Restriction/Classification Cancēlledis vopy RM SL54H05

RESEARCH MEMORANDUM

for the
Bureau of Aeronautics, Department of the Navy

ADDITIONAL RESULTS ON THE STATIC LONGITUDINAL AND LATERAL STABILITY CHARACTERISTICS OF A 0.05-SCALE MODEL

OF THE CONVAIR F2Y-1 AIRPLANE
AT HIGH SUBSONIC SPEEDS

TED NO. NACA DE 383
By Kenneth P. Spreeman and Albert G. Few, Jr.
Langley Aeronautical Laboratory
Langley Field, Va.
Restriction/Classification
This material contai Cancelled

NATIONAL ADVISORY COMMITTEE

 GOR AERONAUTICSRESEARCH MEMORANDUM

for the
 Bureau of Aeronautics, Department of the Navy
 ADDITIONAL RESULTS ON THE STATIC LONGITUDINAL AND LATERAL

STABILITY CHARACTERISTICS OF A 0.05-SCALE MODEL
OF THE CONVAIR F2Y-I AIRPLANE
AT HIGH SUBSONIC SPEEDS

TED NO. NACA DE 383
By Kenneth P. Spreeman and Albert G. Few, Jr.

SUMMARY

Additional results on the static longitudinal and lateral stability characteristics of a $0.05-$ scale model of the Convair F2Y-l water-based fighter airplane were obtained in the Langley high-speed 7-by lo-foot tunnel over a Mach number range of 0.50 to 0.92 . The maximum angle-ofattack range (obtained at the lower Mach numbers) was from -20 to 25°. The sideslip-angle range investigated was from -4° to 12°. The investigation included effects of various arrangements of wing fences, leading-edge chord-extensions, and leading-edge notches. Various fuselage fences, spoilers, and a dive brake also were investigated.

From overall considerations of lift, drag, and pitching moments, it appears that there were two modifications somewhat superior to any of the others investigated: One was a configuration that employed a full-chord fence and a partial-chord fence located at 0.63 semispan and 0.55 semispan, respectively. The second was a leading-edge chord-extension that extended from 0.68 semispan to 0.85 semispan in combination with a leading-edge notch located at 0.68 semispan.

With $\pm 10^{\circ}$ aileron, the estimated wing-tip helix angle was reduced from 0.125 at a Mach number of 0.50 to 0.088 at a Mach number of 0.92 , with corresponding rates of roll of 4.0 and 5.2 radians per second. The upper aft fuselage dive brake, when deflected 30° and 60°, reduced the rudder effectiveness about 10 to 20 percent and about 35 to 50 percent, respectively.

INTRODUCTION

A preliminary investigation at high subsonic speeds of the longitudinal and lateral stability characteristics of a 0.05 -scale model of the Convair F2Y-1 water-based fighter airplane was conducted by the National Advisory Committee for Aeronautics and has been reported in reference 1.

At the request of the Bureau of Aeronautics, Department of the Navy, the NACA has conducted an additional series of tests at high subsonic speeds of the static longitudinal and lateral stability characteristics of this model. The principal purpose of this investigation was to establish a wing or fuselage fix that would eliminate or at least delay the longitudinal instability encountered at high subsonic speeds and high angles of attack by this model. The investigation included the effects of various arrangements of wing fences, leading-edge chord-extensions, and leading-edge notches. Various fuselage fences, spoilers, and dive brakes were also tested.

The tests were conducted in the Langley high-speed 7- by l0-foot tunnel over a Mach number range of 0.50 to 0.92 , with corresponding Reynolds numbers, based on the wing mean aerodynamic chord, from 3.3×10^{6} to 4.3×10^{6} 。

COEFFICIENTIS AND SYMBOLS

The stability system of axes used for the presentation of the data, together with an indication of the positive directions of forces, moments, and angles, is shown in figure l. All moments are referred to the 30 -percent-chord point of the mean aerodynamic chord.
$C_{L} \quad$ lift coefficient, $\frac{\text { Lift }}{q S}$
$C_{D} \quad$ drag coefficient, $\frac{\text { Drag }}{q S}$
$C_{m} \quad$ pitching-moment coefficient, $\frac{\text { Pitching moment }}{q S \bar{c}}$
$C_{2} \quad$ rolling-moment coefficient, $\frac{\text { Rolling moment }}{q S b}$

C_{n}	yawing-moment coefficient, $\frac{\text { Yawing moment }}{\text { qSb }}$
C_{Y}	lateral-force coefficient, $\frac{\text { Lateral force }}{q S}$
q	dynamic pressure, $\rho V^{2} / 2, \mathrm{lb} / \mathrm{sq} \mathrm{f}^{\prime} t$
S	wing area, 1.42 sq ft
$\overline{\mathrm{c}}$	mean aerodynamic chord of wing, $\frac{2}{S} \int_{0}^{b / 2} c^{2 d y}, 1.069 \mathrm{ft}$
c	local wing chord, parallel to plane of symmetry, ft
b	wing span, 1.76 ft
ρ	air density, slugs/cu ft
V	free-stream velocity, ft/sec
M	Mach number
R	Reynolds number of wing based on \bar{c}
α	angle of attack of fuselage reference line, deg
β	angle of sideslip, deg
δ	control surface deflection, deg
pb/2V	wing-tip helix angle, radians
p	rolling velocity, radians/sec
${ }^{c} l_{p}=$	per radian
L/D	lift-drag ratio
Subscripts:	
b	base of model fuselage
e	elevon

r	rudder
max	maximum
\min	minimum

MODEL DESIGNATIONS

B	fuselage
C	canopy
V	fin
W	wing; W also used with following subscripts:
	F_{1} fence 1
	F_{3} fence 3
	F_{4} fence 4
	F_{5} fence 5
	F6 fence 6
	$\mathrm{F}_{7} \quad$ fence 7
	$\mathrm{N}_{1} \quad$ notch 1
	$\mathrm{N}_{2} \quad$ notch 2

MODEL AND APPARATUS

A drawing of the 0.05 -scale model of the Convair F2Y-1 airplane employed in this investigation is presented in figure 2. Details of the various fences, chord-extensions, notches, and spoilers employed on the model are shown in figures 3 to 7 . Included in figure 7 is a sketch of the fuselage fairing at the aft end of the model. Figure 8 shows the faired duct inlet plugs employed on the model. Details of the upper aft fuselage dive brake are shown in figure 9. Photographs of the model are shown in figure 10.

The model was tested on the sting-type support system shown in figure lo(c). With this system, the model was remotely operated through ranges of either angle of attack or sideslip. A strain-gage balance mounted inside the fuselage was used to measure the forces and moments on the model.

TESTS AND CORRECTIONS

The investigation was made in the Langley high-speed 7 - by 10 -foot tunnel over a Mach number range from 0.50 to 0.92 at angles of attack ranging from about -2° to 25° and through a sideslip range from -4° to 12°.

The blockage, jet-boundary, buoyancy, and base pressure corrections are the same as those discussed in reference l. Values of base-pressuredrag coefficient $C_{D_{b}}$ for average test conditions are presented in figure 11. The corrected model drag data were obtained by adding the base-pressure-drag coefficient to the drag coefficient determined from the strain-gage measurements.

The variation of mean Reynolds number with Mach number for the model of this investigation is presented in figure 12.

RESULTS AND DISCUSSION

The bulk of the data obtained in this investigation is presented in figures 13 to 35; an index of the figures is given in table I. Additional data that are not presented in figures 13 to 35 are tabulated in tables II to VII. Data presented as configuration 1A in figures 13 and 14 were taken from figure 8 in reference 1 to facilitate evaluation of the flexibility of the elevator restraining members. Data presented for configuration 1B (basic model, no fixes of any nature) in figures 15, 17, and 20 were also taken from figure 8 in reference l. Note that fences 1 and 3 are the same as fences 1 and 3 of reference 1 ; fence 2 of reference 1 was not used in this investigation. The slopes presented in figure 35 have been averaged over a lift-coefficient range of about 0 to 0.4 . In order to expedite the publication of these data, only a brief analysis is included herein.

Lift

The lift characteristics of the model were not greatly altered by any change in wing fences, leading-edge chord-extensions, and notches,
except that in the higher lift range the fixes generally resulted in somewhat more linear characteristics. (See parts (a) of figs. 15, 17, and 20.) The lift-curve slopes of configurations 10 and 20 presented in figure 35 are fairly representative of all configurations. The reductions in $\partial C_{I} / \partial \alpha$ (about 10 to 15 percent) for the trimmed condition are in reasonably good agreement with values obtained in reference 1 for configuration lA.

Drag

Any alteration to the basic model (configuration $1 B$, parts (b) of figs. 15, 17, and 20) usually increased the minimum drag coefficient except for configuration 21 , wherein the jet inlets were plugged with a smooth fairing - which resulted in reductions of $C_{D_{\min }}$ of about 0.003 to 0.004 . (See fig. $20(\mathrm{~b})$.) In the medium lift-coefficient range, however, addition of fences, leading-edge chord-extensions, or notches usually gave some reductions in drag. The leading-edge chord-extension alone (configuration 4, fig. 15) appeared to be the most effective modification in this respect.

Compared with the basic model (configuration 1B, fig. 35) the drag due to lift $\partial C_{D} / \partial C_{L}{ }^{2}$ was reduced about 10 to 20 percent by fences 1 plus 3 (configuration 10) and the leading-edge chord-extension plus notch 1 (configuration 20). In the trimmed condition, $\partial C_{D} / \partial C_{L}{ }^{2}$ was increased about 15 to 45 percent relative to the condition for $\delta_{e}=0^{\circ}$ 。

Lift-Drag Ratios

The addition of fences 1 and 3 (configuration 10) or the leadingedge chord-extension and notch 1 (configuration 20) resulted in a very slight increase in ($\mathrm{L} / \mathrm{D})_{\max }$ over that of the basic model (configuration 1 B). (See fig. 35.) Trimming the model at the assumed center-ofgravity location ($0.30 \bar{c}$) generally reduced the lift-drag ratios about 10 to 20 percent. (See figs. 34 and 35.) These values check very closely those obtained with configuration 1A in reference 1, indicating that trimming the model would result in a loss of about 10 to 20 percent in lift-drag ratios for any of the configurations tested.

Pitching Moment

As previously pointed out in reference 1 , for the basic model (configuration $1 B$, parts (c) and (d) of fig. 15), regions of longitudinal

instability were found to exist at a lift coefficient of about 0.40 throughout the Mach number range investigated. All the combinations of wing fences, leading-edge chord-extensions, and notches delayed the instability to considerably higher lift coefficients and angles of attack (usually to values of C_{L} of 0.6 to 0.8 or angles of attack of 14° to 16°; see parts (c) and (d) of figs. 15, 17, and 20). However, the departures from linearity in the medium lift and angle-of-attack range still are probably undesirable on the basis of pitching-motion considerations. (See ref. 2 for a detailed discussion of the pitch-up problem.) Inverting the model appeared to give small improvements in the pitch characteristics at the lower Mach numbers but at a Mach number of 0.92 the characteristics of the model appeared to be slightly worse when inverted than when in the normal position. (See parts (c) and (d) of fig. 15.) The addition of the fuselage fences and spoilers gave little change in the pitching-moment characteristics of the model. (See fig. 26(b).)

Fences 1 and 3, and the leading-edge chord-extension plus notch 1 (configurations 10 and 20, respectively), provided a slight forward shift in the aerodynamic-center location (about 1 to 2 percent at Mach numbers of 0.85 and 0.92). (See fig. 35.)

From overall considerations of lift, drag, and pitching moments, it appears that configurations 10 and 20 were the most desirable; consequently, all analysis and summary figures are based on these two configurations.

Elevator Effectiveness

The results obtained for various elevator settings (parts (d) of figs. 22 and 23) indicate that the elevator effectiveness for small settings and the lower Mach numbers held up well throughout the liftcoefficient range; however, at a Mach number of 0.92 some appreciable losses were incurred at the higher lift coefficients. At zero lift, small elevator deflections gave gradual increases with Mach number in the effectiveness parameter $\left(\frac{\partial C_{m}}{\partial \delta_{e}}\right)_{C_{L}=0}$, (from about -0.0052 a.t $M=0.50$ to -0.006 at $M=0.90$). (See fig. 32.) These values are in good agreement with those obtained in reference 1 for configuration lA.

In assessing the elevator effectiveness it should be noted that some flexibility in the elevator restraining members did exist. However, comparisons with a heavier dummy gage and with the elevator securely locked by soldering the elevon actuators to the actuator fairings indicated that the effects of flexibility were small. (See

parts (c) and (d) of figs. 13 and 14.) A slight variation in the elevator setting introduced by changes in the elevator restraining members may a.ccount for the small shift in the pitching moments at zero lift and in the lift coefficients at zero angle of attack.

Aileron Effectiveness

The results of deflecting the ailerons to $\pm 5^{\circ}$ and $\pm 10^{\circ}$ are presented in figure 29. From these data and using values of $C_{l_{p}}$ from reference 3 for a 60° delta wing-body combination, the wing-tip helix angle and rate of roll were calculated for trim conditions at an altitude of 10,000 feet and a wing loading of 32 pounds per square foot. The results of these calculations, presented in figure 33, indicate that with $\pm 10^{\circ}$ aileron the wing-tip helix angle was reduced from 0.125 at a Mach number of 0.50 to 0.088 at a Mach number of 0.92 , with corresponding rates of roll of 4.0 and 5.2 radians per second.

Effect of Dive Brake on Rudder Effectiveness

,
Results for a rudder deflection of 10°, with upper aft fuselage divebrake deflections of 30° and 60°, are presented in figure 30 . From these data and data published in reference 1 without dive brakes, it appears that the 30° setting reduced the rudder effectiveness about 10 to 20 percent; whereas the 60° setting reduced this parameter about 35 to 50 percent.

Additional tests to determine the static longitudinal and lateral stability characteristics of various wing and fuselage modifications on a 0.05 -scale model of the Convair F2Y-I water-based fighter airplane at high subsonic speeds indicate the following conclusions:

1. The lift characteristics of the model were not greatly altered by any change in wing fences, leading-edge chord-extensions, and notches.
2. From overall considerations of drag and pitching moments, it appears that there were two modifications somewhat superior to any of the others investigated: first, a configuration that employed a fullchord fence and a partial-chord fence located at 0.63 semispan and 0.55 semispan, respectively; and, second, a leading-edge chord-extension that extended from 0.68 semispan to 0.85 semispan in combination with a leading-edge notch located at 0.68 semispan.
3. With $\pm 10^{\circ}$ aileron, the estimated wing-tip helix angle was reduced from 0.125 at a Mach number of 0.50 to 0.088 at a Mach number of 0.92 , with corresponding rates of roll of 4.0 and 5.2 radians per second.
4. The upper aft fuselage dive brake, when deflected 30° and 60°, reduced the rudder effectiveness about 10 to 20 percent and about 35 to 50 percent, respectively.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics, Langley Field, Va., July 21, 1954.

Kenneth P. Spreemann Aeronautical Research Scientist

Albert G. Few, Jr. Aeronautical Research Scientist Approved:

Thomas A. Harris
Chief of Stability Research Division
ac

REFERENCES

1. Spreemann, Kenneth P., and Few, Albert G., Jr.: Preliminary Investigation of the Static Longitudinal and Lateral Stability Characteristics of a $0.05-$ Scale Model of the Convair F2Y-l Airplane at High Subsonic Speeds - TED No. NACA DE 383. NACA RM SL54Al2, Bur. Aero., 1954.
2. Campbell, George S., and Neil, Joseph: The Interpretation of Nonlinear Pitching Moments in Relation to the Pitch-Up Problem. NACA RM L53IO2, 1953.
3. Wiggins, James W.: Wind-Tunnel Investigation at High Subsonic Speeds To Determine the Rolling Derivatives of Two Wing-Fuselage Combinations Having Triangular Wings, Including a Semiempirical Method of Estimating the Rolling Derivatives. NACA RM L53L18a, 1954.
table I. - INDEX of figures presemptig datia

						δ_{e}, d			uator		
FIgure	configuration	Fences	Chord-extension	Notch b	brake	Right	Left	deg	fairing	- Remarks	Nabuleted data
13	$\begin{aligned} & \text { 14 } \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \text { at } 0.63 \mathrm{~b} / 2 \\ & 1 \text { at } 0.63 \mathrm{~b} / 2 \\ & 1 \text { at } 0.63 \mathrm{~b} / 2 \end{aligned}$	None None None	None None Hone	None None mone	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$	Original elevon strain gage Duminy elevon strain gage Duaruy elevon strain gage plus lock	
14	$\begin{aligned} & \frac{1 A}{2} \\ & 3 \end{aligned}$	$\begin{aligned} & 1 \text { at } 0.63 \mathrm{~b} / 2 \\ & 1 \text { at } 0.63 \mathrm{~b} / 2 \\ & 1 \text { at } 0.63 \mathrm{~b} / 2 \end{aligned}$	None None None	None Mone None	None None None	$\begin{aligned} & -5 \\ & -5 \\ & -5 \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \\ & -5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$	Original elevon strain gage Dumpy elevon strain gage Dumay elevons strain gage plus lock	
15	$\begin{aligned} & 18 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$	None None None None	None $0.60 \mathrm{~b} / \mathrm{2}$ to $0.77 \mathrm{p} / 2$ $0.60 \mathrm{~b} / \mathrm{2}$ to $0.77 \mathrm{~b} / 2$ $0.60 \mathrm{~b} / \mathrm{e}$ to $0.77 \mathrm{~b} / \mathrm{s}$	None flone Hone None	None None None None	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$	Actuator fairing on lower wing surface Inverted model	
16	$\begin{aligned} & 7 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$	h at $0.630 / 2,3$ at $0.25 \mathrm{~b} / 2$ p at $0.63 \mathrm{~b} / \mathrm{2}, 3$ at $0.350 / 2$ A at $0.63 \mathrm{~b} / 2,3$ at $0.45 \mathrm{~b} / 2$ 1 at $0.63 \mathrm{~b} / \mathrm{2}, 3$ at $0.55 \mathrm{~b} / 2$	None None None None	None None None None	$\begin{aligned} & \text { None } \\ & \text { None } \\ & \text { None } \\ & \text { None } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$		$\begin{aligned} & M=0.50 \text { (table II) } \\ & M=0.50 \text { and } 0.92 \\ & \text { (table II) } \end{aligned}$
17	$\frac{18}{10}$	$\begin{gathered} \text { Mone } \\ \text { 1 at } 0.63 \mathrm{~b} / 2,3 \text { at } 0.550 / 2 \\ \hline \end{gathered}$	None None	Mone None	$\begin{aligned} & \text { None } \\ & \text { None } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \end{aligned}$		
18	$\begin{aligned} & 1.1 \\ & 12 \\ & 1.3 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \text { at } 0.58 \mathrm{~b} / 2 \\ & 4 \mathrm{at} 0.65 \mathrm{~b} / 2 \\ & 4 \mathrm{at} 0.6 \mathrm{~b} / 2 \\ & 5 \text { at } 0.68 \mathrm{~b} / 2 \\ & \hline \end{aligned}$	None None None None	None None None None		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	orf off ofs off		
19	$\begin{aligned} & 15 \\ & 16 \\ & 17 \\ & 18 \end{aligned}$	$\begin{gathered} 4 \text { at } 0.68 \mathrm{~b} / 2 \\ 3 \text { at } 0.55 \mathrm{~b} / 2 \\ \text { 1 at } 0.63 \mathrm{~b} / 2,6 \mathrm{at} 0.45 \mathrm{~b} / 2 \\ \text { 1 at } 0.63 \mathrm{~b} / 2,7 \mathrm{at} 0.55 \mathrm{~b} / 2 \end{gathered}$	None None None None	None None None None	$\left\lvert\, \begin{aligned} & \text { None } \\ & \text { None } \\ & \text { None } \\ & \text { None } \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$		$\left\|\begin{array}{cccc} C_{L}, & C_{D}, & M=0.50 \text { and } 0.92 \\ \text { (table } & \text { MII) } & \\ C_{L} & \text { and } & C_{D} & \text { (table III) } \\ C_{L} & \text { and } & C_{D} & \text { (table III) } \\ C_{L} & \text { and } & C_{D} & \text { (table III) } \end{array}\right\|$
20	$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 21 \end{aligned}$	None None None None	$\begin{gathered} \text { None } \\ \text { None } \\ 0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2 \\ 0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2 \end{gathered}$	Nane 2 at $0.68 \mathrm{~b} / 2$ 1 at $0.680 / 2$ at $0.68 b / 2$	$\begin{aligned} & \text { None } \\ & \text { None } \\ & \text { None } \\ & \text { None } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$	Inlete plugged with Bmooth fairing	
21	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	None None	$0.68 \mathrm{~b} / 2$ to $0.850 / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$	$\stackrel{1}{1} \stackrel{\text { plus }}{2}$	$\left\lvert\, \begin{aligned} & \text { None } \\ & \text { None } \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { off } \\ & \text { of } \end{aligned}$	Notch 1 at $0.68 \mathrm{~b} / 2$ Yotch 1 at $0.680 / 2$, noteh 2 at $0.176 / 2$	
22	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	I at $0.630 / 2,3$ at $0.550 / 2$ I at $0.630 / 2,3$ at $0.550 / 2$	None None	$\begin{aligned} & \text { None } \\ & \text { Mone } \end{aligned}$	$\begin{array}{\|l} \text { None } \\ \text { None } \end{array}$	$\begin{array}{r} -5 \\ -10 \end{array}$	$\begin{array}{r} -5 \\ -10 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \end{aligned}$		
23	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	None None None None	$0.68 \mathrm{~b} / 2$ to $0.850 / 2$ $0.68 \mathrm{o} / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$	$\begin{array}{lll} 1 & \text { at } & 0.68 \mathrm{~b} / 2 \\ 1 & \text { at } & 0.68 \mathrm{~b} / 2 \\ 1 & \text { at } & 0.66 \mathrm{~b} / 2 \\ 1 & \text { at } & 0.68 \mathrm{~b} / 2 \end{array}$	$\begin{aligned} & \text { None } \\ & \text { None } \\ & \text { None } \\ & \text { None } \end{aligned}$	$\begin{gathered} 0 \\ -2 \\ -5 \\ -10 \end{gathered}$	$\begin{gathered} 0 \\ -2 \\ -5 \\ -10 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$		
24	$\begin{aligned} & 20 \\ & 22 \\ & 24 \\ & 24 \\ & 26 \end{aligned}$	None None None None None	$0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.87 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / \mathrm{2}$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.850 / 2$	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ 1 \text { plus } 2 \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { None } \\ & \text { None } \\ & 300^{\circ} \\ & 30^{\circ} \\ & 30^{\circ} \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	On ofe On off ore	Notch 1 at $0.68 \mathrm{~b} / 2$ Notch $\frac{1}{1}$ at $0.68 \mathrm{~b} / 2$ Notch 1 at $0.68 \mathrm{~b} / 2$ Notch 1 at $0.68 \mathrm{~b} / \mathrm{2}$ Notch 1 at $0.680 / 2$, notch 2 at $0.170 / 2$	$M=0.92$ (table IV)

TABLE I.- INDEX OF FIGURES PRESENTING DATIA - Concluded

Figure	Configuration	Fences	Chord-extension	Notch	Dive brake	$\delta_{\text {e }}$, deg		$\left\lvert\, \begin{aligned} & \varepsilon_{r}, \\ & \text { deg } \end{aligned}\right.$	$\begin{aligned} & \text { Actuator } \\ & \text { and } \\ & \text { fairing } \end{aligned}$	Remarks	Tabulated data
						Right	Left				
25	$\begin{aligned} & 20 \\ & 24 \\ & 27 \end{aligned}$	None None None	$0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$	$\left\lvert\, \begin{array}{lll} 1 & \text { at } & 0.68 b / 2 \\ 1 & \text { at } & 0.68 b / 2 \\ 1 & \text { at } & 0.68 b / 2 \end{array}\right.$	$\begin{aligned} & 0^{\circ} \\ & 300 \\ & 600 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$		
26	$\begin{aligned} & 20 \\ & 28 \end{aligned}$	None None	$\begin{aligned} & 0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2 \\ & 0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2 \end{aligned}$	$1 \begin{aligned} & 1 \\ & \text { at } \\ & 1 \end{aligned} \text { at } 0.68 \mathrm{~b} / 20 / 2$	None None	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \end{aligned}$	Upper $1 / 4$-inch fuselage spoiler 8.6 inches from duct extt Upper $1 / 4$-inch fuselage spoiler 3.25 inches from duct exit Upper $1 / 8$-inch fuselage spoiler 3.25 inches from duct exit Lower $1 / 8$-inch fuselage spoiler 2.5 inches from duct exit Fuselage faired at aft end to sting exit Upper $1 / 4$-inch fuselage fence 0 inch from duct exit Upper $1 / 4$-inch fuselage fence 3.25 inches from duct exit	$\left.\begin{array}{ccc} C_{L}, & C_{D}, ~ a t ~ & M=0.85 \\ \text { and } & 0.92 & (\text { table } V) \\ C_{L} & \text { and } & C_{D} \end{array} \text { (table } V\right)$
	29	None	$0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2$	$1 \text { at } 0.68 \mathrm{~b} / 2$	None	0	0	0	On		
	30	None	$0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2$	$\text { I at } 0.68 \mathrm{~b} / 2$	None	0	0	0	on		$C_{L} \text { and } C_{D} \quad(\text { table } V)$
	31	None	$0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2$	$\text { I at } 0.68 \mathrm{~b} / 2$	None	0	0	0	$0 \mathrm{n}$		$C_{\mathrm{L}} \text { and } \mathrm{C}_{\mathrm{D}} \quad(\text { table } \mathrm{V})$
	32	None	None	None	None	0	0	0	On		$\begin{aligned} & C_{\mathrm{L}}, \quad \mathrm{CD}_{\mathrm{D}}, \quad \mathrm{M}=0.50 \\ & \text { and } 0.92 \text { (table } \mathrm{V}) \end{aligned}$
	33	None	$0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2$	$1 \text { at } 0.68 \mathrm{~b} / 2$	None	0	0	0	on		$\left.C_{L} \text { and } C_{D} \text { (table } v\right)$
	34	None	0.68b/2 to $0.85 \mathrm{~b} / 2$	1 a.t $0.68 \mathrm{~b} / 2$	None	0	0	0	On		C_{L} and C_{D} (table V)
27	35	None	Hone	None	None	0	0	0	On	Transition strip at 0.05 c	
28	36	None	None	None	None	--	---	--	--	Body-canopy alone	
29	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	None None None	$0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$	$\begin{array}{ll} \text { I at } 0.68 \mathrm{~b} / 2 \\ \text { I at } 0.68 \mathrm{~b} / 2 \\ \text { I at } 0.68 \mathrm{~b} / 2 \end{array}$	None None None	$\begin{array}{r} 0 \\ 5 \\ 10 \end{array}$	$\begin{gathered} 0 \\ -5 \\ -10 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$	Lateral data Lateral data Lateral data	$\begin{array}{llll} C_{L}, & C_{D}, & C_{m} & \text { (table VI) } \\ C_{L}, & C_{D}, & C_{m} & \text { (table VI) } \end{array}$
30	$\begin{aligned} & 27 \\ & 27 \\ & 24 \end{aligned}$	None None None	$0.680 / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$	$\begin{aligned} & 1 \text { at } 0.68 \mathrm{~b} / 2 \\ & 1 \text { at } 0.68 \mathrm{~b} / 2 \\ & 1 \text { at } 0.68 \mathrm{~b} / 2 \end{aligned}$	$\begin{aligned} & 60^{\circ} \\ & 60^{\circ} \\ & 30^{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ 10 \\ 0 \end{array}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { On } \end{aligned}$	Lateral data Lateral data Lateral data	$\begin{array}{llll} C_{\mathrm{L}}, & \mathrm{C}_{\mathrm{D}}, & \mathrm{C}_{\mathrm{m}} & \text { (table VII) } \\ \mathrm{C}_{\mathrm{L}}, & \mathrm{C}_{\mathrm{D}}, & \mathrm{C}_{\mathrm{m}} & \text { (table VII } \end{array}$
31	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	None None None None	$\begin{aligned} & 0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2 \\ & 0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2 \\ & 0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2 \\ & 0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2 \end{aligned}$	$\left\lvert\, \begin{array}{ll} 1 & \text { at } 0.68 \mathrm{~b} / 2 \\ 1 & \text { at } \\ 1 & 0.68 \mathrm{~b} / 2 \\ 1 & \text { at } \\ 1 & 0.68 \mathrm{~b} / 2 \\ \hline \end{array}\right.$	None None None None	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \\ & \text { on } \\ & \text { on } \end{aligned}$	Lateral data, $\alpha=0^{\circ}$ Lateral data, $a=4^{\circ}$ Lateral data, $a=60$ Lateral data, $a=12^{\circ}$	
32	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\text { 1 at } 0.65 \mathrm{~b} / 2,3 \text { at } 0.55 \mathrm{~b} / 2$	$0.68 \mathrm{~b} / 2 \text { None } 0.85 \mathrm{p} / 2$	$\begin{gathered} \text { None } \\ 1 \text { at } 0.68 \mathrm{~b} / 2 \\ \hline \end{gathered}$	None None	--	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { om } \end{aligned}$	Elevator effectiveness Elevator effectiveness	
33	20	None	0.68b/2 to $0.85 \mathrm{~b} / 2$	1. at $0.68 \mathrm{~b} / 2$	None	--	---	0	On	Hellx angle and rate of roll	
34	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\underset{\text { None }}{ }+\frac{1}{2} \text { at } 0.63 \mathrm{~b} / 2, \mathrm{a}^{2} / 2$	$0.68 \mathrm{~b} / 2 \text { None } 0.85 \mathrm{~b} / 2$	$\begin{gathered} \text { None } \\ 1 \text { a.t } 0.68 \mathrm{~b} / 2 \\ \hline \end{gathered}$	None None	--	---	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { on } \end{aligned}$	Lift-drag ratios Lift-drag ratios	
35	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\underset{\text { None }}{1 \text { at } 0.630} / 2,53 \mathrm{~b} / 2$	$0.68 \mathrm{~b} / 2 \text { to } 0.85 \mathrm{~b} / 2$	$\begin{gathered} \text { None } \\ 1 \text { at } 0.68 \mathrm{~b} / 2 \end{gathered}$	None None	--	---	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { On } \\ & \text { on } \end{aligned}$	Sunmary Surmary	

TABLE II.- ADDITIONAL DATA SUPPLEMENTING FIGURE 16

Configuration 7 $M=0.50$			
α, deg	C_{L}	C_{D}	C_{m}
-2.11	-0.091	0.0199	-0.0062
. .06	-.019	.0168	-.0098
2.01	.065	.0744	-.0144
4.08	.155	.027	-.0204
6.17	.256	.0348	-.0256
8.24	.350	.0538	-.0291
10.33	.443	.0786	-.0322
12.43	.543	.1123	-.0363
14.53	.646	.1559	-.0373
16.61	.716	.1982	-.0365
18.68	.760	.2420	-.0352
20.70	.818	.2911	-.0442
22.75	.886	.3537	-.0543
24.68	.827	.3695	-.0637

Configuration 8							
$\mathrm{M}=0.50$				$\mathrm{M}=0.92$			
α, deg	$\mathrm{C}_{\text {L }}$	C_{D}	C_{m}	α, deg	$\mathrm{C}_{\text {L }}$	CD	$\mathrm{C}_{\text {m }}$
-2.11	-0.074	0.0193	-0.0078	-2.31	-0.126	0.0231	-0.0028
-. 05	-. 001	. 0167	-. 0118	-1.24	-. 076	. 0200	-. 0076
2.05	. 109	. 0188	-. 0164	-. 16	-. 023	. 0183	-. 0123
4.09	.176	. 0237	-. 0226	. 90	. 027	. 0180	-. 0177
6.17	. 271	. 0361	-. 0281	1.97	. 083	. 0190	-. 0226
8.25	. 368	. 0556	-. 0321	3.06	. 143	. 0219	-. 0283
10.33	. 456	. 0803	-. 0358	4.13	. 202	. 0267	-. 0345
12.43	. 550	. 1138	-. 0381	5.21	. 261	. 0334	-. 0399
14.52	. 648	. 1556	-. 0392	6.31	. 319	. 0432	-. 0429
16.61	. 732	. 2015	-. 0406	7.40	. 372	. 0547	-. 0464
18.72	. 797	. 2527	-. 0331	8.46	. 427	. 0686	-. 0526
20.75	. 840	. 3013	-. 0407	9.57	. 476	. 0843	-. 0541
22.78	. 883	. 3531	-. 0452	10.62	- 524	. 1024	-. 0587
24.71	. 851	. 3807	-. 0607	11.69	. 574	. 1216	-. 0649
				12.79	. 625	. 1433	-. 0680
				13.85	. 666	. 1649	-. 0710
				14.85	. 762	. 1992	-. 0958
				15.97	. 786	. 2207	-. 0895

TABLE III. - ADDITTIONAL DATA SUPPIEMENTING FIGURE 19

Configuretion 15										
$\mathrm{M}=0.50$				$\mathrm{M}=0.85$			$\mathrm{M}=0.92$			
α, deg	Cl_{L}	CD	C_{m}	α, deg	CL,	$C D$	α, deg	$\mathrm{Cl}_{\text {L }}$	C_{D}	C_{m}
-2.11	-0.086	0.0160	-0.0048	-2.28	-0.118	0.0187	-2.29	-0.124	0.0198	-0.0016
-. 06	-. 019	. 0126	-. 0093	-1.21	-. 066	. 0157	-1.23	-. 076	. 0166	-. 0066
2.02	. 066	. 0136	-. 0134	-0.14	-. 023	. 0141	-. 14	-. 021	. 0151	-. 0113
4.08	. 162	. 0185	-. 0190	. 93	. 032	. 0138	. 91	. 027	. 0146	-. 0163
6.18	. 269	. 0324	-. 0241	2.00	. 078	. 0146	1.99	. 081	. 0159	-. 0206
8.27	. 358	. 0508	-. 0264	3.08	. 134	. 0176	3.07	.143	. 0191	-. 0267
10.36	. 463	. 0789	-. 0282	4.16	. 189	. 0216	4.15	. 203	. 0240	-. 0324
12.46	. 561	. 1134	$\therefore .0320$	5.23	.247	. 0283	5.25	. 265	. 0313	-. 0370
14.54	. 648	. 1533	-. 0343	6.32	. 304	. 0370	6.35	. 323	. 0416	-. 0399
16.63	. 736	. 2006	-. 0359	7.42	. 354	. 0481	7.41	. 386	. 0535	-. 0472
18.73	. 829	. 2567	-. 0394	8.52	. 410	. 0610	8.50	. 447	. 0688	-. 0524
20.81	. 908	. 3163	-. 0.0434	9.61	. 462	. 0761	9.58	. 502	. 0856	-. 0583
22.87	. 967	. 3773	-. 0477	10.73	. 514	. 0936	10.65	. 563	. 1053	-. 0654
24.85	. 952	. 4140	-. 0513	11.84	. 569	. 1141	11.62	. 630	. 1282	-. 0869
				12.93	. 626	.1367	12.71	. 684	. 1521	-. 0899
				14.03	. 666	. 1584	13.73	. 754	. 1819	-. 1061
				15.11	. 694	. 1793	14.77	. 801	.2077	-. 1132
				16.14	. 734	. 2040				
				17.21	. 781	. 2322				
				18.26	. 831	. 2638				
				19.28	. 845	. 2855				
				20.28	. 864	. 3110				
				21.25	. 852	. 3238				
				22.16	. 841	. 3423				

Configuration $M=0.85$ α, deg				C_{L}	C_{D}
-2.28	-0.111	0.0212			
-1.21	-.065	.0189			
-.14	-.016	.0175			
.92	.033	.0172			
1.99	.083	.0183			
3.07	.135	.0206			
4.15	.188	.0246			
5.22	.246	.0317			
6.31	.305	.0406			
7.39	.360	.0511			
8.51	.406	.0643			
9.59	.461	.0797			
10.69	.513	.0963			
11.79	.560	.1145			
12.88	.614	.1359			
13.95	.682	.1636			
15.04	.721	.1866			
16.11	.763	.2130			
17.17	.796	.2363			
18.23	.842	.2689			
19.28	.846	.2879			
20.30	.849	.3074			
21.14	.808	.3134			
22.15	.817	.3346			
23.05	.781	.3404			

Configuration M $=0.85$		
α, deg	C_{L}	C_{D}
-2.29	-0.113	0.0215
-1.22	-.064	.0187
-.15	-.020	.0170
.91	.029	.0168
1.98	.081	.0179
3.06	.138	.0207
4.14	.192	.0249
5.22	.251	.0315
6.30	.304	.0400
7.39	.349	.0501
8.47	.402	.0631
9.55	.455	.0775
10.65	.507	.0941
11.73	.551	.1132
12.79	.601	.1345
13.87	.655	.1577
14.96	.710	.1840
16.03	.761	.2111
17.10	.792	.2356
18.17	.800	.2562
19.20	.804	.2749
20.21	.811	.2955
21.12	.788	.3074
22.07	.775	.3199
23.05	.789	.3443

Configuration 18		
$M=0.85$		
α, deg	C_{L}	
-2.28	-0.109	0.0209
-1.22	-.063	.0187
-.14	-.013	.0170
.92	.035	.0168
1.99	.083	.0181
3.07	.139	.0206
4.14	.195	.0249
5.22	.256	.0319
6.31	.303	.0395
7.40	.350	.0498
8.49	.404	.0628
9.58	.455	.0771
10.69	.531	.0988
11.77	.569	.1174
12.86	.625	.1392
13.93	.671	.1613
15.01	.719	.1875
16.08	.749	.2106
17.17	.784	.2358
18.21	.800	.2572
19.24	.820	.2807
20.27	.840	.3055
21.22	.828	.3193
22.14	.813	.3338
23.04	.801	.3485

TABLE IV.- ADDITIONAL DATA SUPPLEMENTING FIGURE 24

Configuration 26 $\mathrm{M}=0.92$				
α, deg	C_{L}	CD	C_{m}	
-2.26	-0.137	0.0252	0.0042	
-1.20	-.083	.0214	-.0024	
-.13	-.031	.0195	-.0073	
.93	.020	.0187	-.0123	
2.01	.078	.0198	-.0175	
3.09	.141	.0232	-.0238	
4.17	.206	.0284	-.0318	
5.24	.271	.0365	-.0388	
6.30	.334	.0475	-.0470	
7.43	.382	.0574	-.0457	
8.51	.440	.0713	-.0512	
9.60	.492	.0864	-.0538	
10.62	.568	.1087	-.0698	
11.65	.634	.1307	-.0846	
12.69	.700	.1555	-.0961	
13.68	.770	.1859	-.1147	
14.83	.798	.2067	-.1054	

TABLE V. - ADDITIONAL DATA SUPPLEMENTTING FIGURE 26

Configuration 28						
$\mathrm{M}=0.85$			$\mathrm{M}=0.92$			
α, deg	C_{L}	C_{D}	α, deg	C_{L}	$C_{\text {D }}$	$\mathrm{C}_{\text {m }}$
-2.33	-0.117	0.0245	-2.37	-0.122	0.0279	-0.0107
-1.26	-. 069	.0216	-1.32	-. 072	. 0249	-. 0173
-. 19	-. 021	. 0200	-. 25.	-. 019	.0236	-. 0225
. 87	. 024	. 0196	. 81	. 028	. 0244	-. 0264
1.93	. 075	. 0212	1.88	. 074	. 0271	-. 0299
3.02	. 130	. 0236	2.96	. 136	. 0289	.. 0370
4.09	. 183	. 0275	4.04	. 191	. 0335	-. 0425
5.17	. 243	. 0341	5.11	. 251	. 0393	-. 0482
6.26	. 295	. 0424	6.21	. 313	. 0483	. .0516
7.35	. 351	. 0531	7.32	. 369	. 0588	-. 0544
8.46	. 400	. 0653	8.44	. 419	.0718	-. 0539
9.56	. 450	. 0798	9.54	. 478	. 0878	-. 0576
10.66	. 497	. 0953	10.58	. 551	. 1096	-. 0712
11.78	. 555	. 1162	11.63	. 607	. 301	-. 0799
12.87	. 610	.1380	12.66	. 679	. 1595	-. 0951
13.98	.653	. 1601	13.73	. 730	. 1819	-. 0997
15.08	. 680	.1807	14.76	. 788	. 2113	.. 1105
16.11	. 718	. 2061				
17.17	. 766	. 2344				
18.22	. 807	. 2623				

$\|c\|$ Configuration M α, deg		
$C_{\text {L }}$	C_{D}	
-2.28	-0.130	0.0274
-1.21	-.084	.0243
. .13	-.031	.0223
.92	.012	.0213
2.00	.064	.0222
3.08	.119	.0242
4.15	.174	.0280
5.25	.233	.0348
6.34	.284	.0428
7.44	.340	.0534
8.54	.393	.0666
9.65	.444	.0815
10.75	.501	.0998
11.85	.557	.1196
12.92	.618	.1422
14.02	.661	.1643
15.12	.720	.1924
16.16	.736	.2120
17.24	.799	.2453
18.29	.839	.2737

TABLE V.- ADDITIONAL DATA SUPPLEMENITNG FIGURE 26 - Concluded

Configuration 32										
$\mathbf{M}=0.85$			$\mathrm{M}=0.50$				$\mathrm{M}=0.92$			
a, deg	C_{L}	C_{D}	α, deg	C_{L}	C_{D}	$\mathrm{C}_{\text {m }}$	α, deg	$\mathrm{C}_{\text {L }}$	C_{D}	c_{m}
-2.29	-0.106	0.0211	-2.13	-0.089	0.0220	-0.0099	-2.33	-0.125	0.0239	-0.0060
-1.23	-. 060	. 0183	-. 07	-. 010	. 0175	-. 0145	-1.26	-. 073	. 0204	-. 0111
-. 16	-. 013	. 0169	1.99	. 073	. 0183	-. 0193	-. 19	-. 023	.0187	-. 0157
. 90	. 037	. 0170	4.06	. 164	. 0240	-. 0260	. 87	. 029	. 0185	-. 0210
1.96	. 087	. 0182	6.15	. 273	. 0380	-. 0319	1.94	. 083	. 0200	-. 0265
3.04	. 144	. 0213	8.24	. 374	. 0582	-. 0362	3.02	. 146	. 0235	-. 0326
4.11	.198	. 0256	10.34	. 459	. 0841	-. 0329	4.09	. 207	. 0283	. . 0395
5.19	. 255	. 0327	12.44	. 536	. 1162	-. 0301	5.18	. 269	. 0354	.. 0450
6.26	. 311	. 0419	14.53	. 633	. 1569	-. 0337	6.27	. 331	. 0450	-. 0506
7.37	. 366	. 0532	16.61	. 727	. 2054	-. 0388	7.35	. 384	. 0568	-. 0537
8.46	. 389	. 0641	16.68	. 811	. 2564	-. 0443	8.46	. 428	. 0698	-. 0529
9.56	.436	. 0785	20.73	. 860	. 3051	-. 0477	9.55	. 472	. 0852	-. 0536
10.67	. 486	. 0945	22.83	. 965	. 3824	-. 0561	10.59	. 551	. 1080	-. 0694
11.76	. 558	. 1173	24.84	. 982	. 4325	-. 0612	11.58	. 624	. 1314	-. 0884
12.84	. 614	. 1383					12.64	. 688	. 1554	-. 0978
13.92	. 688	. 1663					13.71	. 735	.1787	-. 1010
15.00	. 729	. 1891					14.74	. 788	. 2058	. .1120
16.09	.780	. 2173								
17.15	. 801	. 2398								
18.20	. 826	. 2632								
19.22	. 861	. 2924								
20.22	. 879	. 3172								
21.22	. 884	. 3390								
22.05	. 856	. 3491								
23.00	. 824	. 3557								

Configuration			
$\mathrm{M}=0.83$			
α, deg	C_{I}	$C D$	
-2.29	-0.115	0.0210	
-1.23	-.066	.0182	
-.15	-.020	.0167	
.91	.029	.0162	
1.99	.080	.0174	
3.07	.134	.0200	
4.15	.193	.0246	
5.23	.247	.0314	
6.33	.298	.0391	
7.42	.354	.0504	
8.52	.407	.0632	
9.62	.459	.0783	
10.73	.505	.0945	
11.82	.585	.1188	
12.90	.636	.1408	
14.01	.675	.1620	
15.08	.731	.1892	
16.14	.741	.2077	
17.18	.774	.2313	
18.25	.822	.2616	
19.27	.852	.2882	
20.29	.876	.3153	
21.13	.818	.3159	
22.17	.842	.3444	

$\begin{gathered} \text { Configuration } 34 \\ M=0.85 \end{gathered}$		
α, deg	C_{L}	CD
-2.29	-0.111	0,0208
-1.22	-. 065	. 0181
-. 15	-. 017	. 0165
.91	. 029	. 0162
1.99	. 082	. 0177
3.07	.137	.0201
4.14	. 191	. 0245
5.23	.247	. 0312
6.32	- 300	. 0398
7.43	. 358	. 0517
8.53	. 410	. 0638
9.62	. 459	. 0787
10.74	. 512	. 0962
11.82	. 579	. 1180
12.90	. 640	. 1414
14.01	. 676	. 1624
15.09	. 701	.1830
16.15	.744	. 2092
17.21	. 811	. 1795
18.26	. 840	. 2681
19.28	. 862	. 2935
20.30	. 881	. 3185
21.19	. 848	. 3282
22.14	.845	. 3454

TABLE VI. - ADDITIONAL DATA SUPPLEMENTING FIGURE 29

Configuration 20, $\delta_{\mathrm{e}}= \pm 5^{\circ}$											
$M=0.50$				$\mathrm{M}=0.85$				$\mathrm{M}=0.92$			
α, deg	CL	C_{D}	C_{m}	α, deg	C_{L}	CD	C_{m}	α, deg	CL_{L}	CD	C_{m}
-3.44	-0.149	0.0264	-0.0050	-3.56	-0.185	0.0299	-0.0031	-3.61	-0.203	0.0320	0.0023
-1.37	-. 069	. 0193	-. 0099	-2.46	-. 133	. .0242	-. 0.0068	-2.50	-0. 2149	. 0.0263	-. 0.0009
. 82	. 013	. 0172	-. 0145	-1.38	-. 085	. 0208	-. 01.08	-1.40	-. 099	. 0231	-. 0061
2.90	. 098	. 0203	-. 0196	-. 29	-. 035	. 0188	-. 0149	-. 32	-. 046	. 0200	-. 0120
4.99	.194	. 0277	-. 0245	. 79	. 013	. 0181	-. 0179	. 78	. 004	. 0203	-. 0163
7.08	. 290	. 0427	-. 0274	1.88	. 063	. 0188	. .0214	1.88	. 063	. 0215	-. 0218
9.17	. 385	. 0638	-. 0284	2.98	. 117	. 0206	-. 0256	2.99	. 123	. 0235	-. 0277
11.28	. 484	. 0935	-. 0298	4.06	.172	. 0245	-. 0297	4.11	. 192	. 0289	-. 0361
13.37	. 582	. 1313	-. 0331	5.17	. 228	. 0309	-. 0341	5.21	. 246	. 0349	-. 0397
15.47	. 677	. 1753	-. 0371	6.27	. 282	. 0390	-. 0362	6.33	. 309	. 04.44	-. 0451
17.57	. 764	. 2249	-. 0405	7.38	. 336	. 0494	-. 0385	7.45	. 371	. 0562	-. 0517
19.67	. 865	. 2877	-. 0450	8.51	. 403	. 0643	-. 0403	8.55	. 429	. 0702	-. 0588
21.76	. 940	. 3505	-. 0492	9.58	. 443	. 0773	-. 0407	9.67	. 494	. 0885	-. 0650
23.78	. 954	. 3950	-. 0508	10.69	. 487	. 0927	-. 0400	10.76	. 568	. 1127	-. 0846
24.68	. 873	. 3853	-. 0663	11.82	. 550	. 1140	-. 0428	11.87	. 624	. 1337	-. 0.0886
				12.91	. 609	.1366	-. 0486	12.97	.677	. 1569	-. 0940
				14.01	. 669	. 1615	-. 0552	14.07	. 739	. 1858	-. 1055
				15.13	. 715	. 1862	-. 0535				
				16.18	. 727	. 2052	-. 0470				
				17.26	- 764	. 2310	-. 0502				
				18.34	. 814	. 2624	-. 0587				
				19.38	. 838	. 2873	-. 0628				
				20.41	. 845	. 3074	-. 06636				
				21.43	. 861	. 3330	-. 0679				
				22.35	. 825	. 3425	-. 0782				

Configuration 20, $\delta_{\text {e }}= \pm 10^{\circ}$											
$\mathrm{M}=0.50$				$\mathrm{M}=0.85$				$\mathrm{M}=0.92$			
a, deg	$\mathrm{C}_{\text {L }}$	C_{D}	C_{m}	α, deg	C_{L}	C_{D}	C_{m}	a, deg	$C_{\text {L }}$	C_{D}	C_{m}
-2.13	-0.117	0.0292	-0.0074	-2.30	-0.141	0.0315	-0.0027	-2.33	-0. 155	0.0327	-0.0015
-. 07	-. 043	. 0246	-. 0119	-1. 22	-. 095	. 0285	-. 00078	-1.24	-. -102	. 0292	-. 00049
2.01	-. 038	. 0247	-. 0165	-. 14	-. 046	. 0265	-. 0120	-. 15	-. 051	. 0270	-. 0112
4.09	. 129	. 0282	-. 0219	. 95	. 003	. 0261	-. 0158	. 94	. 005	. 0276	-. 0169
6.19	. 228	. 0396	-. 0258	2.05	. 057	. 0269	-. 0207	2.06	. 065	. 0292	-. 0234
8.29	.323	. 0575	-. 0274	3.14	. 117	. 0292	-. 0266	3.17	. 132	. 0321	-. 0314
10.39	. 423	. 0839	-. 0290	4.23	. 169	. 0319	-. 0294	4.28	. 196	. 0365	-. 0385
12.48	. 513	. 1153	-. 0312	5.34	. 224	. 0383	-. 0334	5.39	. 250	. 0421	-. 0419
14.59	. 616	. 1567	-. 0348	6.45	. 282	. 0470	-. 0369	6.50	. 316	. 0520	-. 0486
16.68	. 715	. 2056	-. 0386	7.55	. 336	. 0577	-. 0383	7.61	. 374	. 0656	-. 0549
18.81	. 824	. 2660	-. 0442	8.64	. 384	. 0697	-. 0388	8.72	. 436	. 0786	-. 0635
20.86	. 878	. 3180	-. 0456	9.75	. 432	. 0841	-. 0379	9.84	. 495	. 0960	-. 0666
22.93	. 934	. 3770	-. 0492	10.86	. 477	. 0998	-. 0372	10.96	. 552	. 1157	-. 0689
24.84	. 866	.3917	-. 0678	11.97	. 538	. 1209	-. 0404	12.21	. 618	. 1413	-. 0885
				13.10	.621	. 1488	-. 0531	13.35	. 688	. 1714	-. 1010
				14.19	. 664	. 1698	-. 0527	14.45	.744	. 1990	-. 1120
				15.29 16.38	.707	. 1940	-. 0518	15.56	.790	. 2240	-. 1160
				16.38	. 745	. 2206	-. 0509				
				17.44	. 768	. 2434	-. 0500				
				18.50	. 803	. 2699	-. 0539				
				19.56	. 826	. 2945	-. 0589				
				20.59	. 841	. 3176	-. 0617				
				21.60	. 846	. 3390	-. 0640				
				22.52	. 811	. 3455	-. 0684				
				23.46	.787	. 3577	-. 0773				

TABLE VII. - ADDITIONAL DATA SUPPLEMENIING FIGURE 30

Configuration 27, $\delta_{r}=10^{\circ}$											
$\mathrm{M}=0.50$				$\mathrm{M}=0.85$				$\mathrm{M}=0.92$			
α, deg	CL_{L}	C_{D}	C_{m}	α, deg	$\mathrm{C}_{\text {L }}$	$C D$	C_{m}	α, deg	C_{L}	$C D$	C_{m}
-2.10	-0.107	0.0287	0.0014	-2.26	-0.138	0.0300	0.0044	-2.31	-0.157	0.0320	0.0078
-. 04	-. 037	. 0240	-. 00026	-1.18	-. 089	. 0265	. 0004	-1.21	-. 100	. 0251	. 0031
2.05	. 054	. 0247	-. 0071	-. 09	-. 038	. 0245	-. . 0036	-. 12	-. 049	. 0246	-. 0022
4.13	.141	. 0286	-. 0124	1.00	. 014	. 0235	-. .0075	. 98	. 004	. 0235	-. 0070
6.21	. 240	. 0405	-. 0161	2.08	. 060	. 0239	-. 01013	2.09	. 062	. 0244	-. 0121
8.32	. 337	. 0596	-. 0174	3.19	. 120	. 0264	-. 0161	3.21	. 128	. 0273	-. 0187
10.42	. 433	. 0868	-. 0179	4.30	. 179	. 0306	-. 0.0206	4.33	. 195	. 0325	-. 0265
12.51	. 534	. 1209	-. 0209	5.38	. 226	. 0361	-. 0229	5.43	. 256	. 0409	-. 0343
14.63	.641	. 1649	-. 0254	6.48	.276	. 0438	-. 0.0241	6.55	. 315	. 0509	-. 0358
16.73	. 745	. 2164	-. 0307	7.58	.327	. 0542	-. 0262	7.66	. 373	. 0626	-. 0428
18.84	. 839	. 2726	-. 0364	8.69	. 387	. 0684	-. 0287	8.77	. 433	. 0773	-. 0491
20.92	.918	. 3336	-. 0411	9.80	. 435	. 0834	-. 0287	9.89	. 497	. 0954	-. 0568
22.95	.946	. 3818	-. 0447	10.91	. 489	. 1013	-. 0287	11.00	. 558	. 1155	-. 0638
24.99	.967	. 432.8	-.0484	12.01	. 543	. 1205	-. 0320	12.08	.623	. 1379	-. 0810
				13.12	. 606	.1441	-. 0388	13.19	. 686	. 1636	-. 0909
				14.22	. 652	. 1695	-. 0438	14.28	. 754	. 1953	-. 1090
				15.35	. 724	. 1983	-. 0480	15.37	. 809	. 2233	-. 1152
				16.43	. 754	. 2216	-. 0463				
				17.49	.789	. 2474	-. 0488				
				18.56	. 823	. 2741	-. 0539				
				19.59	. 845	. 2989	-. 0598				
				20.65	. 870	. 3267	-. 0640				
				21.66	. 882	. 3510	-. 0674				
				22.60	. 859	. 3639	-. 0759				
				23.54	. 823	. 3691	-. 0811				

Configuration 24, $\delta_{r}=10^{\circ}$											
$\mathrm{M}=0.50$				$\mathrm{M}=0.85$				$\mathrm{M}=0.92$			
α, deg	c_{L}	CD	$\mathrm{c}_{\text {m }}$	α, deg	$\mathrm{C}_{\text {L }}$	C ${ }^{\text {d }}$	$\mathrm{c}_{\text {m }}$	α, deg	$\mathrm{C}_{\text {L }}$	$C D$	C_{m}
-2.09	-0.094	0.0246	-0.0015	-2.25	-0.119	0.0255	0.0001	-2.28	-0.131	0.0266	0.0032
-. 02	-. 012	. 0212	-. 0060	-1.15	-. 070	. 0223	-. 0040	-1.18	-. 078	. 0234	-. 0016
2.05	. 066	. 0219	-. 0098	-. 07	-. 022	. 0206	-. 0076	-. 08	-. 029	. 0212	-. 0063
4.13	. 160	. 0272	-. 0154	1.02	. 033	. 0202	-. 0115	1.00	. 024	. 0207	-. 0115
6.24	. 255	. 0403	-. 0194	2.11	. 077	. 0213	-. 0148	2.12	. 081	. 0223	-. 0164
8.33	. 355	. 0595	-. 0208	3.20	. 132	. 0235	-. 0191	3.23	. 145	. 0258	-. 0228
10.43	. 454	. 0866	-. 0220	4.30	. 189	. 0279	-. 0235	4.35	. 213	. 0313	-. 0316
12.55	. 563	. 1236	-. 0253	5.39	. 242	. 0345	-. 0267	5.46	. 279	. 0404	-. 0405
14.64	. 662	. 1668	-. 0301	6.52	. 302	. 044	-. 0287	6.57	. 333	. 0492	-. 0436
16.76	-777	. 2225	-. 0352	7.61	. 351	. 0545	-. 0310	7.70	. 398	. 0626	-. 0490
18.85	. 867	. 2791	-. 0404	8.73	. 408	. 0682	-. 0313	8.79	. 453	. 0768	-. 0537
20.95	. 946	. 3415	-.0442	9.81	. 456	. 0827	-. 0325	9.90	. 519	. 0960	-. 0623
23.00	. 988	. 3967	-. 0478	10.94	. 513	. 1019	-. 0337	11.00	. 579	. 1163	-. 0724
24.93	. 928	. 4175	-. 0610	12.07	. 578	. 1241	-. 0362	12.11	. 649	. 1413	-. 0865
				13.16	. 630	. 1451	-. 0413	13.20	. 698	. 1639	-. 0934
				14.27	. 690	. 1724	-. 0464	14.32	.768	. 1950	-. 1074
				15.37	. 736	. 1978	-. 0472				
				16.44	. 769	. 2225	-. 0485				
				17.50	. 791	. 2453	-. 0497				
				18.58	. 841	. 2767	-. 0581				
				19.62	. 861	. 3012	-. 0615				
				20.64	. 874	. 3245	-. 0649				
				21.65	. 878	. 3445	-. 0687				
				22.61	. 863	. 3628	-. 0767				
				23.54	. 828	. 3688	-. 0810				

Figure 1.- System of axes used. Positive direction of forces, moments, and angles are indicated by arrows.

Figure 2.- General arrangement of test model. (All dimensions in inches.)

F_{3} located at $0.35 \mathrm{~b} / 2$
F_{3} also located at $0.25 \frac{b / 2}{}, 0.45 \frac{\mathrm{~b}}{2}$, and $0.55 \mathrm{~b} / 2$

Figure 3.- Details of various wing fence configurations. (All dimensions in inches.)

Elevon actuator and fairing located of $0.63 \mathrm{~b} / \mathrm{h}$

F_{4} located at $0.58 \mathrm{~b} / 2$, elevon actuator and fairing removed (f_{4} also located at $0.63 \mathrm{~b} / 2$ and $0.68 \mathrm{k} / 2$, elevon actuator and fairing removed and at $0.68 \mathrm{~b} / 2$ with elevon actuator and fairing installed.)

F_{5} located ai $0.68 \mathrm{~b} / 2$
Figure 3.- Concluded.

Section of leading-edge chord extensions. at origins of $0.60 \mathrm{~b} / 2$ and $0.68 \mathrm{~b} / 2$.

Figure 4.- Details of leading-edge chord-extensions originating at $0.60 \mathrm{~b} / 2$ and $0.68 \mathrm{~b} / 2$. (All dimensions in inches.)

Defail of 0.07 c leading-edge notches.
Figure 5.- Details of leading-edge notches located at $0.17 \mathrm{~b} / 2$ and $0.68 \mathrm{~b} / 2$. (All dimensions in inches.)

Figure 6.- Details of upper and lower fuselage spoilers. (All dimensions in inches.)

Figure 7.- Details of upper fuselage fences and fuselage fairing at aft end of model. (All dimensions in inches.)

Section view at 4.8 from c.g.
Section view at 2.8 from c.g.
Figure 8.- Details of duct inlet plugs. (All dimensions in inches.)

Section view at l. 35 from sting exit showing upper aft dive brake

Figure 9.- Details of upper aft fuselage dive brake. (All dimensions in inches.)

(a) Configuration BCWV, $\delta_{e}=0^{\circ}, \delta_{r}=0^{\circ}$.

L-78678

Figure 10.- Photographs of test model.

Figure 10.- Continued.

(c) Configuration BCWV, $\delta_{\mathrm{e}}=0$, $\delta_{\mathrm{r}}=0$; mounted on sting in Langley high-speed 7-by 10 -foot tunnel.

Figure 10.- Concluded.

Figure 11.- Variation of base-pressure-drag coefficient with angle of attack and test Mach number.

Figure 12.- Variation of test Reynolds number with Mach number based on wing mean aerodynamic chord.
Configuration

Original gage
Dummy gage
Dummy gage plus lock

(a) Variation of C_{L} with α.

Figure 13.- Basic longitudinal characteristics of configuration $\mathrm{BCWF}_{1} \mathrm{~V}$, $\delta_{e}=0^{\circ}, \delta_{r}=0^{\circ}$ showing effects of the original elevon strain gage and a more rigid dummy elevon strain gage.
Figure 13.- Continued.

Figure 13.- Continued.
Figure 13.- Concluded.
Configuration

Figure 14.- Basic longitudinal characteristics of configuration $\mathrm{BCW}_{\mathrm{F}_{1}} \mathrm{~V}$, $\delta_{e}=-5^{\circ}, \quad \delta_{r}=0^{\circ}$ showing effects of the original elevon strain gage and a more rigid dumm elevon strain gage.

(b) Variation of C_{D} with C_{L}.

Figure 14.- Continued.

Figure 14.- Concluded.

Figure 15.- Basic longitudinal characteristics of configuration BCWV with and without leading-edge chord-extension from $0.60 \mathrm{~b} / 2$ to $0.77 \mathrm{~b} / 2$, $\delta_{e}=0^{\circ}, \delta_{r}=0^{0}$ showing effects of changing the location of the elevon actuator and fairing and of inverting the model.

(b) Variation of C_{D} with C_{L}.

Figure 15.- Continued.
Config- Model Location of act. Chord extension uration attitude and fairing location(b/2)

		Normal
\square	5	
\bigcirc	6	Invert

Upper surface
Lower surface
Upper surface

0

Pitching-moment coefficient, C_{m}
$-.08$
-4
4812
$16 \quad 20$
24
28
Angle of attack, a, deg
(c) Variation of C_{m} with α.

Figure 15.- Continued.

Figure 15.- Concluded.
Config- Location of uration fence $3(b / 2)$

(a) Variation of C_{L} with α.

Figure 16. - Basic longitudinal characteristics of configuration $\mathrm{BCW}_{\mathrm{F}_{1+3}} \mathrm{~V}$, $\delta_{e}=0^{\circ}, \quad \delta_{r}=0^{\circ}$ at a constant Mach number of 0.85 showing effects of changing spanwise location of fence 3 . Fence 1 constant at $0.63 \mathrm{~b} / 2$.
Lift coefficient, C_{L}
(b) Variation of C_{D} with C_{L}.

Figure 16.- Continued.
Pitching-moment coefficient, C_{m}

(c) Variation of C_{m} with $\alpha_{\text {。 }}$

Figure 16.- Continued.

(d) Variation of C_{m} with C_{L}.

Figure 16.- Concluded.

(a) Variation of C_{L} with α.

Figure 17.- Basic longitudinal characteristics of configurations 1B (basic model) and 10 (fences 1 and 3 located at $0.63 \mathrm{~b} / 2$ and $0.55 \mathrm{~b} / 2$, respectively).

(c) Variation of C_{m} with α.

Figure 17.- Continued.

Config- Fences uration land 3

Figure 17.- Concluded.

Figure 18.- Basic longitudinal characteristics of configuration BCWV, $\delta_{e}=0^{\circ}, \quad \delta_{r}=0^{\circ}$ with elevon actuator and fairing removed showing effects of fence 4 at various spanwise locations and fence 5 at $0.63 \mathrm{~b} / 2$.

(b) Variation of C_{D} with C_{L}.
Figure 18.- Continued.

(c) Variation of C_{m} with α.

Figure 18.-- Continued.

Figure 18.- Concluded.

Figure 19.- Pitching-moment characteristics of configuration BCWV, $\delta_{e}=0^{\circ}$, $\delta_{r}=0^{\circ}$ at a constant Mach number of 0.85 showing effects of a number of fences and spanwise locations.

(b) Variation of C_{m} with C_{L}.
Figure 19.- Concluded.

Config- Chord extension Notch Duct inlets curation location (b/2)
$1 B$

- 19

(a) Variation of C_{L} with α.

Figure 20.- Basic longitudinal characteristics of configuration BCWV, $\delta_{e}=0^{\circ}, \delta_{r}=0^{\circ}$ with and without leading-edge chord-extension and notch 1 and with the duct inlets open and plugged.
Figure 20.- Continued.
Config- Chord extension Notch Duct inlets uration location (b/2)

18	None
\cdots	19
-20	0.68 to 0.85

Plugged
M

Lift coefficient, C_{L}
(d) Variation of C_{m} with $C_{\text {L }}$.
Figure 20.- Concluded.

```
NACA RM SL54HO5
```


(a) Variation of C_{L} with α.

Figure 2l.- Basic longitudinal characteristics of configuration BCWV, $\delta_{e}=0^{\circ}, \quad \delta_{r}=0^{\circ}$ with a leading-edge chord-extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ and with the elevon actuator and fairing removed showing the effects of two leading-edge notch arrangements.

(b) Variation of C_{D} with C_{L}.

Figure 21.- Continued.

(c) Variation of C_{m} with α.

Figure 21.- Continued.
Config- Notch uration

(d) Variation of C_{m} with C_{L}.

Figure 21.- Concluded.

(a) Variation of C_{I} with α.

Figure 22. - Basic longitudinal characteristics of configuration $\mathrm{BCW}_{\mathrm{F}_{1+3}} \mathrm{~V}$, $\delta_{r}=0^{\circ}$ showing effects of two elevon angles. Fences 1 and 3 located at $0.63 \mathrm{~b} / 2$ and $0.55 \mathrm{~b} / 2$, respectively.

(c) Variation of C_{m} with α.

Figure 22.- Continued.

(d) Variation of C_{m} with C_{L}.

Figure 22.- Concluded.

(a) Variation of $C L$ with α.

Figure 23.- Basic longitudinal characteristics of configuration $\mathrm{BCW}_{\mathrm{N}_{1}} \mathrm{~V}$, $\delta_{r}=0^{\circ}$ with leading-edge chord-extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ showing effects of the elevons.
Figure 23.- Continued.

(c) Variation of C_{m} with α.

Figure 23.- Continued.

Figure 23.- Continued

(a) Variation of C_{L} with α.

Figure 24.- Basic longitudinal characteristics of configuration $\mathrm{BCW}_{\mathrm{N}_{1}} \mathrm{~V}$, $\delta_{e}=0^{\circ}, \quad \delta_{r}=0^{\circ}$ with leading-edge chord-extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ showing effects of elevon actuator and fairing with and without 30° dive brake and notch 2 at a constant Mach number of 0.85 .

(b) Variation of C_{D} with C_{L}.

Figure 24.- Continued.

(c) Variation of C_{m} with α.
Figure 24.-Continued.

Pitching-moment coefficient, C_{m}			
$-\infty$	\vdots	0	

(d) Variation of C_{m} with C_{L}.
Figure 24.- Concluded.

(a) Variation of C_{L} with α.

Figure 25.- Basic longitudinal characteristics of configuration $\mathrm{BCW}_{\mathrm{N}_{1}} \mathrm{~V}$, $\delta_{e}=0^{\circ}, \quad \delta_{r}=0^{\circ}$ with a leading-edge chord-extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ showing effects of a dive brake.

(b) Variation of C_{D} with C_{L}.

Figure 25.- Continued.
Figure 25.- Continued.

Figure 25.- Concluded.
(d) Variation of C_{m} with C_{L}

	Configuration	Fuselage spoiler	Fuselage fence	Height inches	Distance from duct exit, inches
\bigcirc	20	None	None		
\bigcirc	28	Upper		1/4	8.6
$\stackrel{\rightharpoonup}{*}$	29			i	3.25
\triangle	30	,		/8	1
\triangle	31	Lower	\downarrow	1	2.5
\bigcirc	32	(Fuselage	faired a	aft end	atring exit)
\bigcirc	33	None	Upper	$1 / 4$	0
-	34	\downarrow	+	4	3.25

(a) Variation of C_{m} with α.

Figure 26.- Pitching-moment characteristics of configuration BCWV, $\delta_{e}=0^{\circ}$, $\delta_{r}=0^{\circ}$ showing effects of a number of fuselage spoilers and fences at a constant Mach number of 0.85 . (Note that notch 1 and leading-edge chord-extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ was a part of all configurations except number 32.)

(b) Variation of C_{m} with C_{I}.

Figure 26.- Concluded.
CONFIDENTIAL

(a) Variation of C_{L} with α.

Figure 27.- Basic longitudinal characteristics of configuration BCWV, $\delta_{e}=0^{\circ}, \quad \delta_{r}=0^{\circ}$ with transition strip at $0.05 \bar{c}$ along the wing leading edge (designated as configuration 35).
0

(b) Variation of C_{D} with C_{L}.

Figure $2^{\prime} 7 .-$ Continued.

M
(c) Variation of C_{m} with α.

Figure 27.- Continued.

(a) Variation of C_{L} with α.

Figure 28.- Basic longitudinal characteristics of configuration BC (designated as configuration 36).
0
0

Angle of attack, a, deg
(b) Variation of C_{D} with α.

Figure 28.- Continued.

Config-	δ_{e}, deg	
uration	Right	Left
20	0	0
20	5	-5
20	10	-10

.01
0

	20
-	20
-	20

(a) Variation of C_{l} with α.

Figure 29.- Aerodynamic characteristics in pitch to determine lateralcontrol effectiveness of configuration $\mathrm{BCW}_{\mathrm{N}_{\perp}} \mathrm{V}, \delta_{\mathrm{r}}=0^{\circ}$ with leadingedge chord-extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$.

(b) Variation of C_{2} with C_{L}.

Figure 29.- Continued.

(c) Variation of C_{n} with α.

Figure 29.- Continued.

Figure 29.- Continued.

(f) Variation of $C Y$ with C_{L}.

Figure 29.- Concluded.

Figure 30.- Aerodynamic characteristics in pitch to determine directionalcontrol effectiveness of configuration $\mathrm{BCW}_{\mathrm{N}_{7}} \mathrm{~V}, \delta_{\mathrm{e}}=0^{\circ}$ with leadingedge chord-extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$.

(d) Variation of C_{n} with C_{L}.
Figure 30.- Continued.
Figure 30.- Continued.

(f) Variation of C_{Y} with C_{L}.
Figure 30.- Concluded.

(a) Variation of C_{l} with β.

Figure 31.- Variation of lateral coefficients with angle of sideslip for configuration $\mathrm{BCW}_{\mathrm{N}_{7}} \mathrm{~V}, \delta_{e}=0^{\circ}, \quad \delta_{r}=0^{\circ}$ with leading-edge chord-
extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$.

(b) Variation of C_{n} with β.

Figure 31.- Continued.

(c) Variation of C_{Y} with β.

Figure 31.- Concluded.

Figure 32.- Elevator effectiveness of configurations 10 (fences 1 and 3 at $0.63 \mathrm{~b} / 2$ and $0.55 \mathrm{~b} / 2$, respectively) and 20 (leading-edge chordextension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ and notch at $0.68 \mathrm{~b} / 2$), $\delta_{r}=0^{\circ}$.

Figure 33.- Variation with Mach number of wing - tip helix angle $\mathrm{pb} / 2 \mathrm{~V}$ and rate of roll p with $\pm 10^{\circ}$ aileron of configuration 20 (leadingedge chord-extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ and notch at $0.68 \mathrm{~b} / 2$), $\delta_{r}=0^{\circ}$. (Altitude of 10,000 feet and wing loading of 32 pounds per square foot.)

Figure 34.- Lift-drag ratios of configurations 10 (fences 1 and 3 at
$0.63 \mathrm{~b} / 2$ and $0.55 \mathrm{~b} / 2$, respectively) and 20 (leading-edge chord-extension from $0.68 \mathrm{~b} / 2$ to $0.85 \mathrm{~b} / 2$ and notch at $0.68 \mathrm{~b} / 2$), $\delta_{r}=0^{0}$.

Figure 35.- Summary of aerodynamic characteristics in pitch of configurations 10, 20, and 1B, $\delta_{r}=0^{\circ}$. (Slopes are averaged over liftcoefficient range of 0 to 0.4 .)

