

RESEARCH MEMORANDUM

for the

Air Materiel Command, U. S. Air Force

INVESTIGATION OF STABILITY AND CONTROL CHARACTERISTICS

OF A $\frac{1}{10}$ -SCALE MODEL OF A CANADIAN TAILLESS

GLIDER IN THE LANGLEY FREE-FLIGHT TUNNEL

Ву

Joseph L. Johnson

Langley Aeronautical Laboratory Langley Air Force Base, Va.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS FILE COPY WASHINGTON

MAR 291149

CORFICENTIAL

[10]

To be returned to the files of the National Committee

for Aeronautica Waahington, 0.0

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

for the

Air Materiel Command, U. S. Air Force

INVESTIGATION OF STABILITY AND CONTROL CHARACTERISTICS

OF A $\frac{1}{10}$ -SCALE MODEL OF A CANADIAN TAILLESS

GLIDER IN THE LANGLEY FREE-FLIGHT TUNNEL

By Joseph L. Johnson

SUMMARY

An investigation of the stability and control characteristics of a $\frac{1}{10}$ -scale model of a Canadian tailless glider has been conducted in the Langley free-flight tunnel. The glider designated the N.R.L. tailless glider has a straight center section and outboard panels sweptback 43^o along the leading edge of the wing. The aspect ratio is 5.83 and the taper ratio is 0.323.

From the results of the investigation and on the basis of comparison with higher-scale static tests of the National Research Council of Canada, it is expected that the longitudinal stability of the airplane will be satisfactory with flap up but unsatisfactory near the stall with flap down. The airplane is expected to have unsatisfactory lateral stability and control characteristics in the design configuration with either flap up or flap down. The model flights showed very low damping of the lateral oscillation. Increasing the vertical-tail area improved the lateral stability, and it appeared that a value of the directionalstability parameter $C_{n_{
m R}}$ of at least 0.002 per degree would probably be necessary for satisfactory lateral flying characteristics. A comparison of the calculated dynamic lateral stability characteristics of the N.R.L. tailless glider with those of a conventional-type sweptback airplane having a similar wing plan form and about the same inclination of the principal longitudinal axis of inertia showed that the tailless glider had poorer lateral stability because of the relatively larger radius of gyration in roll and the smaller damping-in-yaw factor C_{nr} .

INTRODUCTION

An investigation of the low-speed stability and control characteristics of a $\frac{1}{10}$ -scale model of a Canadian glider designated the N.R.L. tailless glider has been conducted in the Langley free-flight tunnel at the

request of the Air Materiel Command, U. S. Air Force. This tailless glider is based on a design of the National Research Council of Canada (NRCC) and has a wing with straight center section and outboard panels having 43° sweepback of the leading edge. The outboard panels are equipped with trimming tips, which are adjustable for use in trimming the airplane. Vertical tails are located at the wing tip. The aspect ratio of the wing is 5.83 and the taper ratio is 0.323. The wing has a straight, center-section flap that hinges at the 0.70-percent centersection chord line and has a 60° deflection.

The investigation included force and flight tests of the model in the flap-up and flap-down configurations to determine the longitudinal and lateral stability characteristics. Tests were made with increased vertical-tail area to determine whether the lateral stability and control characteristics of the model could be improved.

Calculations were made to determine the neutral-lateral-oscillatory stability and the period and damping data for the model in the flap-up and flap-down configurations with the design tail and with increased vertical-tail area.

SYMBOLS AND COEFFICIENTS

- S wing area, square feet
- c mean aerodynamic chord, feet
- b wing span, feet
- q dynamic pressure, pounds per square foot
- ρ air density, slugs per cubic foot
- m airplane mass, slugs
- μ relative density factor (m/ ρ Sb)
- a angle of attack of reference axis (fig. 1), degrees
- β angle of sideslip, degrees
- ψ angle of yaw, degrees
- η angle of attack of principal longitudinal axis of airplane, positive when principal axis is above flight path at nose (fig. 1), degrees
- e angle between reference axis and principal axis, positive when reference axis is above principal axis at nose (fig. 1), degrees

θ angle between reference axis and horizontal axis, positive when reference axis is above horizontal axis at nose (fig. 1), degrees γ angle of flight to horizontal axis, positive in a climb (fig. 1), degrees Routh's discriminant (R = BCD - AD^2 - B^2E where A, B, C, D, R and E are constants representing coefficients of the lateral-stability equation) kχo radius of gyration about principal longitudinal axis, feet radius of gyration about principal vertical axis, feet kZ_O KXO nondimensional radius of gyration about principal longitudinal axis (k_{X_O}/b) K_{Zo} nondimensional radius of gyration about principal vertical axis (k_{Z_O}/b) nondimensional radius of gyration about longitudinal stability axis $\left(\sqrt{K_{X_O}^2 \cos^2 \eta + K_{Z_O}^2 \sin^2 \eta}\right)$ Kχ K₇ nondimensional radius of gyration about vertical stability $\left(\sqrt{K_{Z_{O}}^{2}\cos^{2}\eta + K_{X_{O}}^{2}\sin^{2}\eta}\right)$ axis nondimensional product-of-inertia parameter K_{77.} $\left(\left({\mathbb{K}_{Z_{O}}}^{2} - {\mathbb{K}_{X_{O}}}^{2}\right)\cos\eta\sin\eta\right)$ lift coefficient (Lift/qS) C_T drag coefficient (Drag/qS) CD pitching-moment coefficient (Pitching moment/qSc) Cm yawing-moment coefficient (Yawing moment/qSb) Cn rolling-moment coefficient (Rolling moment/qSb) C_{7} lateral-force coefficient (Lateral force/qS) Cγ δ_{c} controller deflection, degrees δa aileron deflection, degrees

CONFIDENTIAL

CO	NH	ואמדי	NT	TAT.
~~		واستناحت يبلد	بدار 10	

 δ_{f} flap deflection, degrees

4

- $C_{Y_{\beta}}$ rate of change of lateral-force coefficient with angle of sideslip, per degree $(\partial C_Y / \partial \beta)$
- $C_{n_{\beta}}$ rate of change of yawing-moment coefficient with angle of sideslip, per degree $(\partial C_n/\partial \beta)$
- $C_{l\beta}$ rate of change of rolling-moment coefficient with angle of sideslip, per degree $(\partial C_l / \partial \beta)$
- C_{Y_p} rate of change of lateral-force coefficient with rollingangular-velocity factor, per radian $\left(\partial C_Y / \partial \frac{pb}{2V}\right)$
- C_{lp} rate of change of rolling-moment coefficient with rollingangular-velocity factor, per radian $\left(\frac{\partial C_l}{\partial \frac{pb}{2V}}\right)$
- C_{n_p} rate of change of yawing-moment coefficient with rollingangular-velocity factor, per radian $\left(\frac{\partial C_n}{\partial \frac{pb}{\partial v}}\right)$
- C_{lr} rate of change of rolling-moment coefficient with yawingangular-velocity factor, per radian $\left(\frac{\partial C_l}{\partial \frac{rb}{\partial V}}\right)$
- CY_r rate of change of lateral-force coefficient with yawingangular-velocity factor, per radian $\left(\partial C_Y / \partial_{2Y}^{rb}\right)$
- tail length (distance from center of gravity to rudder hinge line), feet
- z height of center of pressure of vertical tail above fuselage axis, feet
- p rolling angular velocity, radians per second
- r yawing angular velocity, radians per second
- P period of oscillation, seconds
- $T_{1/2}$ time for amplitude of oscillation to decrease to half amplitude
- T₂ time for oscillation to double amplitude

C1/2 cycles for amplitude of oscillation to decrease to half amplitude

C₂ cycles for oscillation to double amplitude

APPARATUS

Wind Tunnel

The investigation was made in the Langley free-flight tunnel which is designed to test free-flying dynamic models. A complete description of the tunnel and its operation is given in reference 1. The force tests to determine the aerodynamic characteristics of the model were made on the free-flight-tunnel six-component balance which is described in reference 2. The balance rotates in yaw with the model so that all forces and moments are measured with respect to the stability axes. (See fig. 2.)

Model

The $\frac{1}{10}$ -scale model used in the investigation was constructed at the Langley Laboratory. A three-view drawing of the model is presented in figure 3 and photographs of the model are given in figures 4 and 5. Table I gives the dimensional and mass characteristics of the full-scale design and scaled-up dimensional and mass characteristics of the model. The airfoil section used on the model was a modified Rhode St. Genese 35 airfoil section described in reference 3. The substitution of this highly cambered airfoil section for that specified was in accordance with free-flight-tunnel practice of using airfoils to obtain a maximum lift coefficient in the low-scale tests more nearly equal to that of the full-scale design than is possible with the design airfoil. The trailing edge of the wing center section and the inboard portion of the sweptback panels were provided with trimmers so that the large pitching moment given by the campered wing could be trimmed out and allow the model to have about the same basic pitching moment at zero lift as the airplane with the design airfoil.

The tip portions of the sweptback panels were provided with trimming tips which were used in trimming out the pitching moments of the wing and were held at a constant setting during flight. The aileron and elevator control was provided by a set of controllers which extended from approximately the midsection of the sweptback panels to the wing tips. These surfaces were actuated in the same direction for elevator control and differentially for aileron control. Approximately half of the area of the controllers was attached to the trimming tips and these portions of the controllers changed their position relative to the wing in the same way as the trimming tips. Control was applied to

CONFIDENTIAL

these outboard portions of the controllers by means of a direct linkage from the inboard portion of the controllers. The wing was built with 4.75° washout at the wing tip as specified for the airplane.

The different tail configurations used on the model were as follows: design tip tails, large tip tails, design tip tails plus large inboard tails, and large tip tails plus large inboard tails. (See fig. 3.)

TESTS

Force Tests

Force tests were made with the flap up and flap down to determine the static stability characteristics of the model in its design configuration and with increased vertical-tail area. The configurations tested in the Langley free-flight tunnel are listed in table II and are designated by the letters FFT. Also listed in table II are comparative configurations tested at the National Research Council of Canada and are designated by the letters NRCC. All the free-flight-tunnel tests were made with trimming tips at -20°, and the flap-down tests were made with the canopies off. Results of tuft surveys indicated that considerable turbulence occurred in the region of the canopies and directly behind the canopies on the trailing edge of the wing. Since the maximum lift coefficient was relatively low for the flap-down configuration and the canopies showed a definite detrimental effect on the stall characteristics, it was decided that all flap-down tests would be made with canopies off to obtain as high a lift coefficient as possible. Aileronand rudder-effectiveness tests were made at angles of attack of 0°, 10°, and 20°. All force tests were run at a dynamic pressure of 3.00 pounds per square foot, which corresponds to an airspeed of about 34 miles per hour at standard sea-level conditions and to a test Reynolds number of 278,000 based on the mean aerodynamic chord of 0.87 foot.

Flight Tests

Flight tests were made to determine the general flying characteristics of the model over a speed range corresponding to a lift-coefficient range from 0.46 to 0.94 for center-of-gravity positions of 48- and 52-percent center-section chord for the flap-up configuration, and from 0.63 to 1.43 for center-of-gravity positions of 47- and 52-percent center-section chord for the flap-down configuration. Flights were made with both the flap-up and flap-down conditions with the design tails, large tip tails, and large tip tails plus large inboard tails. The flapup condition was also flown with the design tails and large inboard tails. Table II shows the configuration. Most of the flights were made with trimming tips at -20° and elevators trimmed up 20° with deflections of $\pm 25^{\circ}$

CONFIDENTIAL

and rudders trimmed at 0° with deflection of $\pm 20^{\circ}$. The center trimmer and outboard trimmers were changed to obtain trim of the model over the lift-coefficient range. The flap-down flights were made with canopies off and center trimmer at 0° . All flights were made with the aileron and elevator control similar to that of the airplane where the wing control surfaces act together for elevator control and differentially for aileron control. The aileron and rudder control surfaces were actuated simultaneously for flights where these controls were both used, or ailerons-alone flights were made by switching out the rudder.

Calculations

Calculations were made to determine the neutral-lateral-oscillatorystability boundary (R = 0) for the model in the flap-up and flap-down configurations by the method described in reference 4. The roots of the lateral-stability equations were used to determine the period and damping data of the oscillatory mode and the damping data of the aperiodic modes for the model in the flap-up and flap-down configurations with various vertical-tail areas. Additional calculations were made to determine the effect of reducing the yawing and rolling radii-of-gyration on the period and damping of the lateral oscillation.

The aerodynamic and mass characteristics used in the calculations are presented in table III. Values of $C_{n\beta}(tail of f)$ and $C_{Y_{\beta}}(\text{tail off})$ were determined from force tests made in the Langley free-flight tunnel. The tail-off values of C_{n_r} , C_{l_r} , C_{l_p} , C_{n_p} were estimated from reference 5. The contributions of the tail to the stability derivatives were estimated from the equations given in the footnote of table III and are similar to those given in reference 6. The inclination of the principal longitudinal axis above the flight path is expected to be lower for the free-flight-tunnel model than for the airplane since the model has a cambered airfoil section and would therefore attain a given lift.coefficient at a lower angle of attack. The difference between the angle η for the model and airplane, however, is not expected to be of great importance since for this particular design the yawing and rolling radiiof-gyration have about the same value, which results in the product-ofinertia factor K_{XZ} being small. When K_{XZ} is small, the inclination of the principal axis does not appreciably affect the R = 0 boundary. The effect of this difference would be to make the airplane slightly more stable than the model.

Calculations were made by the National Research Council of Canada to determine the oscillatory stability and damping characteristics of the airplane and the results were presented in reference 7. These calculations indicated more stability than that obtained in the freeflight-tunnel calculations. A comparison of the two sets of stability derivatives showed considerable differences in some of the parameters.

CONFIDENTIAL

For example, the NRCC calculations were made using a value of C_{lp} of the order of -0.60; whereas the free-flight-tunnel calculations were made using a value of C_{lp} of -0.30. This difference would account for some of the reasons why the NRCC boundary showed more stability than the free-flight-tunnel boundary.

RESULTS AND DISCUSSION

Force-Test Results

Longitudinal stability. The results of the force tests made to determine the longitudinal stability characteristics of the free-flighttunnel model are presented in figures 6 and 7. Also shown in these figures are data from the National Research Council of Canada for a $\frac{1}{8}$ -scale model. The Canadian data were obtained at a dynamic pressure of 26.8 pounds per square foot which corresponds to an airspeed of about 102 miles per hour at standard sea-level conditions and to a test Reynolds number of 1,040,000 based on the mean aerodynamic chord of 1.09 feet.

The data of figure 6 show that the static longitudinal stability of the free-flight-tunnel model with flap up decreases with increasing lift coefficient so that there is a small amount of instability near the stall. The NRCC data, however, show an increase in stability with increasing lift coefficient with greater stability at the stall. The flap-down data of figure 7 show that the free-flight-tunnel model had an increase in stability with increasing lift coefficient; whereas the NRCC data show a decrease in stability at the high lift coefficients with instability occurring at the stall. The differences existing between the two sets of data are probably associated with the differences in the scale of tests, the different airfoil sections, and the different control settings on the models. An attempt was made to duplicate the results of the Canadian tests by using leading-edge slats and guide vanes on the free-flight-tunnel model. It was found, however, that these modifications had very little effect on the data and none of the modifications were incorporated in the model. The free-flight-tunnel model, therefore, does not represent the full-scale airplane with regard to static longitudinal stability if it is assumed that the higher-scale tests give a correct indication of the airplane characteristics.

Lateral stability. The variations of the lateral-stability parameters $C_{Y_{\beta}}$, $C_{n_{\beta}}$, and $C_{l_{\beta}}$ with lift coefficient are presented in figures 8 and 9 for several free-flight-tunnel model configurations, together with data from the National Research Council of Canada for the design configuration. The NRCC lateral data were obtained at a dynamic pressure of 47.5 pounds per square foot which corresponds to an airspeed

CONFIDENTIAL

of 136 miles per hour at standard sea-level conditions and to a test Reynolds number of 1,390,000 based on the mean aerodynamic chord of 1.09 feet.

The results of figure 8 show that the free-flight-tunnel model had more directional stability and effective dihedral for the design configuration with flap up than that obtained in the NRCC tests. The larger value of $C_{n\beta}$ for the free-flight-tunnel model was probably caused by the cambered airfoil section and the different control settings. Figure 8 also shows that as the vertical-tail area was increased, the directional stability $C_{n\beta}$ increased over the lift-coefficient range. The positive effective dihedral $-C_{l\beta}$ generally increased with increasing tail area throughout the low and medium lift-coefficient range. For the large tip tail configuration, however, a more rapid decrease in $-C_{l\beta}$ was obtained at the higher lift coefficients.

The flap-down data of figure 9 show that the free-flight-tunnel model had slightly higher $c_{n\beta}$ over most of the lift-coefficient range than was shown by the NRCC tests and that the variation of $c_{1\beta}$ with lift coefficient was much less for the free-flight model than for the NRCC model over the lower lift-coefficient range. Increasing the vertical-tail area increased both the positive effective dihedral $-c_{1\beta}$ and the directional-stability parameter $c_{n\beta}$ as was the case for the flap-up model.

Presented in figures 10 and 11 are the results of tests made to determine the aileron and rudder effectiveness for the model in the design configuration. These results show a decrease in control effectiveness with increasing angle of attack. The aileron tests showed very little adverse aileron yawing moments, but the rudder tests showed relatively large adverse rolling moments.

Flight-Test Results

Longitudinal stability. The results of the flight tests showed that the model in the flap-up configuration had satisfactory longitudinal stability with the center-of-gravity position of 52-percent center-section chord (12-percent static margin) over a speed range corresponding to a range of lift coefficients from 0.46 to 0.94. At higher lift coefficients the model exhibited a nosing-up tendency as indicated by the force-test results. Moving the center of gravity to 49-percent centersection chord did not appreciably improve the stability at the stall. In the flap-down configuration, the longitudinal stability of the model was satisfactory over a range of lift coefficients from 0.63 to 1.43 for center-of-gravity positions of 47-percent center-section chord (18-percent static margin) and 52-percent center-section chord (12-percent static margin).

CONFIDENTIAL

Because, as previously mentioned, the Langley free-flight-tunnel force tests are not in agreement with the NRCC results with regard to static longitudinal stability near the stall, the dynamic behavior of the model near the stall is not expected to correspond to that of the full-scale airplane. In fact, on the basis of the force-test results the flap-up condition for the free-flight-tunnel model should represent the flap-down condition for the airplane and vice versa. It should therefore be expected that the longitudinal stability of the airplane will be satisfactory with flap up but unsatisfactory near the stall with flap down.

Lateral stability. Flight tests to determine the lateral stability and control characteristics showed that in the design configuration the model had poor Dutch roll stability over the lift-coefficient range with the flap up or down. Flights with the design tail were generally fairly steady until the model was disturbed. Once an oscillation started, however, it was almost impossible to get the model settled down again and the flight usually ended with the model crashing into the wall. The lateral motions of the model in flight with the design tail arrangement are presented in figures 12(a) and 13(a) for flap up and flap down, respectively. The first flight record in figure 12(a) represents the flight characteristics of the model under more or less steady flight conditions and the second illustrates the type of motion resulting from a disturbance. The flap-down model showed about the same characteristics as the flap-up model. (See fig. 13(a).)

The results of calculations made to determine the dynamic lateral stability characteristics of the model (table IV and figs. 14 and 15) showed fairly good agreement with the flight-test results. These model results can be converted to full-scale results for this particular airplane by multiplying the model values by the factor $\sqrt{10}$. Plotted on figures 14 and 15 are the stability boundaries and the $C_{n\beta}$ and $-C_{l\beta}$ values of the model with the different tail configurations. It is seen that the point representing the flap-up model with the design tail is slightly on the unstable side of the R = 0 boundary and the point representing the flap-down model shows a very small amount of stability. The calculated damping results showed a period of 1.51 seconds and a time to double amplitude of 8.41 seconds (5.55 cycles) for the flap-up model at a lift coefficient of 0.60. With the flap down, the period of the oscillation was 2.09 seconds and the time to damp to one-half amplitude was 37.51 seconds (17.93 cycles) for a lift coefficient of 1.2.

Also plotted in figures 14 and 15 are the NRCC values of $C_{n\beta}$ and $-C_{l\beta}$ for purposes of comparison with the free-flight-tunnel data. From the results of these figures, it is seen that the NRCC points are in the unstable region of the R = 0 boundary. The oscillatory stability of the airplane is therefore expected to be somewhat worse than that of the model if it is assumed that the stability boundaries for the airplane are similar to those for the model and the NRCC static tests are representative of the airplane.

CONFIDENTIAL

Flights made with increased tail size showed improved stability and control characteristics. As $C_{n\beta}$ was increased, the oscillations generally became more heavily damped and flights became steadier. With the large tip tails, however, a moderate disturbance would still start an oscillation that was difficult to control. The flight records for the configuration with large tip tails (figs. 12(b) and 13(b)) show some improvement over the flight records of the design tail configuration. The flap-down data of figure 13(b) represent the type of motion resulting from a disturbance and show that this oscillation can be controlled. The results of figures 14 and 15 show this condition to be slightly unstable with flap up and slightly stable with flap down. The calculated damping results showed a period of 1.39 seconds and a time to double amplitude of 11.59 seconds (8.35 cycles) for the flap-up model at a lift coefficient of 0.60. With the flap down, the period of the oscillation was 1.74 seconds and the time to damp to one-half amplitude was 10.93 seconds (6.26 cycles) for a lift coefficient of 1.2.

The flap-up model was also tested with design tip tails and large inboard tails and showed about the same flight characteristics as with the large tip tails. Figure 14 shows that the point representing this configuration is slightly below the R = 0 boundary. The calculated damping showed a period of 1.31 seconds and a time to double amplitude of 21.60 seconds (16.50 cycles) for a lift coefficient of 0.60.

With the further increase in directional stability by the installation of the large tip tails plus the large inboard tails, the stability with flap up was improved but the model could still be disturbed so as to start an oscillation which was not very heavily damped. The flight record of figure l2(c) shows this condition to have about the same flight characteristics as figure l2(b) but the opinion of the pilot was that the configuration with large tip tails plus large inboard tails was the most stable for the flap-up conditions. The calculated stability for this condition showed a period of 1.16 seconds and a time to damp to one-half amplitude of 18.28 seconds (15.80 cycles) for a lift coefficient of 0.60.

With the large tip and inboard tails and flap down, the oscillation was difficult to start and once it was started it appeared to damp in two or three cycles. The flight record of figure 13(c) shows about the same results as the flap-up data of figure 12(c) but here again the flap-up flights were generally a little worse than the flap-down flights. The calculated stability for this condition showed a period of 1.58 seconds and a time to damp to one-half amplitude of 4.31 seconds (2.72 cycles) for a lift coefficient of 1.2.

It was found from the flight tests of all conditions that once an oscillation was started, the model was more difficult to control with coordinated ailerons and rudders than with ailerons alone. It has been found from previous experience in the free-flight tunnel that models with poor Dutch roll stability are more difficult to fly with combined

aileron and rudder control, probably because of too much favorable yaw due to the rudder. The favorable yawing moment that occurs when the rudders are deflected in the normal manner appears to help build up the oscillation once the model is disturbed. Some flights were made with rudders reversed and the results showed that flights were better than those with rudder used in normal manner and were about as good as flights with ailerons alone.

Presented in figure 16 are the calculated damping characteristics of the airplane and the damping required by the U.S. Air Force (reference 8). It is seen that the flap-down configurations are slightly more stable than the flap-up configurations but none of the configurations meet the specified requirement.

From the results of the investigation it appears that fairly satisfactory lateral flying characteristics could be obtained on this airplane with a value of directional stability $C_{n_{\beta}}$ of at least 0.002. Good flying characteristics could probably be obtained with a smaller value of $C_{n_{\beta}}$ provided the positive effective dihedral $-C_{2\beta}$ could be kept small.

Comparison of Tailless Glider with Conventional-Type

Sweptback Airplane

A comparison of the calculated dynamic lateral stability characteristics of the N.R.L. tailless glider with those of a conventional-type sweptback fighter having a similar wing plan form and about the same inclination of the longitudinal principal axis of inertia showed that the tailless glider had poorer dynamic lateral stability. A comparison of the mass and aerodynamic parameters showed a much larger value of the damping-in-yaw parameter Cnr for the conventional type and a larger value of the rolling radius-of-gyration factor KXO for the all-wing type. The smaller value of C_{n_r} of the tailless glider is due partly to the shorter tail length which is inherent in this type of design, and the larger value of $K_{X_{O}}$ of the tailless glider is caused by the load distribution along the wing typical of all-wing airplanes. An allwing airplane usually has a mass distribution similar to that of a conventional-type airplane with wing-tip tanks. The results of references 9 to 11 show that such a mass distribution can be detrimental to dynamic lateral stability. In order to illustrate the importance of $K_{X_{O}}$ on the lateral stability characteristics in this particular case, calculations were made to determine the period and damping of the lateral oscillation for the model with the value of the rolling radius-ofgyration factor Kx_O reduced 25 and 50 percent. The yawing radius-ofgyration factor ${\rm K}_{\rm Z_{\rm O}}$ was reduced simultaneously with ${\rm K}_{\rm X_{\rm O}}$ because in a practical case reducing $K_{X_{O}}$ cannot be accomplished without also

reducing KZ_O. Results of these calculations (presented in table IV) showed large improvements in the damping characteristics. The calculations show that the lateral oscillation was made stable for the N.R.L. tailless glider in the design condition with flap up by reducing the yawing and rolling radii of gyration. The value of these parameters required for enough stability to meet the Air Force specification, however, would be impractical to attain for this type of design. This effect of mass distribution on lateral stability characteristics is covered more fully in references 9 to 11.

Additional calculations were also made to determine the effect on lateral stability of increasing $C_{n_{\mathbf{r}}}$ to a value corresponding to that of a conventional airplane. It was found that this increase in $C_{n_{\mathbf{r}}}$ had a stabilizing effect on the lateral stability characteristics but was not as great as the stabilizing effect caused by reducing the value of K_{X_O} to that of a conventional airplane, previously discussed in the preceding paragraph. Increasing $C_{n_{\mathbf{r}}}$ to a value corresponding to that of a conventional airplane corresponded to about a 20-percent decrease in the value of K_{X_O} .

CONCLUDING REMARKS

The following conclusions were drawn from the results of the freeflight-tunnel stability and control investigation on a $\frac{1}{10}$ -scale model of a Canadian tailless glider:

1. On the basis of comparison of the free-flight-tunnel tests and higher-scale NRCC static tests it is expected that the longitudinal stability of the airplane will be satisfactory with flap up but unsatisfactory near the stall with flap down.

2. The airplane is expected to have unsatisfactory lateral stability and control characteristics in the design configuration with the flap up and flap down. The model flights showed very low damping of the lateral oscillations.

3. Increasing the vertical-tail area improved the lateral stability of the model and it appeared that a value of $C_{\rm n\beta}$ of at least 0.002 per degree would probably be necessary for satisfactory lateral flying characteristics.

4. A comparison of the calculated dynamic lateral stability characteristics of the N.R.L. tailless glider with those of a conventionaltype sweptback airplane having a similar wing plan form and about the

13

same inclination of the principal longitudinal axis of inertia showed that the tailless glider had poorer lateral stability because of the relatively larger radius of gyration in roll and the smaller damping-in-yaw factor C_{n_r} .

Langley Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Air Force Base, Va.

U Joseph L. Johnson Aeronautical Research Scientist

Approved:

Thomas R. Harris

Thomas A. Harris Chief of Stability Research Division

jjm

REFERENCES

- 1. Shortal, Joseph A., and Osterhout, Clayton J.: Preliminary Stability and Control Tests in the NACA Free-Flight Wind Tunnel and Correlation with Full-Scale Flight Tests. NACA TN No. 810, 1941.
- 2. Shortal, Joseph A., and Draper, John W.: Free-Flight-Tunnel Investigation of the Effect of the Fuselage Length and the Aspect Ratio and Size of the Vertical Tail on Lateral Stability and Control. NACA ARR No. 3D17, 1943.
- 3. National Advisory Committee for Aeronautics: Aerodynamic Characteristics of Airfoils. NACA Rep. No. 315, 1929.
- 4. Zimmerman, Charles H.: An Analysis of Lateral Stability in Power-Off Flight with Charts for Use in Design. NACA Rep. No. 589, 1937.
- 5. Toll, Thomas A., and Queijo, M. J.: Approximate Relations and Charts for Low-Speed Stability Derivatives of Swept Wings. NACA TN No. 1581, 1948.
- 6. Bamber, Millard J.: Effect of Some Present-Day Airplane Design Trends on Requirements for Lateral Stability. NACA TN No. 814, 1941.
- 7. Rosenthal, G., and Callan, M. M.: Model Tests on the Static Lateral Stability of the N.R.L. Tailless Glider and Calculated Lateral Characteristics. NRCC (Ottawa) Lab. Note AE-5-47, Sept. 17, 1947.
- 8. Anon.: U. S. Air Force Specification for Flying Qualities of Piloted Airplanes. No. 1815-B, June, 1948.
- 9. Campbell, John P., and Seacord, Charles L., Jr.: The Effect of Mass Distribution on the Lateral Stability and Control Characteristics of an Airplane as Determined by Tests of a Model in the Free-Flight Tunnel. NACA Rep. No. 769, 1943.
- 10. Sternfield, Leonard: Some Considerations of the Lateral Stability of High-Speed Aircraft. NACA TN No. 1282, 1947.
- 11. Campbell, John P., and Toll, Thomas A.: Factors Affecting Lateral Stability and Controllability. NACA RM No. L8A28a, 1948.

NACA

TABLE I

DIMENSIONAL AND MASS CHARACTERISTICS OF N.R.L. TAILLESS GLIDER

AND SCALED-UP CHARACTERISTICS OF $\frac{1}{10}$ -SCALE MODEL TESTED

IN LANGLEY FREE-FLIGHT TUNNEL

	Scaled-up	Full-scale
Weight, lb	5060 3•786	3850 2 •88
<pre>Wing: Area, sq ft</pre>	373.5 46.67 5.84 39.4 -2.8 0.323 4.75 8.70 3.40 10.32 3.33 13.55	373.5 46.67 5.84 39.4 -2.0 0.323 4.75 8.70 3.40 10.32 3.33 10.30
Flap: Span, ft Chord, ft Hinge line, percent center-section chord Deflection. deg	19•03 2•580 70•00 60•00	19.03 2.580 70.00 60.0 longitudinal
Vertical-tail surfaces: Design tail: Total area (2 tails), sq ft	12.00 4.21 NACA 0012 3.5 20° in, 20° out	45.0 lateral 12.00 4.21 NACA 0012 3.5 22° in, 38° out
FTT large tail (tip or inboard): Total area (2 tails), sq ft Rudder area (2 tails), sq ft Section Aspect ratio Maximum deflection	30.00 15.00 NACA 4306 2.0 20 ⁰ in, 20 ⁰ out	
Controllers: Total area, sq ft	10.45 8.17 1.28	10.45 8.17 1.28
Trimming tips: Total area, sq ft Span, ft (1)	18.68 4.08	18.68 4.08
Center-of-gravity location: Percent center-section chord	52.00 (force test) 47.0 to 52.0 (flight test)	52.00
Moments of inertia: IX, slug-ft ²	14,700 16,600 3,150	9,500 11,500 2,500
Radius of gyration to wing span: k_{X_0}/b	0.207 .220 .096	0 •191 •210 •088

TABLE II

OF N.R.L. TAILLESS GLIDER TESTED IN

LANGLEY FREE-FLIGHT TUNNEL

-c_{lb} c_{nβ} Tail area, St/Sw total Configuration (per deg) (per deg) Flap-up configuration, $C_L = 0.6$: Tail off, FFT 0 0.0006 0.00075 Tail off, NRCC .00033 .00117 0 Design tip tail, FFT 0.032 (2 tails) .00095 .00125 Design tip tail. NRCC .032 (2 tails) .00050 .00125 Large tip tail, FFT .08 (2 tails) .00115 .00145 Design tip tail plus large inboard tail, FFT .112 (4 tails) .00132 .0016 Large tip tail plus large inboard tail, FFT .16 (4 tails) .00175 .0020 Flap-down configuration, CL = 1.2: Design tip tail, FFT .032 (2 tails) .00090 .00095 .032 (2 tails) Design tip tail, NRCC .00090 .00175 .08 (2 tails) .00140 Large tip tail, FFT .00130 Large tip tail plus large .16 (4 tails) .0018 .00135 inboard tail, FFT

CONFIDENTIAL

NACA

CONFIDENTIAL

TABLE III

STABILITY DERIVATIVES AND MASS CHARACTERISTICS USED

IN STABILITY CALCULATIONS

Items	Flap-up condition	Flap-down condition
W, lb S, ft ² b, ft ρ μb K_X K_Z K_{XZ} i/b \bar{z}/b CL α , deg ϵ , deg η , deg γ , deg C_{Yp} , per radian C_{Yp} , per radian a_{Cnp} , per radian a_{Cnp} , per radian	$\begin{array}{c} 5.06\\ 3.735\\ 4.667\\ 0.00238\\ 3.786\\ 0.207\\ 0.220\\ 0.00107\\ 0.130\\ 0\\ 0\\ 0.60\\ 8.0\\ -3.2\\ 11.2\\ -11.2\\ 0\\ 0\\ -0.0458 + CY_{\beta}(tail)\\ 0.0344 + Cn_{\beta}(tail)\\ 0.0344 + Cn_{\beta}(tail)\\ -0.30 + C_{2p}(tail)\\ -0.055 + Cn_{p}(tail)\\ 0.10 + C_{2p}(tail)\\ 0.10 + C_{$	$\begin{array}{c} 5.06\\ 3.735\\ 4.667\\ 0.00238\\ 3.786\\ 0.207\\ 0.220\\ 0.000695\\ 0.130\\ 0\\ 1.20\\ 4.0\\ -3.2\\ 7.2\\ -10.4\\ 0\\ 0\\ 0\\ -0.0458 + CY_{\beta}(tail)\\ 0.0344 + Cn_{\beta}(tail)\\ 0.0344 + Cn_{\beta}(tail)\\ -0.30 + C_{lp}(tail)\\ -0.055 + Cn_{p}(tail)\\ 0.00 + 0\end{array}$
^a Cl _r , per radian ^a Cn _n , per radian	$-0.016 + C_{nr(1)}$	$-0.025 + C_{nr(1)}$
$C_{Y_{\beta}(\text{tail})}$, per radian	^b Variable	^b Variable

^aTail contributions are determined from the following equations: $C_{n\beta(tail)} = -\frac{l}{b}C_{Y\beta(tail)}$ $C_{lp(tail)} = 2\left(\frac{\bar{z}}{b} - \frac{l}{b}\sin\alpha\right)^{2} C_{Y\beta(tail)}$ $C_{np(tail)} = C_{lr(tail)} = -2\frac{l}{b}\left(\frac{\bar{z}}{b} - \frac{l}{b}\sin\alpha\right)C_{Y\beta(tail)}$ $C_{nr(tail)} = 2\left(\frac{l}{b}\right)^{2} C_{Y\beta(tail)}$ CONFIDENTIAL

^bVaried systematically as independent variable.

1 alar

4.9

TABLE IV

CALCULATED PERIOD AND DAMPING DATA FOR $\frac{1}{10}$ -SCALE MODEL

OF N.R.L. TAILLESS GLIDER

						0s	cillat	ory mode		A	period	ic mod	ев			
		c _{ng}	-C ₂₆) Tail	T		~	~	Rolling		Spiral					
Coniguration	υL	(per deg)	(per deg)		TETT	1211		1811	Period	^т 1/2 (вес)	12 (sec)	C _{1/2} (cycles)	C2 (cycles)	^T 1/2 (sec)	T ₂ (sec)	^T 1/2 (sec)
Flap up	0.60	0.00095	0.00125	Design tip	1.514		8.41		5.55	0.1410		51.75				
Do	-do-	•00115	.00145	Large tip Design tip plus	1.39		21.60		8.35	•1380 •1365		30.10				
D0		-001	.0010	large inboard		10 00		0-	100000							
Do	-do-	•00175	•0020	Large tip plus large inboard	1.157	19.58		15.80		•1328		13.60				
Flap down	1.2	.00090	.00095	Design tip	2.09	37.51		17.93		.1921			3.59			
Do	-do-	•00140 •0018	.00130	Large tip	1.744	10.93		6.26		.1840			3.70			
D0	-40-	.0010		large inboard	1.70	1.07							5-70			
Flap up																
k_{X_0}/b , k_{Z_0}/b reduced	.60	.00095	.00125	Design tip	1.136	6.61		5.82		•0857		47.60				
25 percent																
$ k_{X_0} b, k_{Z_0} b$ reduced	.60	.00095	•00125	Design tip	•759	1.024		1.35		•0408		44.60				
50 percent											{					
	NACA						A.									

CONFIDENTIAL

NACA RM No . SL9C28

10

Þ

Figure 1.- System of axes and angular relationship in flight. Arrows indicate positive direction of angles. $\eta = \theta - \gamma - \epsilon$. CONFIDENTIAL

Figure 2.- The stability system of axes. Arrows indicate positive directions of moments, forces, and control-surface deflections. This system of axes is defined as an orthogonal system having their origin at the center of gravity and in which the Z-axis is in the plane of symmetry and perpendicular to the relative wind, the X-axis is in the plane of symmetry and perpendicular to the Z-axis, and the Y-axis is perpendicular to the plane of symmetry. CONFIDENTIAL

•

5

Wing area 3.73 ft² Span 4.64 ft Aspect ratio 5.83 ft Taper ratio 0.323 C.G. Location 52% center section chord Design tail area .032 S_W (2 tails) aspect ratio 3.5 FFT large tail area .080 S_W (2 tails aspect ratio 2.0

Figure 3.- Three-view drawing of a $\frac{1}{10}$ -scale model of N.R.L. tailless glider used in the Langley free-flight-tunnel investigation. All dimensions in inches. CONFIDENTIAL

Figure 4.- Top view of a $\frac{1}{10}$ -scale model of N.R.L. tailless glider tested in Langley free-flight tunnel. CONFIDENTIAL

Figure 5.- Three-quarter front view of $\frac{1}{10}$ -scale model of N.R.L. tailless glider tested in Langley free-flight tunnel. CONFIDENTIAL

Figure 6.- Lift, drag, and pitching-moment characteristics of $\frac{1}{10}$ -scale model of N.R.L. tailless glider tested in Langley free-flight tunnel compared with similar data from NRCC. Center of gravity = 52.0-percent center-section chord; $\psi = 0$; $\delta_r = 0$; $\delta_f = 0$; q = 3.00 pounds/square foot for free-flight-tunnel data and 26.8 pounds/square foot for NRCC data. **CONFIDENTIAL**

0 0

ō

4

Angle

of

....

CONFIDENTIAL

.10 0 -10 Pitching-moment, Cm

NACA

24

20

Figure 7.- Lift, drag, and pitching-moment characteristics of $\frac{1}{10}$ - scale model of N.R.L. tailless glider with flap deflected tested in the Langley free-flight tunnel compared with similar data from NRCC. Center of gravity = 52.0-percent center-section chord; $\psi = 0$; $\delta_r = 0$; q = 3.00 pounds/square foot for free-flight-tunnel data and 26.8 pounds/square foot for NRCC data. CONFIDENTIAL

12 16 ottock, oc, deg

......

Figure 8.- Lateral stability characteristics of $\frac{1}{10}$ -scale model of N.R.L. tailless glider tested in Langley free-flight tunnel compared with the data of the NRCC. Center of gravity = 52-percent center-section chord for free-flight-tunnel data and 51.0-percent center-section chord for NRCC data. $\delta_r = 0$; $\delta_f = 0$; q = 3.00 pounds/square foot for free-flight-tunnel data and 47.5 pounds/square foot for NRCC data.

CONFIDENTIAL Trimmers Source $\boldsymbol{\delta}_{C}$ δ_f Center Outboard Trimming Tip Canopies Tail \cap FFT -20 60 Ω -20 -20 ∩ff Design tip п FFT -20 60 0 -20 -20 Off Large tip - FFT -20 60 -20 0 -20 Off Large tip + large inboard NRCC 0 45 - -----10 On Design tip Lateral · force parameter , - CV_B .01 D С \mathbf{x} \cap 0 .003 Directional-stability parameter, Cn_B Ó .002 ₫c F .001 ß 0 .003 Ż Effective-dihedral parameter, - $C_{\ell eta}$.002 ₽ <u>N</u> ê .001 NACA D 0

> 0 .2 .4 .6 .8 1.0 1.2 1.4 Lift coefficient, CL

Figure 9.- Lateral stability characteristics of $\frac{1}{10}$ - scale model of N.R.L. tailless glider with flap deflected tested in Langley freeflight tunnel and compared with data of NRCC. Center of gravity = 52.0-percent center-section chord for free-flighttunnel data and 51.0-percent center-section chord for NRCC data. $\delta_r = 0$; q = 3.00 pounds/square foot for free-flight-tunnel data and 47.5 pounds/square foot for NRCC data. **CONFIDENTIAL**

...

...

Right aileron deflection, δa_r , deg

Figure 10.- Variation of aileron effectiveness with angle of attack for $\frac{1}{10}$ -scale model of N.R.L. tailless glider tested in Langley free-flight tunnel. Center of gravity = 52.0-percent centersection chord; q = 3.00 pounds/square foot; $\delta_{a_{\rm L}} = -20^{\circ}$; design vertical tail; Trimmers = -20° ; Trimming tips = -20° . CONFIDENTIAL

NACA RM No. SL9C28

Figure 11.- Variation of rudder effectiveness with angle of attack for the $\frac{1}{10}$ -scale model of N.R.L. tailless glider tested in Langley freeflight tunnel. Center of gravity = 52-percent center-section chord; $q = 3.00 \text{ pounds/square foot; design vertical tail; } \delta_c = -20^\circ$; Trimmers = -20°; Trimming tips = -20°; $\delta_{r_L} = 0^\circ$. CONFIDENTIAL

Figure 12.- Flight records of $\frac{1}{10}$ -scale model of N.R.L. tailless glider obtained in Langley free-flight tunnel. Flap-up configuration; ailerons alone. CONFIDENTIAL

(c) Large tip tail plus large inboard tail.

Figure 13.- Flight records of $\frac{1}{10}$ -scale model of N.R.L. tailless glider obtained in Langley free-flight tunnel. Flap-down configuration; ailerons alone. CONFIDENTIAL

CONFIDENTIAL

Condition	Source
.0□�□<	FFT FFT FFT NRCC

Design tail Large tip tail Design tail + large inboard tail Large tip tail + large inboard tail Design tail

Configuration

CONFIDENTIAL

Condition	Source	Configuration
0	FFT	Design tail
	FFT	Large tip tail
\Box	FFT	Large tip tail + large
Δ	NRCC	Design tail

il

il + large inboard tail

Design tail

л,

Restriction/Classification Cancelled

Condition ○ ○ ○

Tail configuration Design tip

Large tip Design tip + large inboard Large tip + large inboard

Figure 16.- Comparison of calculated damping characteristics of N.R.L. tailless glider with U.S. Air Force damping specifications. CONFIDENTIAL Restriction/Classification Cancelled