
The TacSat3 project is applying Integrated Systems Health Management (ISHM) technologies to an
Air Force spacecraft for operational evaluation in space. The experiment will demonstrate the
effectiveness and cost of ISHM and vehicle systems management (VSM) technologies through onboard
operation for extended periods.

We present two approaches to automatic testcase generation for ISHM:
1) A blackbox approach that views the system as a blackbox, and uses a grammar-based specification
of the system's inputs to automatically generate *all* inputs that satisfy the specifications (up to pre-
specified limits); these inputs are then used to exercise the system.
2) A whitebox approach that performs analysis and testcase generation directly on a representation of
the internal behaviour of the system under test.

The enabling technologies for both these approaches are model checking and symbolic execution, as
implemented in the Ames' Java PathFinder (JPF) tool suite.

Model checking is an automated technique for software verification. Unlike simulation and testing
which check only some of the system executions and therefore may miss errors, model checking
exhaustively explores all possible executions. Symbolic execution evaluates programs with symbolic
rather than concrete values and represents variable values as symbolic expressions.

We are applying the blackbox approach to generating input scripts for the Spacecraft Command
Language (SCL) from Interface and Control Systems. SCL is an embedded interpreter for controlling
spacecraft systems. TacSat3 will be using SCL as the controller for its ISHM systems.

We translated the SCL grammar into a program that outputs scripts conforming to the grammars.
Running JPF on this program generates all legal input scripts up to a prespecified size. Script
generation can also be targeted to specific parts of the grammar of interest to the developers. These
scripts are then fed to the SCL Executive. ICS's in-house coverage tools will be run to measure code
coverage. Because the scripts exercise all parts of the grammar, we expect them to provide high code
coverage. This blackbox approach is suitable for systems for which we do not have access to the source
code.

We are applying whitebox test generation to the Spacecraft Health INference Engine (SHINE) that is
part of the ISHM system. In TacSat3, SHINE will execute an on-board knowledge base for fault
detection and diagnosis. SHINE converts its knowledge base into optimized C code which runs
onboard TacSat3.

SHINE can translate its rules into an intermediate representation (Java) suitable for analysis with JPF.
JPF will analyze SHINE's Java output using symbolic execution, producing testcases that can provide
either complete or directed coverage of the code.

Automatically generated test suites can provide full code coverage and be quickly regenerated when
code changes. Because our tools analyze executable code, they fully cover the delivered code, not just
models of the code.

This approach also provides a way to generate tests that exercise specific sections of code under
specific preconditions. This capability gives us more focused testing of specific sections of code.

Automatic Testcase Generation for
Flight Software

NASA Planetary Spacecraft
Fault Management Workshop

April 2008

David Bushnell, RIACS/NASA ARC
Corina Pasareanu, Perot Systems/NASA ARC

Ryan Mackey, NASA JPL

TacSat 3, ISHM, and VSM

• Faults are a fact of life in engineered systems
• NASA needs better ways of handling and recovering

from faults
• Fault management is a major driver of complexity in

software
• NASA’s TacSat 3 VSM project applies Integrated

Systems Health Management (ISHM) and Vehicle
Systems Management (VSM) technologies to an
experimental Air Force satellite

• NASA will test ISHM and VSM onboard TacSat 3 over
an extended period

What is ISHM?

• ISHM: Integrated System Health Management
• Capabilities far beyond “Fault Protection”
• Active control methods to improve safety, reliability, mission capability,

sustainability, and ultimate cost
• Required in an era of increasing system complexity, e.g. Exploration

SENSORS

CONTROL
INPUTS

MODELS

HISTORY

Sensor
Qualification/

Correction

Fault Detection

Trend/Precursor
Detection

Model Correction
Improvement

Validation

Hazard
Assessment

Reactive
Response

Mission Replan

Maintenance
Scheduling

Coordination
of Assets

Crew Interface

On-Demand
Training

Goals of the Vehicle Systems Management
Experiment

• Conduct maturation and in-space testing of Vehicle Systems
Management technologies
• Full-scale validation of model-based, autonomous, and ISHM software
• Deploy and operate in space environment after launch (TRL 7)
• Includes closed-loop experiments (full control) after end of primary

mission

• Gain integration and flight experience with TEAMS and SCL
• Fault detection and automation technologies TEAMS and SCL baselined

for Orion spacecraft
• Flight experiments crucial for risk-reduction of software technologies

• Demonstrate new NASA technologies, on-ground and on-board
• High-level spacecraft planning
• ISHM detection, diagnosis, reasoning technologies
• Advanced V&V approaches to complex software, including TEAMS and

SCL

Validating ISHM Components

• ISHM by definition deals with off-nominal conditions
• Have all the significant failure modes been identified?
• Is a given failure mode well understood?

• The number of combinations of failures is overwhelming
• Manual test generation is expensive and time consuming

Automatic Test Generation

• Manual test generation for software is time consuming
and error-prone
• Lots of tests needed for full code coverage
• Hard to create tests that cover specific code paths

• Manually testing concurrent code is especially difficult
• Model Checking offers a way out

• Automatically generates all paths through the code
• When combined with Symbolic Execution, it can create a test case

for each code path
• For concurrent code, exercises not only each code path, but also

each thread scheduler decision

Model Checking vs Testing/Simulation

OKFSM Simulation/
Testing

error

OK
FSM

specification

Model Checking

error trace
Line 5: …
Line 12: …
…
Line 41:…
Line 47:…

• Model individual state
machines for subsystems
/ features

• Simulation/Testing:
• Checks only some of

the system executions
• May miss errors

• Model Checking:
• Automatically combines

behavior of state
machines

• Exhaustively explores
all executions in a
systematic way

• Handles millions of
combinations – hard to
perform by humans

• Reports errors as traces
and simulates them on
system models

Java PathFinder (JPF)

• Developed by RSE group at NASA Ames
• Explicit state model checker for Java bytecode

• Version targeting C/C++ is under development
• Focus is on finding bugs

• Concurrency related: deadlocks, (races), missed signals etc.
• Java runtime related: unhandled exceptions, heap usage, (cycle

budgets)
• Complex application specific assertions

• Recipient of NASA “Turning Goals into Reality” Award, 2007.
• Open sourced since 04/2005 under NOSA 1.3 license:

<javapathfinder.sourceforge.net>
• First NASA system development hosted on public site
• ~14000 downloads since publication
• ~25000 read transactions in 2007

Symbolic Execution

• JPF– SE:
• Recent extension to JPF that enables automated test

case generation
• Symbolic execution with model checking and constraint

solving
• Applies to (executable) models and to code
• Generates an optimized test suite that exercise all the

behavior of the system under test
• Reports coverage
• Checks for errors during test generation process

 if ((pres < pres_min) ||
 (pres > pres_max)) {

…
 } else {
 …
 }

 if ((pres < pres_min)) ||
 (pres > pres_max)) {

…
 } else {
 …
 }

 if ((pres < pres_min) ||
 (pres > pres_max)) {

…
 } else {
 …
 }

Symbolic Execution
Generating and Solving Constraints

 if((pres < pres_min) || (pres > pres_max)) {
…

 } else {
 …
 }

[pres = 460; pres_min = 640; pres_max = 960]

[pres = Sym1; pres_min = MIN; pres_max = MAX] [path condition PC: TRUE]

[PC1: Sym1< MIN] [PC2: Sym1 > MAX]

[PC3: Sym1 >= MIN &&
Sym1 <= MAX

Solve path conditions PC1, PC2, PC3 → test inputs

Previous Applications

• Onboard abort executive
• Prototype for CEV ascent abort handling being

developed by JSC GN&C
• Manual testing: time consuming (~1 week)
• Guided random testing could not cover all aborts
• JPF-SE

• Generated 151 tests to cover all aborts and flight
rules

– Total execution time is < 1 min
• Found major bug in new version of OAE

• K9 Rover Executive
• Executive developed at NASA Ames
• Automated plan generation based on CRL grammar
• Generated hundreds of plans to test Exec engine

Applications to the TacSat Project

• Test Case Generation for SCL
• SCL from Interface and Control Systems, Inc. is a rule-

and script-based runtime executive for aerospace
applications

• Use JPF–SE to generate SCL scripts based on SCL
Yacc grammar

• Run SCL exec engine on these scripts and measure
coverage

• Focus SCL script generation on particular features of
the language/engine

Test Case Generation for SCL

SCL
Yacc Grammar +

Lexer

Java
Spec

JPF—SE
Test Case

Generation
SCL Scripts

convert

SCL
Exec

run

ICS In-House
Coverage

Tool

Measure
Code
Coverage

Coverage
and Error

ReportFocus
Testing

Applications to the TacSat Project

• Test case generation for SHINE models
• SHINE from JPL is a very high-performance rule engine

for embedded systems
• Shine can generate C and Java code from its rule

bases
• We will apply JPF-SE to the SHINE java code to

generate testcases for all paths through the rules
• We will also apply JPF to the SHINE Java code to

verify that critical safety properties hold under all
possible executions

Test Case Generation for SHINE models

SHINE rules Java Spec +
assertions

JPF—SE
Analysis and

Test Case
Generation

Test Vectors

 Convert

C code

Assertion
Violation

Report

 Fix Errors

 Perform testing

Early Results

• SCL Results
• We have part of the SCL Yacc grammar translated to

Java and have generated test scripts covering that part
of the grammar

• After coverage feedback from ICS, we will extend the
translation and focus it on uncovered paths

• SHINE Results
• The SHINE-to-Java translator working and we are

beginning to generate test cases for simple rule sets
• We have tested sample safety properties with our rule

sets and generated both test cases and code traces
showing the paths to the violations

Handout
Automatic Testcase Generation for

Flight Software
• Contacts:

• David Bushnell: david.h.bushnell@nasa.gov
• Corina Pasareanu: corina.s.pasareanu@nasa.gov
• Ryan Mackey: ryan.m.mackey@nasa.gov

Sample SCL Grammar
and Java Code

SCL Grammar

complex_expression
 : function
 | expression NE expression
 | expression LT expression
...etc...
;

Java Code

public String complex_expression() {
 int selector = Verify.random(1);
 switch (selector) {
 case 0:
 return expression() + “!=" + expression();
 case 1:
 return expression() + "<" + expression();
...etc...
 default:
 throw new GrammarException();
 }
}

Java Pathfinder Output
for SCL Grammar

... etc...

-- Script Set:
SCRIPT TestScript070
 MESSAGE "a message"
 battvolts = battvolts
 MESSAGE "a message"
 battvolts = 1
END TestScript070

... etc...

-- Script Set:
SCRIPT TestScript17007
 if battvolts then
 EXECUTE TestScript07006 , PRIORITY = 4
 end if
END TestScript17007

SCRIPT TestScript07006
 MESSAGE "a message"
 battvolts = battvolts + battvolts
END TestScript07006

Sample SHINE Rules
and Java Code

Java Code

private void sr_JR01() {
 sa_J02 = 2;
 ep_RFC_Flag = true;
 ep_DS_RFC_S[ep_DS_RFC_PSO].rdfv_JR02_Flag
 = true;
}

private void sr_JR02() {
 sa_J03 = 3;
 ep_RFC_Flag = true;
 ep_DS_RFC_S[ep_DS_RFC_PSO].rdfv_JR03_Flag
 = true;
}

private void sr_JR03() {
 System.out.printf("Done\n");
}

SHINE Rules

(Def_Rule JR01
 :Order 1
 :If (= J01 1)
 :Then (:Set J02 2))

(Def_Rule JR02
 :Order 1
 :If (= J02 2)
 :Then (:Set J03 3))

(Def_Rule JR03
 :Order 1
 :If (= J03 3)
 :Then (printf "Done\\n"))

Java Pathfinder Output
for SHINE Rules

Symbolic Execution Mode
JavaPathfinder v4.1 - (C) 1999-2007 RIACS/NASA Ames Research Center

Execute symbolic INVOKESPECIAL: doTEST(III)V (J01_1_SYMINT, J02_2_SYMINT, J03_3_SYMINT)
Done
Done
Done
doTEST: # = 3
J03_3_SYMINT[3] == CONST_3 && J02_2_SYMINT[2] == CONST_2 && J01_1_SYMINT[1] == CONST_1
Done
Done
doTEST: # = 3
J03_3_SYMINT[-10000] != CONST_3 && J02_2_SYMINT[2] == CONST_2 && J01_1_SYMINT[1] == CONST_1

...etc...

doTEST: # = 3
J03_3_SYMINT[3] == CONST_3 && J02_2_SYMINT[-10000] != CONST_2
 && J01_1_SYMINT[-10000] != CONST_1
doTEST: # = 3
J03_3_SYMINT[-10000] != CONST_3 && J02_2_SYMINT[-10000] != CONST_2
 && J01_1_SYMINT[-10000] != CONST_1

References

• Java Pathfinder source code and documentation:
http://javapathfinder.sourceforge.net/

• Java Pathfinder and Symbolic Execution:
JPF--SE: A Symbolic Execution Extension to Java PathFinder
http://ti.arc.nasa.gov/people/pcorina/papers/jpfseTACAS07.pdf

