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The Project Orion Crew Exploration Vehicle aerothermodynamic experimentation 

strategy, as it relates to flight database development, is reviewed.   Experimental data has 

been obtained to both validate the computational predictions utilized as part of the database 

and support the development of engineering models for issues not adequately addressed with 

computations.  An outline is provided of the working groups formed to address the key 

deficiencies in data and knowledge for blunt reentry vehicles.  The facilities utilized to 

address these deficiencies are reviewed, along with some of the important results obtained 

thus far.  For smooth wall comparisons of computational convective heating predictions 

against experimental data from several facilities, confidence was gained with the use of 

algebraic turbulence model solutions as part of the database.  For cavities and 

protuberances, experimental data is being used for screening various designs, plus providing 

support to the development of engineering models.  With the reaction-control system testing, 

experimental data were acquired on the surface in combination with off-body flow 

visualization of the jet plumes and interactions.  These results are being compared against 

predictions for improved understanding of aftbody thermal environments and uncertainties. 

I. Introduction 

HE Project Orion Crew Exploration Vehicle (CEV) concept was defined by NASA’s Exploration Systems 

Architecture Study
i
 (ESAS) conducted in 2005, which was chartered to define requirements for crew and cargo 

launch systems to support lunar and Mars exploration programs as well as access to the International Space Station 

(ISS).  The Orion CEV is intended to provide transportation first to the ISS, then to the moon, and finally to Mars.  

The Crew Module (CM) of the CEV (shown in Fig. 1) has a configuration that is externally similar to the Apollo 

Command Module - a spherical-segment heat shield joined by a small toroidal section to a truncated-cone shaped 

crew compartment.  The Orion CM, however, will be considerably larger than Apollo with a maximum heat shield 
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Figure 1. Present conceptualization of Orion Crew Exploration Vehicle components 
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diameter of ~16.5 ft (current configuration) vs. 12.8 ft 

for Apollo.  This larger size will allow transport of up 

to six crewmembers on ISS missions or up to 4 

crewmembers on lunar missions.  The first missions for 

Orion are currently scheduled for 2015 to ISS and 2020 

to the moon. 

For the Orion heat shield, required to protect the 

spacecraft and astronauts from heating during re-entry 

into earth’s atmosphere, a glass-phenolic ablative 

honeycomb design based on Avcoat (similar to what 

was used during Apollo) has been identified as the 

primary candidate.  The other candidate, Phenolic 

Impregnated Carbon Ablator (PICA), as shown in Fig. 

2, is being carried as a back-up concept.  The down 

select process between these two options was recently 

completed.  A major difference between these two 

concepts is that the Avcoat design will result in a 

monolithic heat shield, while the PICA design will have a heat shield built up of many tiles, as shown in Fig. 2, 

which introduces the issue of tile-to-tile steps and gaps.  It should be noted that the thermal protection system (TPS) 

design community has adopted a conservative approach whereby the heat shield will be sized based on fully 

turbulent flow from entry interface along the entire trajectory.  The aerothermal environments and database used to 

influence the final design of the TPS and structural interfaces will be determined from a combination of 

computational and experimental results taking into account both convective and radiative heat transfer.  On the 

experimental side, a testing program has been developed that investigates both types of heat transfer and utilizes 

most of the major national facilities.  The focus of the present paper is to provide insight into the Orion CM 

aerothermodynamic experimental program and is intended as an update to Ref. ii.   

II. Database Development 

The current philosophy for development of the aerothermodynamic database for CEV is to rely primarily on 

computational tools and methods.  Ground-based experimental results provide validation data for targeted flow 

physics, shown in Fig. 3, that carry the largest uncertainties and provide data for the creation of engineering models 

where the CFD is known to be inadequate.  The smooth body database is being developed using the engineering 

method CBAERO (see Ref. iii) to bridge between high fidelity computational solutions for a limited number of 

database anchoring points (~400 CFD solutions over a range of Mach numbers, dynamic pressures, and angles of 

attack) to provide the smooth body environments along the entire trajectory for a limited number of body points 

(~18,000 surface nodes).  The CBAERO database provides convective heating, radiative heating, pressure, skin 

friction, and boundary layer properties.  The CFD codes used to populate the database have been compared and 

 
Figure 2. Artistic rendering of Orion reentry with 

a PICA-type heat shield 

 
Figure 3. Wind tunnel support to the development 

of the aerothermodynamic database 

 

Figure 4. Framework definition for a CEV entry 
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validated against the appropriate ground based 

data and analytical models.  Also, the CFD 

methods have been compared against historical 

flight data, where appropriate, as part of the 

effort to develop “best practices” and uncertainty 

assessments.
iv,v

  To provide environments for 

deviations to the smooth body (the real wall 

issues listed in Fig. 3), engineering correlations 

are created using any available data from wind 

tunnel and flight, as well as CFD simulations.  

These correlations provide bump factors that are 

applied to the smooth body database.  A 

framework is provided in Fig. 4 for defining the 

different regions of the CM, as referred to in the 

present paper, with the heat shield typically 

referred to as the forebody and the leeward 

aftbody being the highly separated flow section 

furthest away from the stagnation region. 

Figure 5 provides a sketch showing some of the key phenomenological issues associated with CM reentry.  

Many of these issues are interrelated and highly coupled.  The present paper will provide insight into experimental 

activities that have been aligned with the disciplines outlined in Fig. 3, which should provide insight into most of the 

issues identified in Fig. 5.  Both smooth-wall real gas (chemistry and radiation) and micro-aeroheating (such as local 

augmentations due to compression pads, windows, or jet interactions) effects are being investigated in ground-based 

facilities.  These experimental data will allow “best practices” assessment of state-of-the-art computational methods 

and the resulting uncertainties.  Also, these data will provide a technical basis for the development of engineering 

methodologies for assessing local flow phenomena within the aeroheating database.   

One such engineering level correlation is the development of methodology to account for heating augmentations 

due to the presence of a distributed surface roughness.  During the high velocities associated with lunar return, 

pyrolysis (charring and out gassing) of the heat shield will occur as it ablates during entry, thereby creating a surface 

roughness that differs significantly from the original surface.  Despite the fact that fully turbulent heating rates are 

being used to design the TPS, experimentally derived augmentations to the smooth-wall heating calculations due to 

roughness will also be required.  These effects have been studied in the past with indications of augmentations on 

the order of 30%, but for significantly different configurations.  For instance, Dirling
vi
 and others

vii,viii
 studied the 

effect of rough-wall heat transfer on reentry nosetips.  Also, Voisinet investigated the combined effect of roughness 

and mass transfer.
ix

  A series of tests have been undertaken to investigate on the CEV configuration the effect of 

surface roughness and blowing on turbulent heating, of which further details will be provided in the experimental 

studies section.  Another engineering level assessment is to account for known surface irregularities in the Orion 

OML that are a result of the attach hardware design for holding the CM on the service module, SM (also shown in 

Fig. 1).  A series of densified TPS “compression pads” 

located near the outer diameter of the heat shield will 

seat the CM in place, transfer vehicle loads during ascent 

and prevent torsional rotation.  A cylindrical tension tie 

rod will secure the CM in place until re-entry.  The 

design is similar to that used for Apollo, see Fig. 6.  

During CM separation, the tension tie rods are to be 

severed just above the surface.  The local heating 

environment produced by the tie rod protuberance was 

the subject of the Apollo era experimental study by 

Bertin
x
 and a more recent investigation by Liechty

xi
 in 

support of Orion. 

Several working groups have been set up within the 

CEV Aerosciences Project (CAP) to organize 

discussion, analysis, and reviews of pertinent data 

relevant to each discipline.  Currently there are working 

groups for the following disciplines: (1) smooth body to 

coordinate all the smooth body computations and 

 
Figure 5. Flow phenomena relevant to a CEV entry 

 
Figure 6. Post-flight photograph of Apollo 10 

showing compression pads and local recession 
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comparison against the smooth model data; (2) launch 

abort system (LAS, also shown in Fig. 1) to cover most 

Orion heating related issues during launch; (3) reaction 

control system (RCS) for determining the heating 

augmentations due to the complicated three-dimensional 

interactions of the RCS jets with the aftbody flow 

environment (see Fig. 7 for an example from Apollo); 

(4) compression pad and tension tie to handle the local 

heating within and around the forebody heat shield 

irregularities; (5) cavity heating for accounting for all the 

deviations to the smooth OML on the aftbody; (6) 

roughness and blowing for determining the turbulent 

augmentation factors for the post-ablation roughened 

heat shield and to account for ablation effects; and 

finally, (7) radiation to properly assess the shock layer 

radiation for a lunar return.  These working groups have 

broad membership from experts within each discipline 

from across the country. 

Uncertainties in the output quantities from the CBAERO database have been developed based on engineering 

judgment that factors in the experience of historical programs, such as Apollo, Shuttle, and various planetary 

programs.  Ground testing has also provided invaluable information for assessing the uncertainties for the analytical 

tools and computational methods.  The uncertainties developed thus far for the database are applicable to the smooth 

body Design Analysis Cycle 2 (DAC2) CM geometry during reentry (from both low Earth orbit and lunar returns) 

and abort scenarios.  For reentry, these uncertainties are relevant from entry interface to approximately Mach 1.3 

where convective cooling on the Crew Module begins to become dominant.  As part of a conservative heat shield 

design policy, an all-turbulent heating profile has been assumed, thus the uncertainties developed so far are 

primarily associated with turbulent convective and radiative heating.  However, some results of laminar heating 

analysis and test data have also influenced the process with regard to the recommended uncertainties for the overall 

CM aerothermal environments.  Limited test data are available for reentry of capsule-like configurations.  The 

Apollo CM has limited flight data available for comparisons, however, the CEV geometries and trajectories differ 

enough from the Apollo Program that the data are used for trend comparisons only.  The CEV configuration data are 

utilized as appropriate for the code-to-test data comparison.  The present aeroheating uncertainties have been 

assessed as follows: for return from low Earth orbit, convective heating on the forebody and windward aftbody is 

estimated to be accurate to within 15% for laminar and 25% for turbulent, and for the leeward aftbody, 30% for both 

laminar and turbulent; for return from lunar, convective heating on the forebody and windward aftbody is estimated 

to be accurate to within 20% for laminar and 35% for turbulent, and for the leeward aftbody, 50% for both laminar 

and turbulent, while for radiative heating is estimated to be accurate to within 56% for both laminar and turbulent.  

III. Facilities 

A. LaRC Mach 6 & 10 

Aerothermal testing has been conducted at NASA Langley Research Center (LaRC) in Hampton, Virginia on 

several CEV configurations in both the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels.  Both these 

facilities are conventional blow-down tunnels that utilize dried, heated, and filtered air as the test gas.  Typical 

aerothermal test techniques that are utilized in these tunnels are thermocouples, thin-film, thin-skin, schlieren, oil-

flow, and phosphor thermography, which is used to provide quantitative global temperature and, thus, heat transfer 

images.  Detailed descriptions of these facilities, along with their associated instrumentation and test techniques can 

be found in Refs. xii and xiii.   

Typical operating conditions for the LaRC 20-Inch Mach 6 Air Tunnel are stagnation pressures ranging from 30 

to 500 psia, stagnation temperatures from 410 to 500°F, and free stream unit Reynolds numbers of 0.5 to 7.8x10
6
/ft.  

A two-dimensional, contoured nozzle is used to provide a nominal freestream Mach number of 6.  The test section is 

20.5 by 20 inches.  A bottom-mounted model injection system inserts models from a sheltered position to the tunnel 

centerline in less than 0.5-sec.  Run times of up to 15 minutes are possible with this facility, although for typical heat 

transfer and flow visualization tests, only a few seconds are required.  Optical access to the model is viewed through 

a high-quality window on the top of the tunnel for phosphors and oil-flow, while high-quality windows on the side 

provide schlieren access.   

 
Figure 7. Post-flight photograph of Apollo 6 

showing RCS nozzles and heating augmentations 
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Typical operating conditions for the LaRC 31-Inch Mach 10 Air Tunnel are stagnation pressures ranging from 

350 to 1450 psia and a stagnation temperature on the order of 1350°F, which yields freestream unit Reynolds 

numbers of 0.5x10
6
/ft to 2.2x10

6
/ft.  The tunnel has a closed 31- by 31-in. test section with a contoured three-

dimensional water-cooled nozzle to provide a nominal Mach number of 10.  A hydraulically operated side-mounted 

model injection mechanism injects the model into the flow in 0.6 seconds.  The maximum run time for this facility is 

approximately 2 minutes; however, only 5 seconds of this time is typically required for transient heat transfer tests.  

Optical access to the model mechanism for both phosphors and oil-flow is through a high-quality side window.   

B. Cal Tech T5 

Several experiments were performed in the T5 free-piston shock tunnel at the California Institute of Technology 

in Pasadena, California to obtain total enthalpy levels not available from perfect-gas facilities.  The T5 facility is 

described in detail in Ref. xiv.  Briefly, T5 is a piston-driven reflected shock tunnel that generates short-duration 

hypervelocity flows for simulation of real-gas flight environments.  High-pressure air is used to drive a heavy piston, 

thus rapidly heating and accelerating the driver gas in front of it to high temperatures and pressures.  A reflected 

shock wave processes the test gas, which is then expanded through a conical nozzle to high velocities producing 

high enthalpy flows (ranging from 10-20MJ/kg) of sufficient duration to ensure brief but steady flow over the 

model.  Typical test times are in the range of 1 to 2 milliseconds.  Aerothermal test techniques typically used in this 

facility are traditional schlieren imagery and surface thermocouple instrumentation.  The thermocouples used in T5 

are of custom design and evolved from the work of Sanderson.
xv

  The key design feature is the tapered thermocouple 

centerpiece, which causes the thermocouple material junction to be a very shallow depth confined to the surface of 

the model.  This specific design feature is required to measure the surface temperature rise of the model, which is 

necessarily confined to a very shallow depth due to the short run times characteristic of the facility. 

C. AEDC Tunnel 9 

The Air Force’s Arnold Engineering Development Center Hypervelocity Tunnel 9 located in Silver Spring, 

Maryland, is a hypersonic, nitrogen-gas, blow-down wind tunnel with interchangeable nozzles that allow for testing 

at Mach numbers of 7, 8, 10, and 14 over a large Reynolds number range.  More detailed information on this facility 

can be found in Refs. xvi, xvii, xviii, xix.  The tunnel has a 5-ft-diameter, 12-ft-long test section that permits test of 

large-scale model configurations.  Tunnel 9 features a pitch system that can sweep models from −10-deg to 50-deg 

at pitch rates up to 80 deg/sec.  With the tunnel’s 0.2 sec to 15 sec run times, the dynamic pitch capability allows for 

a large volume of data to be captured over an entire range of pitch angles during a single run.  During a run, nitrogen 

in the vertical gas heater is compressed and heated to a desired pressure and temperature, where the maximum 

conditions are 27 kpsi and 3040°F.  The nozzle and test cell are evacuated to a pressure of less than 0.02 psi and are 

isolated from the high-pressure side by a pair of metal diaphragms upstream of the throat.  When the desired 

conditions are reached in the heater, the diaphragms are burst and the high-pressure/high-temperature nitrogen 

expands through the nozzle into the test cell.  During the run, the driver vessels use cold gaseous nitrogen to replace 

the hot gas in the heater to maintain constant supply conditions.  Typical aerothermal test techniques for this facility 

are schlieren imagery and surface heat transfer measurements using one of several techniques.  The schlieren 

instrumentation at AEDC acquires data at a high frame rate (up to 10 kHz), and the frame exposure is coupled to a 

fast-acting laser light source that significantly reduces image “blur” which would otherwise occur at hypervelocity 

flow conditions.  The surface heat transfer measurement techniques include standard Type-E thermocouples, 

Schmidt-Boelter gages, and infrared thermography. 

D. CUBRC LENS I & XX 

Several aerothermal tests in this program were performed in and are being planned for the Calspan-University of 

Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) I and LENS XX facilities.  These 

facilities share a common compressor system and data recording system.  LENS I was constructed with the 

capability to fully duplicate flight conditions at Mach numbers ranging from 7 to 16 and to conduct testing with full-

scale versions of missile interceptors and scramjet engines.  The major components of the LENS I facility include a 

25.5-foot long by 11-inch diameter electrically heated driver tube, a double diaphragm assembly, a 60-foot by 8-inch 

diameter driven tube, a fast acting center body valve assembly, multiple nozzles to achieve desired test conditions 

from Mach 7 to 24, and a test section capable of accommodating models up to 3 feet in diameter and 12 feet long.  

The high-pressure driver section of LENS I has the capacity to operate at 30,000 psi using heated driver gases of 

hydrogen, helium, nitrogen or any combination of the three.  The driver gases can be heated up to 750°F and the 

amount of each gas varied to achieve tailored interface operations for maximum test times.  The driven tubes of 

either facility can use air, nitrogen, carbon dioxide, helium, hydrogen or any other gases or combinations of gases 
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for model testing.  LENS XX is a new capability, designed to duplicate high enthalpy flows within an expansion 

tunnel at Mach numbers ranging from 8 to 25.  The major components of LENS XX include a 15-foot by 2-ft 

diameter driver tube, a double diaphragm assembly, a 39-foot long driven tube, an 88.5-foot long expansion tube, 

multiple nozzles, and a test section capable of accommodating models up to 2 feet in diameter and 10 feet long.  

LENS XX has the capacity to utilize hydrogen, helium, nitrogen, air, carbon dioxide, methane or any combination of 

these as the test gas.  Surface heat transfer measurement techniques typically include thin-film, calorimeter, and 

thermocouples, temperature sensitive paints, and infrared thermography.  Further discussions of LENS facility 

capabilities can be found in Ref. xx.  

E. ARC EAST 

The NASA Ames Research Center Electric Arc Shock Tube (EAST) facility at Moffett Field, California has the 

capability to generate shock-heated air with representative lunar-return velocities and pressures.  For lunar returns, 

shock-layer radiation will constitute a significant portion of the total heat flux to the vehicle surface in the peak-

heating region of the entry trajectory.  Phenomenological models of non-equilibrium radiation transport will be 

incorporated into high-fidelity CFD predictions of the aerothermal environments for Orion.  These models are 

validated with shock-heated gas radiation measurements obtained at flight-relevant conditions.  The measurements 

are made with sufficient spatial, temporal, and spectral resolution to characterize state-specific kinetic processes 

behind a shock wave that arise during reentry.  Typical test times for EAST are on the order of several 

microseconds, which is often sufficient to capture the peak of the nonequilibrium shock radiation and the decay to 

equilibrium conditions.  The facility was built in the late 1960s to support research in aerothermochemistry of 

hypervelocity flight through Earth and planetary atmospheres.  The use of an electric arc discharge as the driver 

mechanism permits generation of shock speeds up to 50 km/s in H2/He atmospheres.  These high shock speeds 

greatly exceed those achieved with heated light gas, combustion, or free piston drivers.  More detailed descriptions 

of the facility can be found in Refs. xxi, xxii, and xxiii.  

IV. Experimental Studies 

A. Perfect Gas 

Several tests have been conducted to provide smooth model experimental data from conventional hypersonic 

facilities at both laminar and turbulent conditions, see Table 1.  These studies were intended to provide high quality 

datasets for comparison to computational predictions in support of the smooth body working group and development 

of the various versions of the aerothermodynamic database.  The first two studies (31-CH and 32-CH) included 

“best practices” principles to investigate model blockage and sting effects with the global phosphor thermography 

test technique to both determine the largest model that could be tested in the LaRC Mach 6 and 10 facilities as well 

as to understand the effect of sting placement.  Results from the Mach 6 tunnel provided CAP the first comparisons 

of predictions to turbulent data, although with boundary layer trips.  These results have been recently reported in 

Ref. xxiv.  The next test, 36-CH, utilized a highly instrumented thermocouple 3.5%-scale model to acquire data 

from AEDC Tunnel 9 over as wide a range of Reynolds numbers as possible.
xxv

  This test was able to measure 

turbulent heating data without the use of trips for 

comparison against turbulent calculations.  Recently, 

some TSP results on this model were published, see 

Ref. xxvi.  This same model was later tested in the 

LaRC Mach 6 tunnel with 56-CH, see Ref. xxvii, in 

order to compare measurements made from different 

models and techniques.  A comparison of these 

results is provided in Ref. xxviii.  Figure 8 provides a 

photograph of the model used for these two studies 

as installed within the LaRC Mach 6 tunnel.  Finally, 

a test was recently completed in the CUBRC LENS I 

facility (67-CH) to obtain high fidelity data using a 

combination of thermocouples over a majority of the 

model and thin-film gages around the hot shoulder.  

The results of this study were recently published in 

Ref. xxix.  One of the impacts, thus far, from this 

round of testing was to help resolve issues with the 

selection of a turbulence model for use by the 

 
Figure 8. CEV model shown injected into the LaRC 

20-In Mach 6 Air Tunnel 
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program.  Initially there was some interest in using Menter’s shear stress transport (SST)
xxx

 two-equation model, but 

the early comparisons against the experimental data showed that the simpler algebraic models, like Cebeci-Smith
xxxi

 

or Baldwin-Lomax
xxxii

, provided the best results for attached flows.  At present the smooth body computational 

database is being built with the use of an algebraic turbulence model.   

Table 1: Perfect gas studies in support of CAP 

Test 

Number 
Facility 

Principal 

Investigator 
Conducted Emphasis of the test 

31-CH LaRC M6 Berger Jun-06 Tripped turbulent 

32-CH LaRC M10 Berger Jun-06 Aftbody heating 

36-CH AEDC T9 Hollis Oct-06 High Re 

56-CH LaRC M6 Hollis Feb-07 Phosphor vs TC, BLT 

67-CH CUBRC LENS Cassady Feb-08 Hot shoulder 

As an example of the initial comparisons between smooth model data and computations, tests 31-CH and 32-CH 

provided experimental measurements made from both the LaRC Mach 6 and 10 facilities on several scaled ceramic 

heat transfer CEV models and these results are documented in one test report, Ref. xxxiii.  The experimental data 

highlighted in the test report were used to validate numerical tools that will support the flight aerothermodynamic 

database development.  Global heat transfer images and heat transfer distributions were obtained with the phosphor 

thermography technique.  The heat transfer data were used to infer the boundary layer state on the forebody and the 

aeroheating levels on the aftbody.  For the aftbody measurements, the potential for support hardware interference 

and the ability to provide reliable low heating measurements were assessed.  The primary objective of test 31-CH in 

the LaRC Mach 6 tunnel was to measure benchmark turbulent heating on the CEV heat shield.  To support CFD 

turbulence modeling best practices and to assess numerical uncertainties, natural transition to turbulent flow was 

desired over turbulent flow forced from surface roughness.  Test parametrics included a range of model diameters to 

increase length Reynolds numbers and improve the likelihood of achieving fully developed natural turbulent flow on 

the heat shield.  A boundary layer trip strategy was developed in the event that fully developed turbulent heating 

could not be achieved naturally.  Limited measurements on the CEV aftbody were made to assess potential model 

support system interference on surface heating and to determine the response of the phosphor measurement 

technique in regions of low surface temperature.  The primary objective of test 32-CH in the LaRC Mach 10 tunnel 

was to characterize the phosphor temperature response on the aftbody in a facility with a higher temperature driver 

potential (and potentially higher signal-to-noise ratio and correspondingly lower measurement uncertainties than the 

Mach 6 facility).  Measurements similar to those obtained in the Mach 6 tunnel were obtained to assess support 

system interference as well as the viability of testing the aftbody surfaces in either facility.  Heating levels in the 

higher temperature facility were desired for code validation on the aftbody.  Test parametrics include freestream unit 

Reynolds numbers of 2.1x10
6
/ft to 7.3x10

6
/ft and 1.0x10

6
/ft to 1.9x10

6
/ft in Mach 6 and Mach 10 air, respectively at 

a fixed angle-of-attack of 152 deg.  While naturally turbulent levels were not obtained on the forebody, the use of 

boundary layer trips generated turbulent data at unit Reynolds numbers of 5.6x10
6
/ft and 7.3x10

6
/ft.  Figure 9 

provides a comparison of the measured centerline heating at Mach 6 and Re = 5.6x10
6
/ft with and without trips to 

laminar and Cebeci-Smith turbulent 

predictions.  Aftbody testing provided reliable 

heating data without significant model support 

hardware influence.  

Another important example to highlight is 

the comparison between experimental results 

and predictions for test 36-CH.  This study was 

conducted at AEDC Tunnel 9 with both the 

Mach 8 and 10 nozzles.  Heating data were 

inferred from a 3.5%-scale highly instrumented 

thermocouple model.  Test parametrics include 

freestream unit Reynolds numbers of 8x10
6
/ft 

to 48x10
6
/ft and 1x10

6
/ft to 20x10

6
/ft with 

Mach 8 and Mach 10 nozzles, respectively, 

over a range of angles of attack of 146 to 180 

deg.  With nitrogen as the test gas at low 

enthalpy levels, perfect gas conditions were 

obtained.  The range of Reynolds numbers 

 
Figure 9.  Comparison of measured heating from 31-CH to 

predictions for AoA= 152-deg. 
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resulted in laminar, transitional, and turbulent data on a smooth model without the need for boundary layer trips.  

Comparison of both the laminar and turbulent measured heating data to predictions was generally better than the 

±12% experimental uncertainty estimate, as shown in Fig. 10, a typical example from that test.  The turbulent 

calculations shown utilized the Cebeci-Smith turbulence model, which provides confidence with the use of these 

simpler algebraic methods for attached forebody flows.
xxviii

  Similar results were obtained in the comparisons of the 

experimental results for 67-CH against the same computational method, as shown in Fig. 11. 

B. Real Gas 

Several tests were intended to provide smooth model experimental data from high-enthalpy hypersonic facilities 

(see Table 2).  Thus far two entries (35-CH and 40-CH) have been conducted that have provided results at 

freestream enthalpies ranging from 10-20MJ/kg at stagnation pressures up to 50MPa.  Unfortunately, run-to-run 

repeatability from these tests has not been of sufficient quality to allow real gas effects to be discerned from the 

experimental scatter, that typically varies on the order of 10-15%, in comparison to computational models.  There 

have been some limited low-to-moderate enthalpy runs conducted as part of other test series, which have had much 

better comparisons to computations.  Consequently, a new test (91-CH) is presently being developed to acquire data 

from a different facility for comparison.  This test series will employ the LENS-XX shock-expansion facility.  The 

relevant characteristic of the shock-expansion configuration is that the high-enthalpy test gas is never stagnated until 

striking the model.  The tunnel freestream conditions are therefore much more relevant to typical high-enthalpy 

flight conditions.  Until these new data are acquired and analyzed, however, flight data
iv

 will remain the primary 

source of high-enthalpy heat transfer measurements used to quantify the uncertainty in physical models.  

Table 2: Real gas studies in support of CAP 

Test 

Number 
Facility 

Principal 

Investigator 
Conducted Emphasis of the test 

35-CH CalTech T5 Olejniczak Fall-06 Initial study 

40-CH CalTech T5 Kirk Apr-08 Repeat & moderate enthalpy 

91-CH CUBRC LENS Kirk Q2-FY10 Comparison to T5 

C. Radiative Heating 

For the radiative heating topic, a series of tests have been planned (see Table 3) to investigate Orion lunar-return 

radiative peak-heating conditions.  For CEV missions returning from the moon, shock layer radiation will contribute 

up to half the total heat flux to the vehicle during the peak-heating portion of the entry trajectory.  Having accurate 

models to predict the radiative component of heating, and the uncertainties that go with those predictions, is crucial 

to the design of the TPS for lunar return missions.  A test series has been initiated in the Ames EAST facility, while 

another is being planned for the newly constructed CUBRC LENS XX facility.  Emission spectroscopy 

 
Figure 10.  Comparison of measured heating from 

36-CH to predictions for AoA= 152-deg. 

 
Figure 11.  Comparison of measured heating from 67-

CH to predictions for AoA= 160-deg. 
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instrumentation, including monochromators and imaging spectrographs, enable measurements of shocked-gas 

radiation spectra from the vacuum-ultraviolet (VUV) to the near infrared (NIR), which will be used to modify and 

verify the models of non-equilibrium radiation transport to be incorporated into high-fidelity CFD predictions and 

thus the database.  The imaging spectrographs capture the nonequilibrium post-shock excitation and relaxation 

dynamics of dispersed spectral features.  These data are needed to develop and validate model kinetics of excited air 

species.  Some of the early results from the EAST facillity have already been published with comparison against 

theoretical models and predictions.
xxxiv-xxxvii

  These results have allowed an improved understanding of the impact of 

radiative heating including uncertainties on TPS design.
xxxviii-xli

 

Table 3: Radiation studies in support of CAP 

Test 

Number 
Facility 

Principal 

Investigator 
Conducted Emphasis of the test 

43-CH ARC EAST Grinstead FY06-FY07 VUV to NIR shock radiance 

44-CH CUBRC LENS X Grinstead FY07 Facility capability assessment 

71-CH ARC EAST Cruden Q3 FY09 
VUV to NIR shock radiance; 

electron density measurement 

72-CH CUBRC LENS XX Grinstead 
Q3, Q4 

FY09 
Limited VUV, UV-NIR shock 

radiance (second source) 

96-CH ARC EAST Cruden FY10 
Expanded test envelope; 

uncertainty estimations 

97-CH CUBRC LENS XX Grinstead FY10 
Second source for uncertainty 

estimations 

D. Protuberances and Cavities 

Several tests, see Table 4, were conducted to provide local heating for surface features on the forebody and 

aftbody that would be difficult to capture with state-of-the-art computations.  As mentioned previously, the heat 

shield irregularities are in the form of compression pads and tension ties, while the aftbody has many deviations 

from the smooth OML, such as windows, attachment points for the LAS, RCS nozzles, etc.  The compression pads 

are circular cavities, while the tension ties have the potential to provide protrusions that, at present, are planned to be 

concentric to the center of the compression pad.  While every attempt is being made to perform high fidelity 

computations on the appropriate compression pad and tension tie configuration for flight, the experimental data is 

being used to more effectively screen the parametric space of cavity depths, widths, side wall angles, etc, in 

combination with protrusions both in and downstream of the compression pad.  In addition, these tests will be used 

for CFD validation and to support the development of heating augmentation analytical models that supplement the 

smooth model aerothermodynamic database.  Test 30-CH investigated within the LaRC Mach 6 tunnel the initial 

concepts for the compression pad design with large tension tie protrusions both within and downstream of the 

cylindrical pads, see Ref xlii.  Tests 86-CH and 87-CH provided updated information for primarily straight-wall 

(referred to as hockey-puck) compression pads of varying depths and heights (the protrusions were to account for 

extreme recession of the surrounding TPS material) in the Mach 6 and 10 tunnels, respectively, both documented in 

Ref. xliii.  More recently, the compression pad design has included sloped sidewalls, which were then tested with 

64-CH in both the Mach 6 and 10 facilities.  Reference xliv provides some of the results from this test.  Finally, the 

most up-to-date compression pad design will soon be tested with highly instrumented thermocouple models in the 

LENS I facility.  This last test is actually planned to be broken up into two phases, one focused on the forebody, 

with an instrumentation layout for obtaining high fidelity data mainly around the compression pads, and the second 

focused on the aftbody, with an instrumentation layout for obtaining heating around the windows and other cavities 

due to RCS jets on and off.  These two phases will have two different models, with different model scales. 

Table 4: Local heating studies in support of CAP 

Test 

Number 
Facility 

Principal 

Investigator 
Conducted Emphasis of the test 

30-CH LaRC M6 Liechty Jul-06 Forebody penetrations 

86-CH LaRC M6 Hollis Oct-07 Hockey puck pads 

87-CH LaRC M10 Hollis Nov-07 Hockey puck pads 

64-CH LaRC M6 & 10 Hollis Sept-08 Beveled side walls 

66-CH CUBRC LENS Lillard Q4-FY09 High fidelity 
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As an example of 

compression pad experimental 

results, 30-CH was the initial 

investigation into the effects of 

both protuberances and cavities 

on a CEV forebody.  The 

results of this wind tunnel heat 

transfer test on 3.23%-scale 

models of the CEV Cycle I 

geometry are provided in Ref. 

xlii.  Conducted in the LaRC 

Mach 6 tunnel for the nominal 

reentry angle of attack of 152 

degrees with a freestream unit 

Reynolds number range of 

1.0x10
6
 to 7.25x10

6
/ft, this 

investigation was to determine 

interference heating patterns in 

the vicinity of protuberances 

and cavities into the NASA 

Cycle I CEV forebody heat 

shield.  These local perturbations to the baseline smooth CEV OML were intended to be a generic representation of 

proposed hardware designed to attach and prevent torsional rotation of CM as it sits on the SM.  The attachment 

hardware modeled in this wind tunnel test included both tension ties and compression pads, similar to the hardware 

found on Apollo.  The attach hardware proposed at the time of this test, called for eight equally spaced compression 

pad/tension tie combinations near the heat shield shoulder.  This has since been changed to six equally spaced pads.  

Another aspect to this study was to demonstrate a laser ablation manufacturing technique to be used to accurately 

replicate the compression pad geometry on cast ceramic wind tunnel models and then to subsequently determine the 

ability of global phosphor thermography to obtain spatially resolved global surface thermal mapping patterns 

associated with a range of attachment hardware configurations.  The data were used to provide heating reductions 

and/or augmentations within and in proximity to the compression pad (cavity) and tension tie (protuberance) under a 

laminar and turbulent approach flow.  Heating augmentations were inferred from measurements made on a baseline 

smooth OML relative to that measured at the same locations with the cavities and/or protuberances present.  These 

wind tunnel data were also intended to aid in the determination of optimal location of the tension tie/compression 

pad combination on the heat shield and to assess the potential propagation of flow disturbances (and subsequent 

heating) from the attachment hardware to the aftbody.  These results have also been documented in Ref. xi.  

Figure 12 provides a representative result from this test, showing the effect of the placement of a protruding tension 

tie in reference to a leeward forebody compression pad under both laminar and turbulent conditions.  The 

designations shown in the figure are as follows: PEN-2 is a compression pad with no tension tie, PEN-3 is a 

compression pad with the tension tie downstream, PEN-4 is a compression pad with a concentric tension tie, and 

PEN-6 is a slightly bigger compression pad with no tension tie.  Clearly, a protruding tension tie has a significant 

impact on the downstream heating.  See Reference xi for more details. 

E. Boundary Layer Transition 

Although at the present time an all-turbulent heating profile is being used for the design of the heat shield, the 

effect of boundary layer transition is still an important issue to understand from the perspective of being able to 

accurately determine the thermal margins that the designed TPS will have.  For example, the actual time of laminar-

to-turbulent boundary layer transition for a lunar return is expected to be influenced by ablation (or blowing), 

laminar-ablated surface roughness, and flow chemistry.  In contrast to a lunar return, significant ablation of the heat 

shield TPS is not expected during a lower velocity return from the ISS.  In this scenario, boundary layer transition to 

turbulent flow is likely to be induced by distributed and/or isolated roughness associated with heat shield steps/gap 

tolerances or singularities in the TPS outer mold line (OML).  There are very few experimental studies that 

characterize the effect of isolated roughness on blunt bodies in a supersonic or hypersonic flow.
xlv-xlix

  The publicly 

available information on blunt body flight transition data is summarized in Ref. xlv.  A majority of this flight data 

involves ablating nose tips.
l,li,lii

  More appropriate to a capsule design, a few Apollo era reports exists on 

protuberances and/or cavities (Refs x and liii) but the focus is often on local heating.  On the Orion TPS, surface 

 

Figure 12. Close up of local heating around leeward forebody compression 

pads from 30-CH. 

 

Laminar Approaching Boundary Layer 

Turbulent Approaching Boundary Layer 
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roughness could exist in several forms: 

(1) distributed roughness associated with 

laminar and turbulent heat shield ablation, 

(2) localized non uniformities produced 

by gap fillers or manufacturing tolerances 

associated with the individual seams, if 

any, or (3) isolated roughness associated 

with hardware used to attach the CM to 

SM.  Isolated step protuberances on Orion 

could arise from the tile-to-tile interfaces, 

as conceptually shown in Fig. 2 for a 

PICA design, in a manner similar to the 

Space Shuttle Orbiter.  Another source of 

roughness at the tile interfaces are gap 

fillers.  Gap fillers serve as a thermal 

barrier in areas where localized heating 

into gaps between adjacent tiles are 

unacceptable and to provide cushioning 

between tiles.  Loose tile gap filler 

material between the tile interfaces can 

result in an isolated protuberance.  

Installation and bonding lessons learned 

from the Shuttle program will help mitigate this local type of surface non-uniformity.  A preliminary study of 

boundary layer transition on the heat shield due to isolated protuberances was performed with the same model used 

earlier with 56-CH.  These results were reported in Ref. liv.  Also, separate studies were conducted with placing 

isolated protuberances on the aftbody using existing models but these results have not yet been published. 

F. Roughness & Ablation 

As mentioned previously, there has been a concern with understanding the turbulent heating augmentation due to 

the presence of a distributed surface roughness.  High lunar return velocities are likely to result in a surface 

roughness that differs significantly from the original heat shield condition due to ablation during entry.  This is true 

whether the primary TPS material, Avcoat, is used or the back-up, PICA, although the scale of the roughness may be 

different between these two concepts.  Thus, experimentally derived augmentations to the smooth-wall turbulent 

heating calculations for a range of roughness scales are required.  A series of tests, listed in Table 5, have been 

undertaken to investigate the effect of surface roughness and mass transfer on turbulent heating.  Test 41-CH 

provided the initial experimental results from a 3.5% scale model in AEDC T9 with thin-skin gages for a series of 

distributed roughness heights and spacing.  Figure 13 provides a sampling of a few of the distributed roughness 

models employed during this test.
lv
  Recently, test 39-CH was completed in LENS I with two different scale models, 

12.12% and 24.24%, with a similar series of distributed roughness patterns, including sandgrain roughness.  Both of 

the 39-CH models utilized calorimeters at the surface.  The results from both of these test entries are still being 

analyzed and will be documented in the near future.  These first two studies focused on the potential turbulent 

heating augmentation due to distributed roughness without the surface blowing that is meant to simulate out gassing 

of the ablation products.  There is a follow-up test planned for the LENS facility (69-CH) in which the additional 

effect of surface blowing will be considered.  The models for this test are presently in construction.  Also captured in 

the test plan is one final opportunity for looking at roughness and blowing in a more systematic fashion in the LaRC 

Mach 6 tunnel (90-CH), in case a second source for roughness and blowing data are needed to address any open 

issues. 

Table 5: Roughness and ablation studies in support of CAP 

Test 

Number 
Facility 

Principal 

Investigator 
Conducted Emphasis of the test 

39-CH CUBRC LENS Wilder Aug-08 Roughness only 

41-CH AEDC T9 Liechty May-08 Roughness only, 2
nd

 source 

69-CH CUBRC LENS Wilder Q4-FY09 Roughness and blowing 

90-CH LaRC M6 Everhart Q3-FY10 Roughness & blowing, 2
nd

 source 

 

Figure 13. Sample distributed roughness patterns for 41-CH. 
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G. RCS Interactions 

Lastly, an experimental effort has been on going to investigate the local flow features and environments 

associated with the interactions of the Reaction Control System (RCS) thruster jets with the freestream flow.  A 

series of tests in ground-based facilities have been conducted to help understand both the off-body fluid dynamics, 

as well as the surface heating, see Table 6.  As shown in Fig. 6, a post-flight photograph of one of the RCS jets from 

Apollo 6, the heating footprint due to the jet interactions on the TPS was significant enough to char the surface.  The 

intent of the experimental effort for RCS interactions is to provide for the current Orion design the key flow 

structures and surface heating that can be compared against the computational predictions.  The initial RCS test, 37-

CH, focused on demonstrating and improving measurement techniques for visualizing the complex three-

dimensional interactions both on and off the surface for comparison against predictions.  Both temperature and 

pressure sensitive paints, for global heating and pressure measurements, and a scanning planar laser induced 

fluorescence (PLIF) technique for measuring plume shapes were used.  These results have been published in Refs. 

lvi, lvii, lviii, and lix.  A follow-on test, 63-CH, focused on providing quantitative heating data for comparison 

against prediction for combinations of single and dual jet firing configurations.  These results are still being 

analyzed.  Although not captured in the table below, 66-CH will also provide some significant RCS data for 

comparison against predictions.  One final test, 95-CH, is being planned to capture any last minute changes to the 

final RCS design for Orion. 

Table 6: RCS interaction studies in support of CAP 

Test 

Number 
Facility 

Principal 

Investigator 
Conducted Emphasis of the test 

37-CH LaRC M10 Buck & Danehy Apr-May 07 Test technique development 

63-CH LaRC M10 Buck & Danehy Jul-08 Quantitative heating 
95-CH LaRC M10 Buck Q2-2010 High fidelity data 

As an example, 37-CH investigated the effects of RCS jet interactions on the aft-body of a capsule entry vehicle 

in the LaRC Mach 10 tunnel and the final test report is provided in Ref. lx.  The test focused on demonstrating and 

improving advanced measurement techniques that would aid in the rapid measurement and visualization of jet 

interaction effects for the Orion Crew Exploration Vehicle while providing data that would be useful for developing 

engineering models or validation of computational tools used to assess actual flight environments.  Test 

measurements included global surface pressure and heat-transfer imaging with complementary three-dimensional 

flow visualization.  The wind tunnel model was fabricated with interchangeable parts for two different aft-body 

configurations.  The first, an Apollo-like configuration, was used to focus primarily on the forward facing roll and 

yaw jet interactions which are known to have significant aft-body heating augmentation with factors of 11 and 4 

respectively.  The second, an early Orion Crew Module configuration (4-cluster jets) was tested, blowing only out of 

the most windward yaw jet, which was expected to have the maximum heating augmentation.  A rapid prototyping 

plastic/ceramic composite material was used directly for aero-heating substrates and was coated with a temperature-

sensitive paint for global surface heating measurements.  Interchangeable parts were also manufactured for pressure-

sensitive paint measurements on the aft-body, but were first coated with copper (0.025” thick) to dissipate heat and 

provide a uniform temperature surface.  Nitric oxide planar laser induced fluorescence was used for flow 

visualization.  The test model was 5 inches in diameter and angle of attack set at 156-deg.  Jet nozzles had a 0.0275-

 
Figure 14.  Comparison of measured yaw jet surface interactions from 37-CH to predictions. 
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inch diameter throat and an 

exit area to throat ratio of 

22.5.  Jet chamber pressures 

were set at 250 and 500 psi 

and tunnel flow conditions 

run at free-stream Reynolds 

numbers based on model 

diameter of 0.23x10
6
 and 

0.75x10
6
.  Heating 

augmentation results were 

similar to the results of Jones 

and Hunt (1965) for the 

Apollo-like configuration and 

heating augmentation from 

the Orion windward yaw jet 

was at a similar level as that 

for the Apollo, but affected much less area.  Figure 14 provides, for a yaw jet, a comparison to computational 

predictions of the aftbody surface heat transfer as inferred from the measured temperature data (from Ref. lvi).  

Figure 15 provides the corresponding PLIF image of the plume shape resulting from a single yaw jet firing, taken 

from Ref. lix.  Comparisons of these experimental plume shapes to computations have yet to be completed.  63-CH 

investigated jet interaction heating for a later CM design configuration and heating data were calibrated and reduced 

to quantitative values and mapped to three-dimensional surface coordinates.  The test report for 63-CH is provided 

in Ref. lxi.   

V. Conclusion 

An overview of the Project Orion CEV aerothermal ground testing strategy is provided.  The role of the 

experimental data, as both validation of the computational methods that are being used to develop the smooth body 

database for flight and the technical basis for the generation of engineering methodologies for dealing with 

deviations from the smooth OML, is discussed.  Working groups have been formed around the key issues that are 

likely to require focused analysis or the use of an engineering method.  The facilities that have supported CAP 

aerothermal testing are reviewed, along with some of the important results obtained thus far.  Comparison of smooth 

wall computational predictions against experimental data from several facilities provided confidence with the use of 

algebraic turbulence model solutions as part of the database.  Experimental data on cavities and protuberances are 

being used to parametrically screen the design space, plus support engineering method development as necessary.  

With the RCS testing, experimental data was acquired on the surface in combination with off-body flow 

visualization of the jet plumes and interactions.  These results are being compared against predictions for improved 

understanding of aftbody uncertainties. 
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