                                                                                              |                                                                                                                       |                                                                                                                                                        |                                                                                                                                                                  |
| α, deg                                                                                                              | CL                                                                                             | CD                                                                                                                          | Cm                                                                                                                     | α, deg                                                                                                                                                                                   | СĽ                                                                                                                                                                    | CD                                                                                                                                                                                                                                                                                      | Cm                                                                                                                                                                                                                                                                                                                                | α, deg                                                                                                | CL                                                                                                                    | CD                                                                                                                                                     | Cm                                                                                                                                                               |
| -2.10<br>04<br>2.05<br>4.13<br>6.21<br>8.32<br>10.42<br>12.51<br>14.63<br>16.73<br>18.84<br>20.92<br>22.99<br>24.99 | -0.107<br>-037<br>.054<br>.140<br>.337<br>.433<br>.534<br>.745<br>.839<br>.918<br>.946<br>.967 | 0.0287<br>.0240<br>.0247<br>.0286<br>.0405<br>.0596<br>.0868<br>.1209<br>.1649<br>.2164<br>.2726<br>.3336<br>.3818<br>.4328 | 0.0014<br>0026<br>0071<br>0124<br>0161<br>0174<br>0209<br>0209<br>0254<br>0307<br>0307<br>0364<br>0411<br>0447<br>0484 | $\begin{array}{c} -2.26\\ -1.18\\09\\ 1.00\\ 2.38\\ 6.48\\ 7.58\\ 6.48\\ 7.69\\ 9.80\\ 10.12\\ 13.12\\ 15.55\\ 16.49\\ 19.65\\ 6.60\\ 17.49\\ 18.59\\ 20.666\\ 21.22\\ 23.54\end{array}$ | -0.138<br>-0.038<br>.0038<br>.0140<br>.0200<br>.1200<br>.1226<br>.2767<br>.38759<br>.438930<br>.66244<br>.758935<br>.884502<br>.884502<br>.884502<br>.88593<br>.88593 | 0.0300<br>.0265<br>.0235<br>.0235<br>.0239<br>.0264<br>.0306<br>.0361<br>.0438<br>.0542<br>.0684<br>.0684<br>.0684<br>.0684<br>.1013<br>.1205<br>.1241<br>.1695<br>.1241<br>.1695<br>.1241<br>.1695<br>.22174<br>.22164<br>.22174<br>.2989<br>.3267<br>.3510<br>.3550<br>.3639<br>.3691 | 0.0044<br>.0004<br>-0036<br>-0075<br>-0113<br>-0161<br>-0206<br>-0229<br>-0241<br>-0262<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0287<br>-0320<br>-0320<br>-0328<br>-0488<br>-0488<br>-0539<br>-0598<br>-0640<br>-0674<br>-0759<br>-0811 | -2.31<br>-1.21<br>.98<br>2.09<br>3.4.33<br>5.435<br>6.556<br>7.89<br>11.08<br>13.19<br>14.28<br>15.37 | -0.157<br>100<br>049<br>.062<br>.128<br>.195<br>.256<br>.315<br>.433<br>.497<br>.558<br>.623<br>.6286<br>.754<br>.809 | 0.0320<br>.0251<br>.0246<br>.0235<br>.0244<br>.0273<br>.0325<br>.0409<br>.0509<br>.0626<br>.0773<br>.0954<br>.1155<br>.1379<br>.1636<br>.1953<br>.2233 | 0.0078<br>.0031<br>0022<br>0070<br>0121<br>0187<br>0265<br>0343<br>0428<br>0428<br>0428<br>0428<br>0428<br>0638<br>0638<br>0638<br>06380<br>0909<br>1090<br>1152 |

| TADIES VII ADDITIONAL DATA SUPPLEMENTING FIGURE | TABLE | VII | ADDITIONAL | DATA | SUPPLEMENTING | FIGURE | 30 |
|-------------------------------------------------|-------|-----|------------|------|---------------|--------|----|
|-------------------------------------------------|-------|-----|------------|------|---------------|--------|----|

| Configuration 24, $\delta_{\rm T} \approx 10^{\circ}$                                                               |                                                                                        |                                                                                           |                                                                                                         |                                                                                                                                                                                |                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |                                                                                                                      |                                                                                                                                      |                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| M = 0.50                                                                                                            |                                                                                        |                                                                                           |                                                                                                         | M = 0.85                                                                                                                                                                       |                                                                                                                                                                                                                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M = 0.92                                                                                                                         |                                                                                                                      |                                                                                                                                      |                                                                                                                               |
| α, deg                                                                                                              | CL                                                                                     | CD                                                                                        | Cm                                                                                                      | α, deg                                                                                                                                                                         | $C_{L}$                                                                                                                                                                                                        | $c_{\rm D}$                                                                                                                                                                       | Cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | α, deg                                                                                                                           | CL                                                                                                                   | CD                                                                                                                                   | Cm                                                                                                                            |
| -2.09<br>02<br>2.05<br>4.13<br>6.24<br>8.33<br>10.43<br>12.55<br>14.64<br>16.76<br>18.85<br>20.95<br>23.00<br>24.93 | -0.094<br>-012<br>.066<br>.160<br>.255<br>.454<br>.563<br>.777<br>.946<br>.988<br>.928 | 0.0246<br>.0212<br>.0219<br>.02595<br>.0866<br>.12668<br>.2225<br>.3415<br>.3967<br>.4175 | -0.0015<br>0098<br>0154<br>0194<br>0208<br>0220<br>0253<br>0301<br>0352<br>0404<br>0442<br>0478<br>0610 | $\begin{array}{c} -2.25\\ -1.15\\02\\ 1.2.30952617819407627745086665119.66154\\ 1.2.309526178194076277450866656129.66554\\ 1.2.56665120202223.223.223.223.223.223.223.223.223$ | -0.119<br>-0.022<br>0.033<br>0.077<br>1.132<br>.189<br>.242<br>.302<br>.351<br>.408<br>.4563<br>.5138<br>.6300<br>.7369<br>.7369<br>.6900<br>.7369<br>.6901<br>.8411<br>.8741<br>.8614<br>.878<br>.863<br>.828 | 0.0255<br>.0223<br>.0206<br>.0202<br>.0215<br>.0279<br>.0345<br>.0445<br>.0682<br>.0827<br>.019<br>.1241<br>.1724<br>.1978<br>.22453<br>.2455<br>.2455<br>.3445<br>.3628<br>.3688 | 0.0001<br>0040<br>0076<br>0115<br>0148<br>0191<br>02355<br>0267<br>0310<br>0313<br>0325<br>0357<br>0357<br>0357<br>0357<br>0357<br>0357<br>0357<br>0357<br>0444<br>0472<br>0487<br>0581<br>06497<br>0581<br>06497<br>06497<br>06497<br>06497<br>06497<br>06491<br>06497<br>06491<br>06497<br>06491<br>06497<br>06491<br>06497<br>06491<br>06497<br>06491<br>06497<br>06491<br>06497<br>06491<br>06497<br>06491<br>06497<br>06491<br>06497<br>06491<br>06491<br>06491<br>06497<br>06491<br>06497<br>06491<br>06491<br>06491<br>06491<br>06491<br>06491<br>06491<br>06491<br>06491<br>06491<br>06491<br>06491<br>06491<br>06491<br>0667<br>0761<br>0667<br>0761<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0765<br>0767<br>0767<br>0767<br>0767<br>0767<br>0767<br>0767 | -2.28<br>-1.18<br>08<br>1.00<br>2.12<br>3.23<br>4.35<br>5.46<br>6.57<br>7.70<br>8.79<br>9.90<br>11.00<br>12.12<br>13.20<br>14.32 | -0.131<br>078<br>029<br>.024<br>.081<br>.145<br>.213<br>.279<br>.333<br>.398<br>.453<br>.519<br>.579<br>.698<br>.768 | 0.0266<br>.0234<br>.0212<br>.0207<br>.0258<br>.0313<br>.0404<br>.0492<br>.0626<br>.0768<br>.0960<br>.1163<br>.1413<br>.1639<br>.1950 | 0.0032<br>0016<br>0063<br>0115<br>0164<br>028<br>0405<br>0436<br>0436<br>0436<br>0437<br>0623<br>0724<br>0865<br>0934<br>1074 |





Figure 1.- System of axes used. Positive direction of forces, moments, and angles are indicated by arrows.



Figure 2.- General arrangement of test model. (All dimensions in inches.)

ι.







 $F_3$  located at 0.35  $^{b\!\!/}_2$   $F_3$  also located at 0.25  $^{b\!\!/}_2$  , 0.45  $^{b\!\!/}_2$  ,and 0.55  $^{b\!\!/}_2$ 



 $F_{6}$  located at 0.45<sup>b</sup>/2



Figure 3.- Details of various wing fence configurations. (All dimensions in inches.)







Elevon actuator and fairing located at 0.63  $\frac{b_{2}}{2}$ 



 $F_4$  located at 0.58<sup>b</sup>/<sub>2</sub>, elevon actuator and fairing removed  $\{F_4 \text{ also located at } 0.63^{b}/_{2} \text{ and } 0.68^{b}/_{2}, elevon actuator and fairing removed and at 0.68<sup>b</sup>/<sub>2</sub> with elevon actuator and fairing installed.)$ 



F5 located at 0.68 b/2

Figure 3.- Concluded.





Section of leading-edge chord extensions. at origins of  $0.60\frac{b}{2}$  and  $0.68\frac{b}{2}$ .

Figure 4.- Details of leading-edge chord-extensions originating at 0.60b/2 and 0.68b/2. (All dimensions in inches.)

.



Detail of 0.07 c leading-edge notches.





Section view at 8.60 from duct exit showing upper fuselage spoiler

Section view at 3.25 from duct exit showing upper fuselage spoilers Section view at 2.25 from duct exit showing lower fuselage spoiler

Figure 6.- Details of upper and lower fuselage spoilers. (All dimensions in inches.)

4.45-17.955 -3.25-4.0 -c.g. at 0.30 c 0.200 1.35---30.520 Fuselage fairing block Fuselage fairing block V Section view at 1.35 from sting exit showing upper fuselage fence and Section view at 3.25 from duct

exit showing upper fuselage fence fuselage fairing block

Figure 7.- Details of upper fuselage fences and fuselage fairing at aft end of model. (All dimensions in inches.)





Section view at 4.8 from c.g. Section view at 2.8 from c.g.

Figure 8.- Details of duct inlet plugs. (All dimensions in inches.)





Section view at 1.35 from sting exit showing upper aft dive brake

Figure 9.- Details of upper aft fuselage dive brake. (All dimensions in inches.)





(a) Configuration BCWV,  $\delta_e = 0^\circ$ ,  $\delta_r = 0^\circ$ . L-78678

Figure 10.- Photographs of test model.



Figure 10. - Continued.



L-78683

(c) Configuration BCWV,  $\delta_e = 0^\circ$ ,  $\delta_r = 0^\circ$ ; mounted on sting in Langley high-speed 7- by 10-foot tunnel.

Figure 10.- Concluded.



Figure 11.- Variation of base-pressure-drag coefficient with angle of attack and test Mach number.



Figure 12.- Variation of test Reynolds number with Mach number based on wing mean aerodynamic chord.





(a) Variation of  $C_{\rm L}$  with  $\alpha$ .














Figure 13. - Concluded.





(a) Variation of  $C_{\rm L}$  with  $\alpha$ .







Figure 14. - Continued.



Figure 14.- Continued.





(a) Variation of  $C_{L}$  with  $\alpha$ .

Figure 15.- Basic longitudinal characteristics of configuration BCWV with and without leading-edge chord-extension from 0.60b/2 to 0.77b/2,  $\delta_e = 0^\circ$ ,  $\delta_r = 0^\circ$  showing effects of changing the location of the elevon actuator and fairing and of inverting the model.















Figure 15.- Concluded.





(a) Variation of  $C_{\rm L}$  with  $\alpha$ .

Figure 16.- Basic longitudinal characteristics of configuration  $BCW_{F_{1+3}V}$ ,  $\delta_e = 0^{\circ}$ ,  $\delta_r = 0^{\circ}$  at a constant Mach number of 0.85 showing effects of changing spanwise location of fence 3. Fence 1 constant at 0.63b/2.









Figure 16.- Continued.





(a) Variation of  $C_{\rm L}$  with  $\alpha$ .







Figure 17. - Continued.



Figure 17.- Continued.



Figure 17.- Concluded.



(a) Variation of  $C_{\rm L}$  with  $\alpha.$ 

Figure 18.- Basic longitudinal characteristics of configuration BCWV,  $\delta_e = 0^{\circ}$ ,  $\delta_r = 0^{\circ}$  with elevon actuator and fairing removed showing effects of fence 4 at various spanwise locations and fence 5 at 0.63b/2.





Figure 18.- Continued.







(a) Variation of  $\ensuremath{\,C_m}$  with  $\ensuremath{\,\alpha}.$ 

Figure 19.- Pitching-moment characteristics of configuration BCWV,  $\delta_e = 0^{\circ}$ ,  $\delta_r = 0^{\circ}$  at a constant Mach number of 0.85 showing effects of a number of fences and spanwise locations.





Figure 19.- Concluded.





(a) Variation of  $C_{\rm L}$  with  $\alpha$ .

Figure 20.- Basic longitudinal characteristics of configuration BCWV,  $\delta_e = 0^{\circ}$ ,  $\delta_r = 0^{\circ}$  with and without leading-edge chord-extension and notch 1 and with the duct inlets open and plugged.





Figure 20.- Continued.



(c) Variation of  $C_{\rm m}$  with  $\alpha.$ 

Figure 20.- Continued.







Angle of attack, a, deg

(a) Variation of CL with a.

Figure 21.- Basic longitudinal characteristics of configuration BCWV,  $\delta_e = 0^{\circ}$ ,  $\delta_r = 0^{\circ}$  with a leading-edge chord-extension from 0.68b/2 to 0.85b/2 and with the elevon actuator and fairing removed showing the effects of two leading-edge notch arrangements.











Figure 21. - Continued.





(a) Variation of  $C_{\rm L}$  with  $\alpha$ .

Figure 22.- Basic longitudinal characteristics of configuration  $BCW_{F_{1+3}}V$ ,  $\delta_r = 0^\circ$  showing effects of two elevon angles. Fences 1 and 3 located at 0.63b/2 and 0.55b/2, respectively.











Figure 22.- Concluded.




(a) Variation of CL with α.

Figure 23.- Basic longitudinal characteristics of configuration  $BCW_{N_1}V$ ,  $\delta_r = 0^{\circ}$  with leading-edge chord-extension from 0.68b/2 to 0.85b/2 showing effects of the elevons.









(c) Variation of  $C_m$  with  $\alpha$ .

Figure 23. - Continued.







(a) Variation of  $C_{L}$  with  $\alpha$ .

Figure 24.- Basic longitudinal characteristics of configuration  $BCW_{N_{\rm L}}V$ ,  $\delta_{\rm e} = 0^{\rm o}$ ,  $\delta_{\rm r} = 0^{\rm o}$  with leading-edge chord-extension from 0.68b/2 to 0.85b/2 showing effects of elevon actuator and fairing with and without 30° dive brake and notch 2 at a constant Mach number of 0.85.







Figure 24.- Continued.









(d) Variation of  $C_{\rm m}$  with  $C_{\rm L}$ .

Figure 24.- Concluded.





(a) Variation of  $C_{\rm L}$  with  $\alpha$ .











Figure 25.- Continued.





0

Ō

⊘ ∆

⊿

0

Ω

Config-

uration

20

28 29

30

31

32

33





(a) Variation of  $C_m$  with  $\alpha$ .

Figure 26.- Pitching-moment characteristics of configuration BCWV,  $\delta_e = 0^{\circ}$ ,  $\delta_r = 0^{\circ}$  showing effects of a number of fuselage spoilers and fences at

a constant Mach number of 0.85. (Note that notch 1 and leading-edge chord-extension from 0.68b/2 to 0.85b/2 was a part of all configurations except number 32.)







Figure 26.- Concluded.

CONFIDENTIAL





(a) Variation of  $C_{\rm L}$  with  $\alpha$ .

Figure 27.- Basic longitudinal characteristics of configuration BCWV,  $\delta_e = 0^\circ$ ,  $\delta_r = 0^\circ$  with transition strip at 0.05 $\bar{c}$  along the wing leading edge (designated as configuration 35).









Figure 28.- Basic longitudinal characteristics of configuration BC (designated as configuration 36).



Figure 28.- Continued.



Figure 28.- Concluded.



Figure 29.- Aerodynamic characteristics in pitch to determine lateralcontrol effectiveness of configuration  $BCW_{N_1}V$ ,  $\delta_r = 0^\circ$  with leadingedge chord-extension from 0.68b/2 to 0.85b/2.





Figure 29.- Continued.



Figure 29.- Continued.







Figure 29.- Continued.

K





(a) Variation of  $C_l$  with  $\alpha$ .













.

.04

0

-.04



Μ

.92



(f) Variation of  $C_Y$  with  $C_{L^*}$ 

Figure 30.- Concluded.



(a) Variation of  $C_l$  with  $\beta$ .

Figure 31.- Variation of lateral coefficients with angle of sideslip for configuration  $BCW_{N_1}V$ ,  $\delta_e = 0^\circ$ ,  $\delta_r = 0^\circ$  with leading-edge chord-extension from 0.68b/2 to 0.85b/2.







Figure 31.- Concluded.












NACA RM SL54H05





Figure 35.- Summary of aerodynamic characteristics in pitch of configurations 10, 20, and 1B,  $\delta_r = 0^\circ$ . (Slopes are averaged over liftcoefficient range of 0 to 0.4.)





.