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ABSTRACT  

We develop a case breach model for the on-board fault diagnostics and prognostics system for sub-

scale solid-rocket boosters (SRBs). The model development was motivated by recent ground firing tests, 

in which a deviation of measured time-traces from the predicted time-series was observed. A modified 

model takes into account the nozzle ablation, including the effect of roughness of the nozzle surface, the 

geometry of the fault, and erosion and burning of the walls of the hole in the metal case. The derived 

low-dimensional performance model (LDPM) of the fault can reproduce the observed time-series data 

very well. To verify the performance of the LDPM we build a FLUENT model of the case breach fault 

and demonstrate a good agreement between theoretical predictions based on the analytical solution of 

the model equations and the results of the FLUENT simulations. We then incorporate the derived LDPM 

into an inferential Bayesian framework and verify performance of the Bayesian algorithm for the 

diagnostics and prognostics of the case breach fault. It is shown that the obtained LDPM allows one to 

track parameters of the SRB during the flight in real time, to diagnose case breach fault, and to predict 

its values in the future. The application of the method to fault diagnostics and prognostics (FD&P) of 

other SRB faults modes is discussed. 

I. Introduction 

Development of on-board FD&P system for the Solid Rocket Boosters is a NASA requirement for the 

next-generation Crew Exploration and Heavy-Lift Launch Vehicles. The limited number of sensors 

(typically head pressure, temperature and acceleration) and short time window between the detectable 

onset of a variety of catastrophic failures and a crew abort (typically a few seconds) dictate a model 

based approach to development of the FD&P system for SRBs. Such a system should accommodate the 

abrupt changes of the model parameters in various nonlinear dynamical off-nominal regimes. The later 

objective can only be achieved by incorporating expert knowledge about characteristic dynamical 

features of various off-nominal regimes and by utilizing deep physical understanding of the underlying 

physical processes. Examples of the most probable faults in SRBs include: (i) combustion instabilities
1-3

, 

(ii) bore chocking
4-6

, and (iii) case breach
7-9

. Clearly the development of the FD&P that incorporates 

physics models of the faults has to verified and validated in a multi-stage procedure involving high-

fidelity modeling, ground and flying tests. In our earlier work we have developed a novel Bayesian 

framework
7,10-13

 that can infer parameters of nonlinear stochastic dynamical models. We have also 

derived a low-dimensional performance model (LDPM) of the SRBs
7,12,13

  and demonstrated that our 

Bayesian framework can infer and track parameters of the LDPM in real time. Specifically, the LDPM 



of the case breach fault was developed in
7
 in anticipation of the ground firing tests. The results of the 

tests (the discussion will be provided elsewhere) have demonstrated however, that further details have to 

be included into the model to describe the observed fault dynamics. 

In this paper we develop a detailed model of the case breach fault that accurately reproduces 

characteristic dynamical features of the fault observed in the ground tests and incorporate it into the 

Bayesian inferential framework. The essential modifications of the model include (i) the dynamics of the 

nozzle ablation; (ii) a given propellant geometry and the relation between burn distance and burning 

area; (iii) the dynamics of melting, ablation, and burning of the metal walls in the hole through the metal 

case; (iv) the dynamics of silicon melting in the nozzle walls; and (v) the geometry of the fault. These 

modifications are also included into a high-fidelity model of the case breach fault built in FLUENT. 

Using the results of the theoretical analysis of the case breach fault and FLUENT simulations we derive 

and verify a corresponding LDPM and incorporate it into a Bayesian inferential framework as a part of 

on-board FD&P system for SRBs. We use synthetic data generated by the LDPM to verify the accuracy 

and the time resolution of the diagnostics and prognostics of the case breach fault. Finally we discuss the 

possibility of extension of this approach to encompass other SRBs faults. 

NOMENCLATURE 

ρ = gas density 

p = gas pressure 

T = gas temperature 

u = gas velocity 

vm = velocity of metal melting front 

vn = velocity of nozzle ablation front 

c = sound velocity 

c0 = sound velocity at stagnation point 

M = Mach number, M = u/c 

M0 = Mach number, M0 = u/c0 

cV = specific heat for the constant volume 

cP = specific heat for the constant pressure 

γ = ratio of specific heats γ = cP/cV 

l = perimeter of propellant cross-section 

lh = perimeter of hole cross-section 

lr = surface roughness 

re = radius of nozzle exit 

rh = radius of leak hole  

sh = cross-section of the hole throat  

rt = radius of the nozzle throat 

st = cross section of the nozzle throat 

L = length of the propellant grain 

L0 = characteristic length scale 

Sb = total area of the burning surface 

FN = normal thrust  

Fh   = additional thrust produced by hole gas flow 

rb = burning rate of solid propellant 

n = exponent for burning rate of the propellant 



R = burn distance of the propellant 

ρp = density of the solid propellant 

Hp = combustion heat of the solid propellant 

Q = heat flow from the gas to the walls of the hole 

S = cross-section of the combustion chamber 

ftr = surface friction force 

Tm = melting temperature point of metal 

Ta = critical temperature of the nozzle ablation 

Tc = temperature of metal case far from hole 

cm = specific heat of case metal 

qins     =  latent heat of insulator ablation  

qm = latent heat of metal melting 

cn = specific heat of nozzle material 

qn = specific heat of ablation of insulator layer 

ρm = density of case metal 

ρn = density of nozzle material 

k = the thermal conductivity of metal  

µ = dynamical viscosity of hot gas 

Pr = the Prandtl number, Pr=µCp/k 

h = subscript for gas parameters in the hole  

t = subscript for gas parameters at the nozzle throat  

N = subscript for parameters in normal regime 

0 =  subscript for stagnation values of gas parameters 

II. HIGH-FIDELITY MODEL OF THE CASE BREACH 

A. Basic model 

For SRBs with high length-to-diameter ratios a very good approximation to the internal ballistics can be 

obtained using a modified model by Salita
15

 (see also Sorkin
16

)  
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Here we have taken into account small fluctuations in gas dynamics that arise mainly due to the 

propellant density variations and external white Gaussian noise ξi(t) 

 ( ) 0, ( ) (0) ( )i i j ijt t tξ ξ ξ σδ δ= = .           `  (2) 

These equations for continuity of the mass, momentum and energy of the gas flow in the combustion 

chamber have to be extended by including equations for dynamics of the burn distance, nozzle ablation, 

and erosion of the metal walls. In the simplest case of the propellant burning law and Bartz’ 

approximation for the heat transfer between the gas flow and walls of the nozzle and the hole in the 

metal case we have the following equations for the burn distance (in what follows we use dot to denote 

time derivative) 
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and erosion of the metal walls of the hole in the rocket case 
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(see the Appendix for the derivation of these equations). It is assumed that the equation of state for an 

ideal gas holds in the combustion chamber  
2
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To incorporate real propellant geometry the following key assumption is introduced (cf  Ref. 9): at every 

moment of time the burning area Sb is determined by the burn distance Rp and the corresponding design 

curve  

 ( ).
b p

S f R=              (7) 

The system (1)-(7) is completed by adding equation for the nozzle exit ablation 
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 and equation for the nozzle FN and fault-induced Fh thrusts  
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Equations (1)-(10) represent the basic model of the case breach fault that incorporates the essential 

dynamical features of the fault-induced changes in the internal ballistics of the gas flow. In the following 

sections we will validate this model using results of the FLUENT simulations. Next we will extend this 

model to include experimentally observed dynamics of the metal erosion and nozzle ablation. Then we 

will derive the corresponding LDPM and incorporate it into the Bayesian inferential framework. 

External walls of the rocket case

Hole in the 

forward closure

Internal walls of 

the rocket case

Propellant 

surface

Nozzle

            

Figure 1 (left) Velocity distribution obtained using FLUENT simulations after 0.14 sec. The geometry of the 

model surfaces is shown in the figure. Note that the hole wall, propellant surface wall, and the nozzle wall are 

deforming according to the equations (3)-(5), (8). (right) Velocity distribution generated by the FLUENT model 

for t = 5.64 sec. Note the changes in the geometry of the rocket walls and the corresponding changes in the velocity 

distribution. 



B. Validation of the basic model using FLUENT simulations 

To validate the model of the case breach fault (1)-(10) introduced above we build a FLUENT model of 

the case breach (see Figure 1). Next we notice that of the propellant surface, metal erosion, and nozzle 

ablation are relatively slow processes as compared to the time scale for redistribution of gas parameters 

along the combustion chamber (typically trel ≈ L/c ∼ 10 msec). Under these conditions it becomes 

possible to find stationary solutions of the Eqs (1) analytically in the combustion chamber  
1 1 1
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and in the nozzle area 
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where M0 is given by the solution of the nozzle equation 
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The results of the comparison of the analytical distributions obtained using Eqs (11)-(13) with the axial 

velocity and pressure distributions obtained using FLUENT simulations are shown in the Figure 2. It can 

be seen from the figure that the model (1)-(10) provides a very good approximation to the results of 

FLUENT simulations. Note that the difference in the time scales for dynamics of burn distance, metal 

erosion, and nozzle ablation as compared to the characteristic relaxation time of the distributions to their 

quasi-stationary values trel, allows us to integrate equations (1)-(13) in quasi-stationary approximation. 

As a result we obtain analytical solution for the quasi-stationary dynamics of the axial distributions of 

the gas parameters in the combustion chamber and in the nozzle area. The comparison of this analytical 

solution with the results of FLUENT simulations also demonstrates good agreement between the theory 

and numerical solution of the high-fidelity model.  

A further validation and verification of the case breach model (1)-(10) can be obtained using results of 

the ground firing test, as will be described in detail elsewhere. Here we will discuss necessary 

modifications of the basic case breach model that must be introduced to explain the experimentally 

observed deviations of the case breach dynamics from the predictions based on the model  (1)-(10). 
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Figure 2 Axial velocity (left) and pressure (right) profiles generated by the FLUENT model for t = 0.05 sec (black 

solid line) as compared to the analytical solutions (red dashed lines) given by the Eqs (11)-(13).  



III. MODIFICATIONS OF THE MODEL FOR METAL EROSION AND NOZZLE ABLATION 

Although the basic model (1)-(10) introduced above provides deep insight into the dynamics of the case 

breach fault, for a given propellant geometry and given design curve Sb = f(Rp), experimental results 

obtained during the ground firing tests suggest that more details must be added to the model to 

reproduce experimentally observed time-traces. In particular, the experimental results demonstrate some 

deviations in the nozzle ablation and metal erosion rates from that given by Eqs (4), (5), (8). These 

deviations are related mainly to the complex geometry of the actual fault in the forward closure, to the 

heating of the metal case during erosion of the metal walls, and to the erosion of the nozzle wall surface 

during ablation process that changes the rate of ablation. Some other physical effects such as thermal 

expansion of the materials and wave formations on the walls of the nozzle throat will be considered in 

more detail elsewhere.   

 

The study shows that melting and burning of metal surface (a result of reactions with oxidizing agents of 

combustion products) play an essential role in the hole growth dynamics. To consider these effects we 

assume that  

h f bv vr = +�                                     (14) 

where 
f

v and v
b

 are velocities of melting and burning of metal surface (see Appendix).  

To take into account the effect of the surface roughness on the nozzle ablation the model of the ablation 

velocity is modified as follows (see Appendix) 
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where rt0 is the initial value of the nozzle throat radius and 
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Here rη  is a coefficient
 
describing an effect of the surface roughness, 

r
a  and ε  are fitting parameters.  

 

In practice, the dynamics of the fault strongly depends on its geometry. For example we consider a fault 

in the closure of the pressure sensor, in the form of a metal disk of radius Rd (see Figure 3). This disk is 

covered by insulator material. We assume that a small leak arises on the disk boundary at moment t=t0.  

The experiments show that the insulator layer is quickly ablated by the powerful hot gas flow streaming 
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Figure 3 (left) Sketch of the fault geometry. (right) Dynamics of the hole growth that takes into account radiation, 

and erosion (blue solid line) as compared to the growth dynamics that neglects erosion (black dashed line) and 

growth dynamics neglecting both erosion and radiation (red dotted line). Note the nonlinear regime of the fault 

dynamics. 



through a leak hole. Therefore, the small hole grows due to melting and/or burning of the metal surface 

under the action of the hot gas flow effluent from the combustion chamber. In the simplest case the hole 

is in the middle of the metal disk and its cross-section area is given by 2

h h
s rπ= .  If on the other hand the 

hole appears on the perimeter of the disk it can be shown that its cross-section is given by 

( )2 2 2 2 22 arccos 4
2 2

h h
h d d h d h

d

r r
s R R r R r

R
π

 
= − − − − 

 
                  (17) 

Therefore, it can be seen that in general hole dynamics can be a complex function of time, which can be 

measured, e.g. as a polynomial function, which coefficients are free fitting model parameters. 

IV. LOW-DIMENSIONAL MODEL OF THE CASE BREACH FAULT 

To derive the LDPM of the case breach fault we notice that for a subscale motors the flow in the 

chamber can be modeled very accurately using a zero-dimensional approximation
15,18,19

. Therefore the 

LDPM of the case breach fault in the sub-scale motor can be derived by integration of  Eqs (1) along the 

rocket axis and by adding Eqs (3)-(5), (7) to obtain  
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Here the following dimensionless variables are used  
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where subscript m refers to the maximum reference values of the pressure and density. This set of 

equations together with Eqs. (14)-(17) represent the LDPM of the case breach derived in this paper. 

 

Important novel features of the case breach LDPM derived above are the following:  

• The burning area of the propellant Sb is calculated using a given design curve Sb = f(R);  

• The dynamics of the metal erosion and nozzle ablation is taken into account; 

• The dynamics of the volume of the combustion chamber is taken into account in Eqs. (18). 

 

With these modifications the LDPM (18) can very accurately reproduce the results of the ground tests. 

Typical time-series data for the case breach fault obtained using (18) are shown in Figure 4. In these 

figures the fault occurs at tf = 0.5 sec and the metal erosion rate in the regime of constant erosion is 0.15 

in/sec. Importantly, the derived model can reproduce very accurately the experimental time-traces of 

internal ballistics observed in the ground tests, as will be described in details elsewhere. It allows us to 

incorporate obtained an LDPM into the Bayesian inferential framework of the on-board FD&P of SRBs 



and to use the synthetic data generated by this model to verify the performance of the Bayesian 

algorithm as will be described in the next section. 

V. BAYESIAN INFERENTIAL FRAMEWORK FOR THE FD&P OF THE CASE BREACH FAULT 

Note that effect of the case breach fault on the dynamics of the internal gas flow in SRBs is reduced to 

the effective modification of the nozzle throat area as explained above. It is, therefore, possible to infer 

SRB parameters using a Bayesian framework introduced in our earlier work
 10-13

, for an analysis of the 

overpressure faults due to the changes of the nozzle throat area. In particular, it was shown 
13

 that this 

algorithm can accommodate sudden changes of the model parameters and, therefore, is suitable for 

developing of the hybrid probabilistic IVHM of SRBs.  

 

Here we briefly reproduce earlier results related to the analysis of the abrupt changes of the model 

parameters. The dynamics of the LDPM (18) can be in general be presented as an Euler approximation 

of the set of ODEs on a discrete time lattice { 0 1 }
k

t hk k … K= ; = , , ,
 
with time constant h  

*

1
ˆ( | ) ,

k k k k
x x hf x c hzσ+ = + +

         
 (20) 

where 
1

( )
k

k

t h

k
t

z t dt
h

ξ
+

= ∫ , 
* 1

2

k k
k

x x
x ++

= , xk = {p,ρ,R,V,rh,rt,ri} is L-dimensional state of the system 

(18),  σ  is a diagonal noise matrix with two first non-zero elements a1 and a2,  f  is a vector field 

representing the rhs of this system, and c are parameters of the model. Given a Gaussian prior 

distribution for the unknown model parameters, we can apply our theory of Bayesian inference of 

dynamical systems 
10-13
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Figure 4 Typical time-series data generated by the LDPM (18). (left) Nominal pressure (blue line) as compared to 

the fault-induced pressure (solid dashed line). (right) Nominal thrust (blue line) as compared to the fault-induced 

thrust (dashed black line) and thrust generated by the hole (red dotted line). The fault occurs at tf = 0.5 sec. The 

erosion rate is approximately 0.15 in/sec. 
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Here the vector field is parameterized in special form
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To verify the performance of this algorithm for the diagnostics of the case breach fault we first assume 

the nominal regime of the SRB operation and check the accuracy and the time resolution with which 

parameters of the internal ballistics can be learned from the pressure signal only. To do so we notice that 

equations for the nozzle throat radius rt, burn distance R, and combustion chamber volume can be 

integrated analytically for a measured time-traces of pressure and substituted into the equations for 

pressure dynamics. By noticing further that for small noise-intensities the ratio of dimensionless 

pressure and density p/ρ ≈ 1 obtain the following equation for the pressure dynamics  
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where st(t), Sb(t), and V(t) are known functions of time given by the following equations  
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The parameters 0

b

c

r

γΓ
 

p
γρ , and D can now be inferred in the nominal regime by applying Eqs. (20)-(24) 

to the analysis of equation (25). An example of the inference results is shown in the Table 1. 

Parameter Actual Inferred Relative error 

γρp 248.2 244.7 1       1.4% 

-c0Γ/rb -61260 -61347 1.38% 

D 2.5×10
-4

 2.44×10
-4

 2.4% 

    

Table 1 The results of the parameter estimation of the model (18) in the nominal regime. The total time of the 

measurements in this test was T = 1 sec, the sampling rate was 1 kHz, and the number of measured points was N=  
1000.  

 

We, therefore, conclude that the parameters of the nominal regime can be learned with good accuracy 

during the first second of the flight and can be assumed known in the further numerical tests of the 

Bayesian algorithm. 

 

To extend these results to other types of faults we assume that the fault time evolution is in general a 

nonlinear function of time. We introduce the following general form of the nonlinear fault dynamics 
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We now use first few seconds of the measured time-series to infer fault parameters { a0, a1,a2, a3, a4, 

a5}. A few first seconds of the measured time series used to infer fault parameters are shown in the 



Figure 5(left) by open circles. We assume known nominal parameters of the model and infer coefficients 

ai in the equation of the pressure dynamics, which in the presence of the case breach fault takes the form 
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Next we use the inferred values of the fault parameters to predict fault evolution forward in time. The 

predicted trajectories are shown in the Figure 5(left) by green lines in comparison with the actual time 

evolution shown by blue line. Next we build distributions of the predicted values of the hole area at a 

given future time (shown in the Figure 5(left) by the red vertical line). Next we investigate convergence 

of these distributions as a function of time elapsed from the onset of the fault. The distributions of the 

predicted values of the hole area at 8 sec for three different instants of time at which predictions were 

made are shown in the Figure 5(right). It is clear from the figure that the accurate predictions can be 

made 5.5 sec ahead in time using only 2.5 sec of the time-traces to learn fault parameters. 

VI. SUMMARY 

A detailed model of the case breach fault in a sub-scale motor has been developed. The model takes 

into account  

• Real propellant geometry by using a key assumption the burn distance defines uniquely the 

burning area of the propellant; 

• The ablation of the nozzle throat and the nozzle exit that includes the time evolution of roughness 

at the nozzle walls 

• The fault dynamics that includes fault geometry and melting and burning of the hole walls in the 

metal case 

• The time evolution of the volume of the combustion chamber 

 

Under given assumptions the derived model can reproduce very accurately the time-traces of the internal 

SRB ballistics observed in the ground test firing. The derived LDPM is validated using FLUENT high-

fidelity model of the case breach fault. Using results of the numerical solution of the high-fidelity model 
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Figure 5 (left) Actual fault dynamics is shown by the blue solid line. The time interval elapsed from the case 

breach fault is shown by the black circles. The predicted trajectories of the fault are shown by thing green solid 

lines. The time moment of the prediction is indicated by a vertical red line. (right) The distribution (arbitrary 

units) of the predicted value of the fault at the future time t = 8 sec is shown by solid blue, black, and green lines 

in comparison with the true value of the fault indicated by the vertical red dashed line. The time elapsed from 

the case breach fault used for predictions is shown in the figure. 



in FLUENT we show that obtained LDPM can be used to find analytically a time evolution of the axial 

distributions of the gas flow parameters in the combustion chamber and in the nozzle. 

The obtained LDPM is then incorporated into the Bayesian inferential framework as a part of the on-

board FD&P system for the next generation of NASA Heavy-Lift Launch Vehicles. It is shown that the 

obtained LDPM allows one to track in real time parameters of the SRB during the flight, to diagnose 

case breach fault, and to predict its values in the future times. 

We note that a number of other SRB fault modes (including e.g. combustion instabilities, bore choking, 

and nozzle throat faults) can be reduced to the analysis of the time variation of the parameters of the 

SRB. In particular, the LDPM allows one to track in time changes in the burning area, volume of the 

combustion chamber, area of the effective nozzle throat, and thrust. Therefore, the approach developed 

in the present work method can be used to build FD&P system for a variety of the fault modes in the 

SRB. 

In conclusion we note that the derived LDPM can be used to analyze effectively the results of the 

ground and flight firing tests, to provide deep insight into the time variations of the SRB parameters in 

various nominal and off-nominal regimes, and to build a data base of dynamical signatures of various 

fault modes. The derived model can be further extended to the large scale motors taking into account 

that the zero-dimensional approximation is surprisingly accurate
15

 even when the nozzle stagnation 

pressure of large motor varies significantly in time, including the off-nominal regime of the case breach 

fault
9
. 

APPENDIX: THE ABLATION OF THE NOZZLE AND EROSION OF METAL  

The nozzle surface is heated by radiation 
R

Q  and convective 
c

Q  heat flows of combustion 

products (hot gas). The radius of the nozzle starts to erode when the surface temperature Ts 

reaches an ablation temperature Tabl. Let us estimate this time delay. The distribution of 

temperature at r>rt is described by the equation                                 
2

2

1
in in in

T T T
C

t r r r
ρ κ

 ∂ ∂ ∂
= + 

∂ ∂ ∂ 
                                                                (29) 

where r is a coordinate normal to the surface (Figure 1, left). It is well known that the temperature 

distribution for r>rt is characterized by the following thermo-diffusion length  

              2 /
D in in in

l t Cκ ρ=                                                                      (30)                             

The heat flow 
c R

Q Q Q= +  for the time interval dt will heat the surface layer of an area dS and a 

thickness of D
l . The heat balance equation can approximately be written as   

 

( ) [ ]0( )
c R m m s D

Q Q dSdt c dSd T T lρ+ = −                                          (31) 

where T0 is an initial temperature of the nozzle. It follows from Eqs. (30) and (31) 

                                   
( )0

2 2

s ms c R

in in in

T TdT Q Q

dt t C tρ κ

− +
+ =                                               (32) 

Radiation heat flow is given by 

                                  ( ) ( )4 4

0 *
1 exp

R s
Q p T Tσ λ= − − −                                                    (33) 



where 4 20.001 4 10 % /14.69( / )AL in lbλ − = + × ×   is the emissivity of the hot gas
24

,  % AL  is the 

percentage of aluminum in the solid propellant, and 8 2 45.67 10 /W m Kσ −= ×  is the 

Stefan_Boltzmann constant [24]. The convective heat flow ( )c g sQ h T T= −  for 
s abl

T T≤  where 

the heat transfer coefficient hg can be presented as [20, 21]   

                                                    0.5 p r fh JC Cη=                                                                   (34) 

Here the coefficient
r

η describes an effect of the surface roughness. The value of coefficient 
fC  is 

determined by Reynolds number Re /uxρ µ=  which is about 10
6
 for typical parameters and high 

pressures. The critical Reynolds number which determines a transition between laminar and 

turbulent regimes is known to vary from approximately 10
5
 to 63 10× , depending on the surface 

roughness and the turbulence level of the free stream [20, 21]. Thus, probably, the turbulence 

regime occurs even with a relatively low gas pressure due to growth of roughness of the nozzle 

surface. Therefore, coefficient Cf  can be approximated over a fairly wide range of Reynolds 

number by the Bartz’s approximation [20-22]  

                            

0.670.2

0.2 0.672
0.046 0.046Re Pr

pnt
f

CR j
C

µ

µ κ

−−

− −  
= =  

   
.                       (35) 

Here  κ is the thermal conductivity and µ is the dynamical viscosity of the hot gas, the Prandtl 

number  Pr / 1pCµ κ= �  and the mass gas flow in the nozzle ( )* *

0 0/j c p cρ γ= = Γ . It follows 

from Eqs. (34)-(35)    

                              

0.8 0.2

0
*

0

2
0.023 ( )nt

c r p s

p R
Q C T T

c

γ
η

µ

−
   

= −   Γ   
                                          (36) 

where the gas temperature at the nozzle throat ( )* 02 / 1T T T γ= = + . The delay time td is a 

moment when Ts achieves the value of Tabl. Its value is determined by Eqs. (32), (33) and (36). 

The estimations show that the delay time
d

t  of heating of nozzle surface to the ablation 

temperature is very small, 
d

t  is much less than 0.1 sec. 

 

The velocity of quasi-stationary propagation of the ablation front vabl is determined by the 

equation of the heat balance for a small surface element dS  of the hole: 

 

( ) [ ]0( )
c R in abl in in abl

Q Q dSdt c T T q v dtdSρ+ = − +               (37) 

 

where dt  is a small time interval.  It follows that  

                                             
[ ]0( )

t c R
abl

in abl in in

dr Q Q
v

dt c T T q ρ

+
= =

− +
                                                    (38) 

This equation is valid for dt t> . We carried out numerical calculation and made sure that 

c R
Q Q� for the whole time period of interest to us. Taking into account this condition we find 

from Eqs. (36) and (38) that the ablation velocity can be written as  
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t t
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where 0 (0)
t t

r r=  and 
0.8 0.2

max 0 *

0 0

2 ( )
0.023

( )

nt abl
m p

in abl in

p R T T
v C

c c T T q

γ

µ

−
    −

=    Γ − +  
                            (40) 

We emphasized above that the coefficient
r

η describes an effect of the surface roughness: its value 

increases with the roughness [20-22]. To explain real data of nozzle ablation we introduce the 

approximation for this dependence given by Eq. [16] which describes well enough the 

experimental data.   

 

The radius of the hole through a metal case starts to grow when the surface metal temperature 

Ts reaches the melting or burning point. The time delay 
dm

t is determined by an equation 

analogous Eq. (30). The velocity of propagation of the front of metal melting vf is determined at 

dm
t t> by an equation analogous to Eq. (38):    

( )0

h c R
f

m m mel m m

dr Q Q
v

dt q C T T ρ

+
= =

+ −  
                                                        (41) 

Here 0m
T is a temperature far from the hole surface and the radiation 

R
Q  and convective 

c
Q  heat 

flows are given by equations analogous to Eqs. (33) and (36):   

  

( ) ( )
0.8 0.2

4 4 0
0 * *

0

2
1 exp , 0.023 ( )h

R met c r p met

p r
Q p T T Q C T T

c

γ
σ λ η

µ

−
   

= − − − = −       Γ   
       (42) 

In addition the regression rate of the metal wall is governed by of erosion v
b

. Experiments show that 

0.3 / secv in
b
�  for iron and carbon steels

25
. The same value of v

b
 was found in a recent study by ATK 

Thiokol Inc. team, to explain the experimental data
9
. Thus, full velocity of increase of radius of a hole in 

the metal case is given by Eq. (14).  
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