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ABSTRACT

Lorentz air-broadened half widths, pressure-induced shifts and their temperature
dependences have been measured for over 430 transitions (allowed and forbidden) in the v4 band
of "2CH, over the temperature range 210 to 314 K. A multispectrum non linear least squares
fitting technique was used to simultaneously fit a large number of high-resolution (0.006 to 0.01
cm'l) absorption spectra of pure methane and mixtures of methane diluted with dry air. Line
mixing was detected for pairs of A-, E-, and F-species transitions in the P- and R-branch
manifolds and quantified using the off-diagonal relaxation matrix elements formalism. The
measured parameters are compared to air- and N,-broadened values reported in the literature for
the v4 and other bands. The dependence of the various spectral line parameters upon the
tetrahedral symmetry species and rotational quantum numbers of the transitions is discussed. All
data used in the present work were recorded using the McMath-Pierce Fourier transform

spectrometer located at the National Solar Observatory on Kitt Peak.



1. INTRODUCTION

Accurate measurements of methane air-broadened half width and air-induced pressure shift
coefficients, and their temperature dependences, are crucial for accurate remote sensing of
terrestrial and other planetary atmospheres. For many years investigators have performed
measurements to characterize these parameters, but due to the complex nature of the methane
spectrum it is quite challenging to obtain accurate measurements for all transitions. In particular,
the pressure-induced shifts in the fundamental bands are difficult to measure since the
magnitudes of the shifts are relatively small compared to those in the overtone and combination
bands. Determining the temperature dependence of both the widths and pressure-induced shifts
from laboratory spectra adds more complexity and difficulty to the analysis process.
Sophisticated, modern experimental measurement and analysis techniques have been developed
in the past several years to overcome these challenges.

For over two decades our group has used the McMath-Pierce Fourier transform
spectrometer (FTS) located on Kitt Peak, Arizona, to record high-resolution spectra of a number
of molecular species, including CHy4 and its isotopologues. From a previous analysis of some of
these FTS spectra, Smith et al.[1] have reported measurements of air- and N,-broadened half
widths, pressure-induced shifts and their temperature dependences for approximately 150
transitions in the v4 band. The positions and relative intensities of those transitions were also
determined. Numerous other studies of pressure broadening and pressure-induced shift
coefficients in the vibration-rotation bands of methane broadened by air, N,, and O, are available
in the literature [2-44]. A number of studies of CHy4 line mixing have been reported [15,17,37,39-
42,45-48], but only two [17,47] include the v4 band.

The present study was initiated to extend the measurements reported in Ref. [1] to higher J
values in the v4 band and to retrieve more accurate values of the broadening and shift coefficients
and their temperature dependences by using a modified multispectrum fitting algorithm. In the
previous study [1] each spectrum was fitted separately, and the final results for the various
spectral line parameters were obtained by fitting the individually retrieved values to the expected
relationships of half width or shift vs. pressure and temperature. In the present work we
simultaneously fitted a large number of spectra obtained at different physical conditions (sample
pressures, absorption path lengths, gas temperatures) using a multispectrum technique [49] to

directly obtain a set of spectroscopic parameters consistent with all the spectra. In addition, we



also measured the line mixing coefficients (via the off-diagonal relaxation matrix formalism)
between pairs of transitions involving a specific set of propensity rules as described by Pieroni et
al. [46]. Pine and Gabard [42] have also used multispectrum fits in their study of line mixing in
the Q branch of the v; band of methane. However, the investigators in Ref. [42] used a different
line mixing approximation to quantify the line mixing effects.

In this paper results from the analysis of the v4 band of methane broadened with air at
various sample temperatures in the 210 to 314 K range are presented. A large number of spectra
were fit simultaneously to retrieve precise experimental values of several line parameters
including positions, intensities, broadening and shift coefficients, temperature dependences of
half width and, pressure-shift coefficients. Methane and air were used as broadening gases and
the self- and air-broadened spectra were analyzed simultaneously. Because of the large amount
of line parameters retrieved, the results corresponding to self-broadening are reported in a

separate article [50].

2. EXPERIMENTAL DETAILS
The McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar

Observatory (NSO) on Kitt Peak was used to record the spectra. Unapodized resolutions of 0.006
cm™ and 0.01 cm™ were used to record the low pressure methane spectra and pressure-broadened
spectra, respectively. The experimental set up included a glower source, liquid helium cooled
As-doped silicon detectors and a KCI beam splitter. In the initial experiments performed several
years ago [1], premixed samples of dilute high-purity natural CHy4 in dry-air were used to collect
the air-broadened data. In the more recent experiments, commercially purchased dry-air samples
were mixed with high purity natural samples of CHy to obtain the desired volume mixing ratios
of methane in air. Similar to the previous study [1], the sample pressures and temperatures were
monitored continually for each spectrum during the entire recording period (approximately an
hour to 90 minutes depending upon the number of interferograms co-added for each spectrum).
For most of the spectra the signal-to-noise ratios were ~1000. The experimental conditions of
the 60 spectra analyzed are listed in Table 1. Self-broadened CHy4 spectra are included in this
table because they were simultaneously analyzed with the air-broadened spectra.

The absorption path lengths of the air-broadened spectra were between 5 cm and 150 cm,

and all cold spectra were obtained using the 50 cm coolable cell described in Ref. [1]. A brief



description of the coolable cell is given here: the cell was designed and built at the NASA
Langley Research Center and consists of a double-walled Pyrex glass tube with an internal
diameter of 7.6 cm with approximately 0.5 cm spacing between the walls. KCI windows were
attached to the ends of the cell and the entire cell assembly was mounted inside a cylindrical
aluminum chamber that was evacuated to prevent condensation when the inner cell is cooled. T-
type thermocouples were attached at 8 different locations on the outside wall of the gas cell to
monitor the sample temperatures. Chilled denatured ethanol is circulated through the space
between the double walls of the cell to cool the gas mixtures.

A compressed plot of an air-broadened methane spectrum in the 1100 to 1600-cm™ region
is presented in Fig. 1. The methane-air mixture had a methane volume mixing ratio of ~0.16, a
total pressure of ~256 torr, and a temperature of 294.2 K. The gas mixture was contained in a 50-
cm absorption cell. Transitions belonging to both the v4 and v, bands of *CH, are apparent in the
spectrum as well as numerous water vapor lines, mostly belonging to the v, band.

Table 1 includes the spectra that were used in our previous investigation of the v4 band
[1]. Additional data recorded in recent years include self-broadened spectra recorded over a wide
range of pressures and temperatures as well as air-broadened spectra with higher volume mixing
ratios of methane to extend the previous measurements [1] to higher J values in both the P and R
branches. Measurements for only P- and R-branch manifolds are reported here. Because of the
congested and complex structure of the Q branch, the analysis is more difficult, and results for

the Q branch will be reported in a later paper.

3. DATA RETRIEVALS AND ANALYSIS

The first step in the multispectrum analysis is to calibrate the wavenumber scales for all the
spectra included in the fit, using the same reference standard. This procedure is important in
order to retrieve precise line center positions and pressure-induced shifts. The spectra analyzed
in this study were recorded during several experiments that took place over a period of nearly
two decades, but all contained residual water vapor lines. Therefore we have used the positions
of the v, band water vapor lines to calibrate the wavenumber scales of all the spectra. Each of
these water lines had a narrow component superimposed on a broad component. The narrow
water vapor lines were due to the residual air (~0.01 to 0.03 torr) present inside the vacuum tank

enclosing the FTS, and the broad water vapor features arose from the nitrogen purged optical



paths (at ambient pressure ~600 torr) between the source and the cell and also between the cell
and the entrance aperture of the FTS. The position of the narrow component of each water vapor
feature was used in calibrating the spectra. The depths of water vapor lines used in the
calibration process varied from spectrum to spectrum because of the day-to-day differences in
the residual water amounts in the FTS tank and in the nitrogen-purged optical paths.

The multispectrum fitting technique allows us to simultaneously fit a number of spectra
over a specified wavenumber interval. In some cases (mostly for linear molecules) an entire
band can be fit using a broad wavenumber interval and all of the recorded spectra [51,52].
Because of the complex nature of the methane spectra (Q branch, P and R manifolds, and the
varying amounts of water vapor from one spectrum to another) only short spectral segments 5 to
15 cm™ wide could be fit at a time using subsets of the entire group of spectra. The number of
spectra included in each fit depended upon the depths of the methane absorption features. In the
spectral regions containing high-J CHy, transitions where the absorption is weak, the spectra
recorded with short path lengths were not used.

In the multispectrum fitting technique it was possible to retrieve simultaneously values for
all the line parameters including values for the temperature dependences of half width and
pressure-induced shift coefficients for both self- and air-broadening. Details of the analysis
procedure are given in several of our previous studies [14,51,52]. In the fitting algorithm the
experimental spectra and the synthetic spectra are matched by minimizing the sum of the squares
of the residuals between the two. This was achieved by adjusting the values of the various line
parameters mentioned above. Egs. (1-3) were used to determine the half widths and pressure

shift coefficients,

b, (p.T) = px| B0 air)(py. Ty) x (1 - 1) x [Tﬂ Y (self)(po,To)xﬂc{%} ] (1)
v =v, + p|6°(air)1- y)+5° (self ) | )
5" (T)= 6" (T,)+ 5T T,) 3)

In the above equations, b;” and 6° represent pressure-broadened half width and pressure-
induced shift coefficients, respectively (in cmatm™ at 296 K) at the reference pressure py (1

atm) and temperature 7, (296 K) of the broadening gas (either air or methane). by (p, 7) is the



Lorentz half width (in cm™) of the spectral line at pressure p and temperature 7, and y is the ratio
of the partial pressure of methane to the total sample pressure in the cell. The temperature
dependence exponents of air- and self- broadened half width coefficients are given by n; and n»,
respectively and o' corresponds to the temperature dependence coefficient of the pressure-
induced line shift.

The initial line list used in the analysis consisted of line positions, intensities, air- and
self-broadened half width, air- and self-induced pressure-shift coefficients and the temperature
dependence exponents for air-broadened half width coefficients. These values were taken from
the HITRANO4 line parameters compilation [53]. In our initial line list the temperature
dependence exponents for air- and self-broadened half widths, #; and n,, were assumed to be the
same (i.e., n;) for a given transition. The n; values given in the HITRANO04 database [53] range
approximately between 0.63 and 0.80. The temperature dependence coefficients o' of self- and
air-induced pressure shifts were set to a default initial value of zero for all transitions. Line
parameters for unmeasured transitions were held fixed to the values given in the HITRANO4
database [53] or the initial default values as described above.

While fitting certain spectral regions it became clear that we were not able to fit all the
spectra to their noise levels, especially the spectra with higher sample pressures. The residuals
between the experimental and calculated spectra indicated that there must be mixing occurring
between certain pairs of transitions. These residuals could significantly be reduced by taking into
account the line mixing effects in the least squares solutions and accordingly, the off diagonal
relaxation matrix elements coefficients were introduced into the multispectrum fittings following
the method developed by Levy et al. [54]. The fitting of the mixed pairs was guided by the
observed residuals and by the propensity rules for methane as outlined by Pieroni et al. [46].
Figure 2 shows an example of the residuals for spectra fitted without and with line mixing in the
R(11) manifold of "*CHa.

Effects due to Dicke narrowing were not observed in our data because the resolution in the
pressure-broadened spectra was ~0.01 cm™ while the Doppler half widths of the transitions were
~0.0021 cm™. Neither the resolution nor the signal-to-noise ratios in our spectra were sufficient

to determine the speed dependence parameters for the transitions observed.



4. RESULTS AND DISCUSSION

The Appendix lists the measured air-broadened half width and air-induced shift
coefficients, the temperature dependence exponents of air-broadened half width coefficients, and
the temperature dependence of air-shift coefficients. The results in the Appendix are sorted in
terms of |m| where m equals —J for P transitions, J for Q transitions, and J+1 for R transitions.
The first column lists |m|, the second column denotes the type of transition (R, Q or P), and the
third column lists the vibrational code (v,=3) used to identify the band. The next few columns
list the upper and lower state quantum numbers J, C (41, A2, F1, F2, E), and n (the prime
denotes the upper state and the double prime denotes the lower state). The last five columns give
the measured line position in cm™, and the air-broadened half width, the temperature-dependence
exponent of the half width, the air pressure-induced shift, and the temperature-dependence
coefficient of the shift. The statistical uncertainties given in parentheses correspond to one
standard deviation of uncertainty in the measured quantities in units of the last quoted digit.
Mean values and standard deviations of the measured parameters for each |m| and C" of the
allowed transitions are listed in Table 2 for |m| up to 9. The results for self-broadening are
reported elsewhere [50].

An inspection of the values listed in the Appendix shows the high precision achieved in the
retrieved air-broadened half width and shift parameters. By fitting a large number of spectra
simultaneously the random errors such as those due to the noise levels of the spectra are
minimized. In order to account for the absolute uncertainties in the retrieved parameters, errors in
the measurements of experimental conditions must be accounted for. These errors include
uncertainties in the measurements of gas pressures and temperatures, in the wavenumber
calibration of the spectra, errors in the spectral line shapes used in the fits, and uncertainties in
line parameters such as position, intensity, and widths which were fixed in the solution (for weak
absorptions and for transitions whose parameters could not be retrieved due to severe overlap or
blend). The determination of the magnitudes of all these errors is not trivial. The absolute one
sigma standard deviations in our measured parameters are estimated to be 1% in half width
coefficients, 10-15% in pressure-induced shift coefficients, 10% in n and 20-50% in the

temperature dependence coefficients of the pressure-induced shifts (8'), added to the errors listed
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in the Appendix. The estimated errors for &' are high because the range in the temperatures of the
spectra is not large enough to retrieve accurate values for these parameters.

We have obtained measurements for over 430 transitions (including the allowed and
forbidden transitions) in the v4 band of '*CH,, but it was not possible to determine all line
parameters for each listed transition, particularly for the weakest lines and those that are
overlapped by the numerous Q branch lines. The goal was to measure accurate parameters for as
many lines as possible so that these results could be used to develop a reliable theoretical model.
We may recall that the total number of transitions listed for the dyad region of methane in the
HITRAN 2004 database [53,55] is 65,478. The difference between this total and the small
number for which broadening and shift parameters have been measured illustrates the need to

develop a reliable theoretical model to predict these parameters for unmeasured transitions.

4.1 Air-broadened half widths and temperature dependences
Figs. 3(a) and 3(b) illustrate the variation of 5;° (air) and its temperature dependence

exponent # as a function of m. In the figures the half width coefficients and temperature
exponents are plotted using different symbols for A-, E- and F-species transitions. We observe in
the present work, as has been noted in several previous methane studies, that for a given m, the
smallest half width coefficients generally belong to E-species transitions. It is obvious that for
each value of m there is a large range of measured air-broadened half width coefficient values;
while we have examined the variation of the half widths with the upper and lower secondary
quantum indices n ' and n" for a given |m| and symmetry, no clear dependence on n ' or n" could
be determined from our data. We also note that the larger half width coefficients appear to be
associated with forbidden transitions. The largest measured air-broadened half width coefficient
in the present work is ~0.08 cm™atm™ at 296 K corresponding to ~|m|=5 and the smallest values
of <0.02 cm™atm™ at 296 K are obtained for |m[=16—20.

In Figs. 4(a) and 4(b) the air-broadened half width coefficients and temperature exponents
from the present work are compared to those measured in the previous study [1]. As in Fig. 3,
the parameters are plotted as a function of m, but here the A-, E- and F-species transitions are not
distinguished by different symbols. From Fig. 4 it is clear that the air-broadening and shift
parameters were determined to much higher values of J in the present work than in Ref. [1].

The ratio of the Ref. [1] value to the present-work value for the same transition is plotted in Figs.
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4(c) and 4(d). The differences between the present and previous [1] air-broadened half width
coefficients are less than +2%, with a few exceptions. For the temperature exponents of the air-
broadened half widths, the values obtained in the previous study [1] are, on average, 12% smaller
than those obtained for the same transitions in the present work, and the differences are
increasing with |m|. These differences between Ref. [1] and the present work that we see in Figs.
4(c) and 4(d) are most likely related to the differences in analysis techniques and line shape
models used in the two studies, already mentioned in Section 1 of this paper.

Figs. 3(b) and 4(b) indicate that most values of n lie within the range of 0.75 to 1.05
throughout the range of |m| measured. In Fig. 4(d) the ratios of n values from Ref. [1] to the
present work show a large scatter. The retrieved values of n from the present work are, on
average, 12% larger than those measured in Ref. [1], and the differences are larger for weaker
transitions at higher |m|. The number of air-broadened spectra used in this study is more than
twice that in Ref. [1], but the increased number of spectra should not produce such large
differences in n. The CH4 volume mixing ratios in many of the air-broadened spectra used in this
work are significantly higher than in Ref. [1], allowing absorption features that were fairly weak
in the previous study to be measured more precisely in this work. This fact, combined with the
inherent advantage of simultaneously fitting multiple spectra, results in more accurate
determinations of the air-broadened half width coefficients and their temperature dependences in
the present work.

We have compared our air-broadened widths with other published air-broadening
measurements in the v4 band, mainly the TDL studies of Malathy Devi et al. [12] and Varanasi
and Chudamani [20,21], and found no differences larger than the uncertainties of the
measurements. There are no published direct measurements of n values for air-broadened widths
in the v4 band other than Ref. [1]. However, our n values for air-broadened widths are consistent
with the N,-broadening n values from TDL measurements in the v4 band [7,20,21,43].

We have also compared our mean air-broadened half width coefficients in the v4 band
(Table 2) to the mean air-broadened half width coefficients for transitions with the same lower
state C" and n" in the v,+ v; band [14]. The mean values for each |m| are quite close (within £1%
or better) for |m| values up to 11. Beyond |m| =10 or 11, there are fewer transitions in the two
bands to compare and the values scatter slightly more than for lower values |m|. It should be

noted that the upper state C' and n" and the vibrational code are different for the two bands.
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Finally, referring back to Fig. 3(a) and (b) where the measured values of b;(air) and » (air)
are plotted vs. m, as well as Table 2, we note that our results show a small positive correlation,
such that larger » (air) values are associated with larger b;°(air) values. A similar observation

was made in an earlier study of air-broadening in the methane bands in the 2.3-pum region [10].

4.2 Air-induced shift coefficients and their temperature dependences
The measured values of 8°(air) and 8 (air) are plotted in Figs. 3(c) and 3(d) as functions

of m, and they are compared with the results of Ref [1] in Fig. 5. The majority of the measured
air-shift coefficients listed in the Appendix show large scatter for each m value, and, as for the
broadening coefficients, there is no obvious variation of the shift values with the quantum
numbers C” and n". Most measured air shift coefficients range between —0.002 and —0.005

cm 'atm ' at 296K; the mean and standard deviation of all measured air shift coefficients is
—0.0033 £0.0022 cm 'atm ' at 296K. We estimate that the error that could be introduced in the
air-shift coefficients for the measured transitions by fixing the values of unmeasured transitions
to 0.002 cm™'atm™ at 296 K is insignificant. The plots in Figs. 3(c) and 3(d) and the mean values
in Table 2 indicate that 8°(air) becomes somewhat more negative as |m| increases, but there is no
discernable dependence of &' (air) on |m|. We note that more negative air-induced shifts as |m|
increases have also been observed in the octad region [14], particularly for the v;+v4 band.

As we have done in Fig. 4 for air-broadened half width coefficients and their temperature
dependences, in Fig. 5 we compare the previous [1] and present measurements of the air-induced
shift coefficients and their temperature dependences in the v4 band. However, because of the
small magnitudes and relatively large error bars of the 8 and &' values, in Figs. 5(c) and (d), we
show the differences between the previous [1] and present measurements rather than the ratios.
The majority of the measured values of 8 in the present work range between —0.25x107 and
+0.5x10” cmatm 'K whereas in Ref. [1] the range of &' was ~ £0.25x% 10° em™atm™ K. This
level of agreement in &' between the two studies is encouraging considering the small magnitude

of this parameter and the two different analysis techniques used to determine the values.

4.3 Off-Diagonal Relaxation Matrix Element Coefficients
Collisional effects result in the transfer of intensity from some parts of the spectrum to

others which consequently results in an interference effect between lines sometimes referred to
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as “collisional line mixing” [54]. This effect may be quantified using the relaxation matrix and
the off-diagonal matrix elements to accurately represent the coupling between transition pairs.
The spectral line profiles in the multispectrum fittings accounted for these effects using an
asymmetric component (proportional to pressure) via the speed-dependent Voigt profile.
Because the range in temperatures of the gas samples was limited in the present study, the
temperature dependence exponents of the off-diagonal relaxation matrix element coefficients
were fixed to the value 1.0 (see Ref. [15]) and were not uniquely solved for.

In mathematical formulation, the spectral profile I(w) may be written according to matrix
form for any number of pressure induced profiles, N, as a function of the wavenumber :

I(0)=X"(0 -0, —iW) " pX. (4)

In Eq. (4) W represents the relaxation matrix and i is the imaginary number (defined as the
square root of negative one). The diagonal elements of W are the sum of the Lorentz half width s
and pressure-induced shift coefficient of a given transition. The symbol ®, represents an N x N
diagonal matrix whose diagonal elements correspond to zero pressure line positions and ® is a
similar N X N diagonal matrix in which the diagonal elements ;; of the matrix represents the
wavenumber. p is a diagonal N x N density matrix and X" is the matrix transpose of the 1 x N

matrix X defined as,
S
X = |2, )

The ratio of intensity to the number density given by Eq. (5) in the lower state corresponds to the
™ spectral line. The off-diagonal matrix elements of W are connected by the detailed balance
equation given below in Eq. (6) where k represents the other spectral line involved in the line
coupling:

P

ij B ij P

(6)

Line mixing was detected in 57 pairs of transitions and measured using the off-diagonal
relaxation matrix element (ORME) coefficients. We were able to determine the mixing
parameters in J-manifolds of the P and R branches for 3 < |m| < 18; pairs of transitions
corresponding to all three symmetry species (A, E, F) were measured. The measured ORME

coefficients (in cm™ atm™ at 296 K) determined for air mixing are listed in Table 3.
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The ORME coefficients measured in this air-broadening study are plotted vs. m in Fig.
7(a), and in Fig. 7(b) they are compared with measured air-broadened ORME coefficients for
matching transitions in the v,+v; band [15]. N,-broadened line mixing parameters from
matching transitions in thevs band [37,40]. The two vs studies determined the line mixing
coefficients using the Rosenkranz approximation [56]. Thevs values plotted in Fig. 7(b) are
estimated from the Rosenkranz coefficients published in Refs. [37,40] and not strictly
comparable with results obtained via the ORME formalism. Nevertheless, considering the
absolute uncertainties of the experimentally-determine mixing parameters, the agreement
between corresponding pairs of transitions in various bands is quite good, and the N,-broadened

mixing parameters are not substantially different from the air-broadening values.

5. SUMMARY AND CONCLUSIONS

Measurements of air-broadened half width and pressure-induced air shift coefficients and
their temperature dependences for over 430 individual transitions in the v4 band of 12CH4 have
been obtained by analyzing up to 60 spectra simultaneously using a multispectrum fitting
technique, thus extending the previous measurements [1] from J'=14 to J'=20. The present study
has increased the number of measured v, transitions from ~150 [1] to over 430. The measured
transitions in the present work also include a number of forbidden transitions. Comparisons of
the present measurements of air-broadened width and pressure-induced shift coefficients and
their variations with temperature show general agreement with results obtained in the previous
study [1] using a spectrum-by-spectrum analysis method. Addition of high-abundance spectra,
along with use of the multispectrum fitting technique for analysis, has made it possible not only
to extend the previous measurements to much higher values of J but also to increase the
precision and accuracy in the various measured parameters.

Line mixing coefficients using the off-diagonal relaxation matrix element formalism have
also been measured in different pairs of transitions for a number of J manifolds of both the P-
and R-branches in all three symmetry species. This study reports the first extensive
measurements of line mixing at terrestrial atmospheric pressures in the v4 fundamental band,
using the off-diagonal relaxation matrix element coefficients.

There is good general agreement among the line mixing measurements for air broadening

from the present work with air broadening measurements in the v,+v; band [15] and N,-
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broadening results in the v;3 band [37,40]. Even though the spectra used in this work were
recorded at various temperatures between 210 and 314 K, this temperature range was not
significant enough to allow us to determine reliable values for temperature dependence
exponents of line mixing coefficients. One important point to note here is that it was envisioned
[14,57] that the apparently random distribution of the pressure-induced shifts with rotational
quantum numbers could be associated with possible line mixing effects neglected in the analysis.
But this point could not be fully validated by the present work or by Ref. [15]. Fitting all the data
simultaneously and taking into account the line mixing effects in the least squares fits did
remove some of the scatter in the distribution of the measured pressure-induced shifts. More
theoretical developments and possibly additional experimental studies may be required to

unravel this point.
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Table captions

1. Summary of experimental conditions of CHy4 spectra

2. Mean air-broadened half width and pressure-induced shift coefficients and their
temperature dependences for allowed P and R transitions in the v4 band of 12CH4.

3. Off-diagonal relaxation matrix element (ORME) coefficients measured for air-

broadening in the v4 band of *CH.

Appendix. Supplementary data

Measured spectral line parameters for air-broadening in the methane v4 band sorted by |m|.
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Figure captions

1. An air-broadened methane spectrum in the 1100 to 1600 cm™ spectral range. The spectrum
was obtained with a methane volume mixing ratio of ~0.16. The total pressure is ~256 torr in a
50-cm absorption path at 294.2 K. Transitions belonging to both the v4 and the v, bands are
visible, and the band centers are indicated on the plot. The broad feature near 1260 cm-1 is an
artifact of the optics used to record the spectrum. The zero signal level is shown by a horizontal

dashed line at the bottom of the plot.

2. Observed spectra (lower panel) and residuals from a multispectrum fit without (upper panel)
and with line mixing (middle panel) in the R(11) manifold of the'>’CH, v4 band. This preliminary
fit was performed on 15 room-temperature self- and air-broadened CH,4 spectra recorded with
cell lengths of 0.00958, 0.250, and 1.50 m (see Table 1). The maximum total pressures were
550.1 torr for air-broadening and 453.3 torr for self-broadening. The large residuals near 1364.4
cm’ in the upper panel are due to strong mixing between the 12F2 1 «—11F1 3 and 12F1 1 «
11F2 3 transitions. The smaller residuals between 1365 and 1367 cm™ are due to weaker mixing

between the 12F2 2 «— 11F1 2 and 12F1 2 « 11F2 2 transitions.

3. Measured air-broadened half width coefficients, b,° (a), temperature exponents of the widths
(b), pressure-induced shifts (c), and temperature coefficients of the shifts (d) for the v4 band of
12CH4 broadened by air, all plotted as a function of m. Different symbols are used for the A-, E-
and F-species transitions. Where error bars are not visible, they are smaller than the size of the

symbols used. The plotted values are tabulated in the Appendix.

4. Measured air-broadened half width coefficients (a) and temperature dependence exponents (b)
compared with those from the previous study [1], and the ratios of air-broadened half width
coefficients (c) and temperature dependence exponents (d) from Ref. [1] divided by values from
present work, plotted as functions of m. The dashed horizontal lines in (¢) and (d) correspond to
a ratio of 1.00. Where error bars are not visible, they are smaller than the size of the symbols

used in the plot.
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5. Measured air pressure-induced shift coefficients (a) and temperature dependences (b)
compared with those from the previous study [1], and the differences of air-broadened shift
coefficients (c) and temperature dependences (d) from the present work values, plotted as
functions of m. The dashed horizontal lines in (c¢) and (d) correspond to zero difference. Where

error bars are not visible, they are smaller than the size of the symbols used in the plot.

6. Measured air-broadened half width coefficients (a), air half width temperature exponents (b),
and air pressure-induced shifts (c) from the present work are plotted against the corresponding

values listed in the HITRANO4 database [53].

7. Measured off-diagonal relaxation matrix element coefficients (in cm™'atm™ at 296 K), plotted
vs. m. (a) Air-broadening values obtained in the present work. (b) Present work values
compared with measured air- and N,-broadening values for matching transitions from other

bands[15,37,40].
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Table(s)

Table 1

Summary of experimental conditions of the CH4 spectra

Temperature (K) Gas Mixture | CHy4 Volume Path (m) | Pressure Number
Mixing Ratio Range (torr) of
Spectra
294.5 t0 295.9 CH,4 1.0 0.00958 7.0 -453.3 5
299.8 CH4 1.0 0.050 0.90 1*
313.1t0 313.7 CHsin Air | 0.011 0.050 200.0 - 550.1 5*
303.5 CH,4 1.0 0.250 0.73 1
299.5 CHyin Air | 0.011 0.250 50.2 - 425.6 4%
295.8 CH,4 1.0 1.50 1.18 1*
297.4 to 297.5 CH,in Air | 0.0272 - 0.0275 | 1.50 199.6 - 425.0 4%
275.1 CH4 in Air | 0.007 0.500 100.7 - 300.8 3*
257.6 to0 256.9 CHsin Air | 0.0042 0.500 141.1 - 340.1 3*
240.1 to 239.7 CH,in Air | 0.0043 0.500 140.6 - 338.3 3*
223.1 to 222.8 CHjin Air | 0.0042 - 0.0044 | 0.500 140.9 - 340.7 3*
211.6 to0 210.2 CHjin Air | 0.0042 - 0.0044 | 0.500 140.1 - 335.7 4%
272.5 CH,4 1.0 0.500 301.0 1
272.5t0 272.4 CHin Air | 0.33 0.500 177.0 - 452.8 3
254.4 to 253.9 CH4 1.0 0.500 209.0 - 645.0 3
254.0 CH,4 1.0 0.500 11.0 1
253.8 CHin Air | 0.304 0.500 229.1 - 509.2 2
252.9 to 250.5 CHyin Air | 0.16 - 0.30 0.500 140.2 - 520.1 5
240.7 to 240.6 CHsin Air | 0.30-0.35 0.500 99.2 - 328.2 3
232.7 to 232.6 CH4 1.0 0.500 128.5 - 370.5 3
232.6 CHsin Air | 0.31 0.500 418.6 1
2259 CH,4 1.0 0.500 643.0 1

Note: 760 torr = 1 atm = 101.325 kPa.
* Spectra previously analyzed in Ref. [1].




Table(s)

Table 2
Mean air-broadened half width and pressure-induced shift coefficients and their
temperature dependences for allowed P and R transitions in the v4 band of 12CH4

Im| | Species | Widths and | n; and std. | Shiftsand | §'x10* and | # lines
std. dev.” dev.” std. dev.” std. dev.®

1 A 0.0547(0) 0.70(0) -0.0027(0) | 0.16(0) 1
2 F 0.0625(0) 0.82(0) -0.0014(0) | 0.12(0) 1
3 E 0.0560(0) 0.80(0) -0.0016(0) | 0.16(0) 1
3 A 0.0608(0) 0.77(0) -0.0029(0) | 0.23(0) 1
3 F 0.0659(9) 0.84(1) -0.0020(4) | 0.16(11) 2
4 E 0.0583(0) 0.77(0) -0.0034(0) | 0.18(0) 1
4 A 0.0609(38) | 0.78(2) -0.0021(6) | 0.06(12) 2
4 F 0.0656(24) | 0.81(5) -0.0023(9) | 0.18(9) 4
5 E 0.0541(0) 0.74(0) -0.0022(0) | 0.09(0) 1
5 A 0.0593(0) 0.81(0) -0.0020(0) | 0.25(0) 1
5 F 0.0640(22) | 0.81(3) -0.0022(6) | 0.11(9) 5
6 E 0.0562(38) | 0.73(1) -0.0022(4) | 0.17(13) 2
6 A 0.0601(0) 0.75(0) -0.0027(0) | 0.21(0) 1
6 F 0.0628(18) | 0.78(1) -0.0026(4) | 0.17(6) 4
7 E 0.0542(0) 0.72(0) -0.0028(0) | 0.18(0) 1
7 A 0.0577(7) 0.75(1) -0.0024(8) | 0.14(6) 3
7 F 0.0614(18) | 0.80(3) -0.0027(11) | 0.12(6) 7
8 E 0.0482(53) | 0.72(10) -0.0029(7) | 0.15(3) 3
8 A 0.0536(8) 0.68(3) -0.0031(1) | 0.18(3) 2
8 F 0.0589(25) | 0.79(8) -0.0025(7) | 0.16(6) 8
9 E 0.0494(31) | 0.75(16) -0.0029(9) | 0.19(11) 3
9 A 0.0547(54) | 0.78(15) -0.0038(19) | 0.06(19) 3
9 F 0.0561(29) | 0.80(10) -0.0028(6) | 0.19(7) 9

Standard deviations are given in parentheses in units of the last digit quoted.

* Widths and shifts correspond to half width and pressure-induced shift coefficients. The
units are cm™ atm™ at 296 K.

® The temperature dependence exponents of half widths (n) are unitless.

® The temperature dependence coefficients of air-shifts (8') are in cm™ atm™ K.



Table(s)

Table 3
Off-diagonal relaxation matrix element (ORME) coefficients measured for air-
broadening in the v4 band of 12CH4

Mixing Assignments v(em™) ORME Coefficients
pair(s) (cm™ atm™ at 296 K)
M Recsras | diensoz | 003602
MO lrtecimrae | nrisos | 09384010
FOF i e oo
O I3 toct6r23 | 1191300 | 00135
TOE [P [
Sl e Al
MR laA2CisALL | nioasaso | 00302
MO e | ozant | 002640)
MO Reciar | oz | 00120
MR ek | 1inesss | 00390)
M Rsc s | isear | 09070
M R iR | 1ossss | 00240
M R ecir 1 | oo | 090310
MR Al aCiA21 | 1igree | 0026100
M oF etk | 1asoser | 00%TO)
MO D okeciorta | imsiie | 002230
PUDE | 1071 7 11F22 | 12364262 | 00190
PUDA | 10A13C11A21 | 12370204 | 000560
PUDE | 105 Sci1E 1 | 12360293 | 00009
TN Saacealt |t | 00230
P(9)F 8F1 59F2 2 1245.7692

8F2 59F1 3 1246.4526 0.0175(0)




0T [eacsris | isssoos | 405T(Y
T Driecsnt | isseons | 000150
T eacms | e | 001000
O S ema | eers | 001010
O ISaiicent | iozss) | 001360
O TS| resa | 000670
O Secarit | Do | 00090
T oRrn | Daesto | 000360
O iR | taranss | 00080
MOT ISy | isie | 00710
ST emacsrit | irae | 000800
O TG | iarsese | 000500
MOR  IA1Coa 1| Davssss | 001980
O IR iCer | Daisse | 001080
0T oo | arsars | 001010
0T oo | harears | 00140
0T lsacrin | anoary | 000180
O lomicers | nsisass | 001450
O lopacarin | hevors | 001189
COF R ok 1| nhsyoass | 001360
R ik 1coatn | scosss | 00221(D
O o cors | 3ssess | 00140
O iopacors | seases | 0007
O i Ciors | Beotsn | 001820
O R acioms | ersent | 00O




MO aRcies | bedsser | 00290)
T e oo
MO e | 1o | 00490)
MO acians | iyaisss | 0006
RODE | IFTTCLAR2 4 I377.007 1 0 02s61)
MR emiTisart | sragz | 003070
ST s o)
RS e
OF e [ Jeore
T ioriicisrs | rsovesn | 002860
MR oAt 1Cisa) | 1ossers | 00356)

Values in parentheses are standard error in units of the last digit quoted.




Table(s)

Appendix
Measured spectral line parameters for air-broadening in the methane v4 band sorted by |m|
width®

m|  AJ  vb J ¢ o J' C'" n Position® Air width® tempdep  Airshift®  shift temp dep?
1 R 3 1 A2 1 0 Al 1  131143156( 1) 0.0547( 0) 0.70( 0) -0.0027( 0)  0.000016( 0)
2 R 3 2 F2 1 1 F1 1 131682715( 1) 0.0625( 0) 0.82( 0) -0.0014( 0)  0.000012( 0)
3 R 3 3 E 1 2 E 1 132215407( 1) 0.0560( 1) 0.80( 0) -0.0016( 0)  0.000016( 1)
3 R 3 3 F1 1 2 F2 1 132208525 1) 0.0650( 0) 0.84( 0) -0.0016( 0)  0.000004( 1)
3 @ 3 3 F 3 3 F2 1  132351382( 6)* 0.0703( 3) 097(3) -0.0050( 3) -0.000050( 7)
3 P 3 2 Al 1 3 A2 1  1287.81333( 1) 0.0608( 0) 0.77( 0) -0.0029( 0)  0.000023( 0)
3 P 3 2 F1 2 3 F2 1  128845706( 1) 0.0660( 0) 0.83( 0) -0.0022( 0)  0.000023( 0)
3 P 3 2 F2 2 3 F1 1  128895103( 1) 0.0668( 0) 0.84( 0) -0.0023( 0) 0.000022( 0)
4 R 3 4 A1 1 3 A2 1  1327.07420( 0) 0.0582( 0) 0.76( 0) -0.0017( 0) -0.000003( 0)
4 R 3 4 F1 1 3 F2 1  1327.25683( 0) 0.0664( 1) 0.80( 0) -0.0013( 0)  0.000010( 1)
4 R 3 4 F2 1 3 F1 1  1327.40989( 1) 0.0668( 0) 0.86( 0) -0.0017( 0)  0.000031( 1)
4 R 3 4 F2 3 3 F1 1  1369.30463( 5 0.0691( 8) 1.47( 6)

4 Q 3 4 E 2 4 E 1  1327.74760(11)* 0.0772( 3) 1.52( 3) 0.0003( 4) -0.000044(12)
4 P 3 3 A2 1 4 A1 1  128345880( 0) 0.0636( 0) 0.79( 0) -0.0025( 0)  0.000014( 0)
4 P 3 3 E 2 4 E 1 128262455( 1) 0.0583( 0) 0.77( 0) -0.0034( 0)  0.000018( 0)
4 P 3 3 F1 3 4 F2 1  128161059( 0) 0.0621( 0) 0.75( 0) -0.0030( 0)  0.000015( 0)
4 P 3 3 F2 2 4 F1 1  128298416( 1) 0.0672( 0) 0.83( 0) -0.0031( 0)  0.000017( 0)
5 R 3 5 A2 1 4 A1 1  133272114( 0) 0.0593( 0) 0.81( 0) -0.0020( 0)  0.000025( 0)
5 R 3 5 A2 2 4 A1 1  138299403( 2)* 0.0785( 2)

5 R 3 5 E 1 4 E 1  133242483( 1) 00541( 0) 0.74( 0) -0.0022( 0)  0.000009( 1)
5 R 3 5 F1 1 4 F2 1 133208528 0) 0.0621( 0) 0.77( 0) -0.0014( 0)  0.000003( 0)
5 R 3 5 F2 1 4 F1 1  133254677( 0) 0.0669( 0) 0.82( 0) -0.0019( 0)  0.000001( 1)
5. Q@ 3 5 F 3 5 F2 1  1331.78510( 2)* 0.0693( 2) 1.90( 2) -0.0022( 1)  0.000022( 6)
5 Q 3 5 F1 4 5 F2 1  1334.19433( 6)* 0.0591( 6)

5 Q 3 5 F2 4 5 F1 2  1331.17033( 9)* 0.0649(10) 1.21(10)

5 Q 3 5 F2 4 5 F1 1  1331.18482( 4)* 00713( 4) 1.21(4) -0.0053( 3) 0.000046( 9)
5 P 3 4 E 1 5 E 1  125223842( 3)* 0.0756( 4) 1.22( 3) -0.0031( 4) -0.000008( 9)
5 P 3 4 F1 6 5 F2 4 1267.21035(11) 0.0631( 5) 1.33(8) -0.0024( 5) -0.000031(22)
5 P 3 4 F1 3 5 F2 1  1276:84437( 1) 0.0657( 0) 0.84( 0) -0.0027( 0) 0.000018( 1)
5 P 3 4 F2 2 5 F1 2  1251.86827( 7)* 0.0744( 6) 0.90( 4)

5 P 3 4 F2 3 5 F1 2 127504173( 1) 0.0620( 0) 0.78( 0) -0.0024( 0)  0.000015( 0)
5 P 3 4 F2 4 5 F1 1  127747337( 1) 0.0634( 0) 0.82( 0) -0.0027( 0) 0.000019( 0)
6 R 3 6 E 1 5 E 1 1337.05908( 1) 0.0535 0) 0.72( 0) -0.0019( 0)  0.000007( 1)
6 R 3 6 F1 1 5 F2 1 133750498 1) 0.0639( 0) 0.79( 0) -0.0022( 0)  0.000013( 1)
6 R 3 6 F2 2 5 F1 1  1337.82381( 1) 00605 0) 0.77( 0) -0.0023( 0) 0.000010( 1)
6 R 3 6 F2 4 5 F1 1  1396.86559( 4)* 00765 5) 0.98( 3) -0.0062( 5) 0.000032(11)
6 Q 3 6 Al 2 6 A2 1  133656186( 1)* 0.0682( 1) 0.97( 1) -0.0032( 1)  0.000002( 3)
6 R 3 6 F2 1 5 F1 2  133695994( 1)* 0.0613( 0) 0.77( 0) -0.0014( 0)  0.000002( 1)
6 Q 3 6 E 3 6 E 1  133490664( 3)* 0.0733(2) 1.05(2) -0.0037( 2) -0.000002( 4)
6 Q 3 6 F1 4 6 F2 2  133545687( 5 0.0684( 5) 1.02( 4)

6 Q 3 6 F1 4 6 F2 1  133547787( 2)* 0.0674( 2) 1.07( 1) -0.0054( 1)

6 Q 3 6 F2 4 6 F1 1  1334.04853( 5 0.0634( 4) 1.06( 3) -0.0046( 4) 0.000010( 9)
6 P 3 5 Al 1 6 A2 1  127078509( 0)  0.0601( 0) 0.75( 0) -0.0027( 0)  0.000021( 0)
6 P 3 5 A2 1 6 A1 1  1217.54864( 8)* 0.0722( 7) 1.08( 6) 0.034( 7)  0.000031(17)
6 P 3 5 E 3 6 E 1 127158947( 1) 00589 0) 0.73( 0) -0.0024( 0)  0.000026( 1)
6 P 3 5 F1 2 6 F2 2  1240.56954( 3)* 0.0676( 2) 1.16( 2) -0.0022( 2)  0.000003( 7)
6 P 3 5 F1 3 6 F2 2  126897630( 1) 0.0643( 0) 0.79( 0) -0.0030( 0)  0.000023( 1)
6 P 3 5 F1 4 6 F2 1 127140695 1) 0.0623( 0) 0.77( 0) -0.0028( 0)  0.000020( 1)
6 P 3 5 F2 2 6 F1 1  123997057( 5 0.0714( 5 1.04( 5) 0.0020( 5)  0.000032(15)
6 P 3 5 F2 4 6 F1 1 1268.36784( 1)  0.0622( 0) 0.78( 0) -0.0029( 0)  0.000014( 1)
7 R 3 7 A 1 6 A2 1 134265445 0) 0.0571( 0) -0.0022( 0)  0.000021( 1)
7 R 3 7 Al 2 6 A2 1  1376.80611( 2)* 0.0683( 1) 1.07( 1) -0.0017( 1)  0.000013( 2)
7 R 3 7 A2 1 6 A1 1  134162204( 0) 0.0584( 0) 0.75(0) -0.0017( 0)  0.000010( 0)
7 R 3 7 E 1 6 E 1 134294542( 1) 00542( 0) 0.72( 0) -0.0028( 0)  0.000018( 1)
7 R 3 7 F1 1 6 F2 2  1341.95897( 1) 0.0642( 0) 0.78( 0) -0.0017( 0)  0.000017( 0)
7 R 3 7 F1 2 6 F2 1  134287317( 1) 0.0616( 0) 0.76( 0) -0.0030( 0)  0.000020( 1)
7 R 3 7 F1 4 6 F2 1  1377.72186( 4)* 0.0671( 2) -0.0081( 3)  0.000043( 6)
7 R 3 7 F1 5 6 F2 2  1410.23866( 7)* 0.0687( 6) 0.94( 6) -0.0031( 7)  0.000097(16)
7 R 3 7 F1 5 6 F2 1  1410.26073( 5 0.0768( 5) 0.90( 4) -0.0082( 6) -0.000012(14)
7 R 3 7 F2 1 6 F1 1  134177807( 1) 00615 0) 0.80( 0) -0.0009( 0)  0.000002( 2)
7 R 3 7 F2 4 6 F1 1  1411.86405( 8)* 0.0667( 7) 0.85(7) -0.0022( 7) -0.000005(18)
7 Q 3 7 Al 1 7 A2 1  1269.42019( 4)* 0.0662( 3) 098(2) -0.0005( 3) -0.000002( 6)
7 Q@ 3 7 E 1 7 E 1  1269.68942(10)* 0.0853(11)

7 Q 3 7 E 3 7 E 1  1337.44032( 4)* 0.0834( 9)

7 Q 3 7 F1 2 7 F2 2  1269.62485( 6)* 0.0665( 6)

7 Q 3 7 F2 4 7 F1 1  133868219( 2)* 0.0686( 1) 1.12( 1) -0.0057( 1)  0.000040( 3)
7 P 3 6 Al 2 7 A2 1  1263.32741( 1) 0.0577( 0) 0.74( 0) -0.0033( 0)  0.000011( 1)
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0.000035( 4)
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0.000022( 4)

0.000029( 5)
0.000017( 3)
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0.000005(10)
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-0.000004(13)
0.000092(30)
0.000048(32)
0.000035(28)
0.000030(15)

-0.000028(33)



9 P 3 18 F2 13 19 F1 2  117411090(10)  0.0362( 4) 0.56(20) -0.0035( 5)  0.000104(28)
20 R 3 20 F1 2 19 F2 4  139863823(22) 0.0559(24) 0.33(40) 0.0039(24) -0.000048(86)
20 R 3 20 F1 5 19 F2 1 1407.27456( 7)  0.0129( 2) 0.91(15) -0.0055( 2)  0.000047( 8)
20 P 3 19 Al 5 20 A2 1 1166.39921(13)  0.0386( 7)

@ Positions are given in cm™.

® Air-broadened half width and air-shift coefficients are in units of cm™atm™ at 296 K.

¢ Temperature depencence exponents of air-broadened half width coefficients are unitless.

4 Temperature dependences of air-shift coefficients are in units of cm™ atm™ K.
Uncertainties of measured parameters are given in parentheses in units of the last digit quoted.
* Forbidden transitions.
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