
Increased Cancer Mortality Risk for NASA's ISS Astronauts: the Contribution of Diagnostic Radiological Examinations

C. W. Dodge*¹, S. M. Gonzalez², C. E. Picco¹, S. L. Johnston², M. R. Shavers³, M. Van Baalen²

54th Annual Meeting of the Health
Physics Society
July 13, 2009

¹ University of Houston, College of Health and Human Performance

² National Aeronautics and Space Administration (NASA) at Johnson Space Center Houston, TX

³ Wyle Integrated Science and Engineering Group, Houston, TX

NASA Policy & Practices

- NASA Standard 3001 NASA SPACE FLIGHT HUMAN SYSTEM STANDARD VOLUME 1: CREW HEALTH
 - Career exposure to radiation is limited to not exceed 3 percent Risk of Exposure Induce Death for fatal cancer.
 - Short-term dose limits are imposed to prevent clinically significant noncancer health effects including performance degradation, sickness, or death in-flight
 - Limited by specific organ, i.e. Blood forming organs, lens of the eye, skin, etc
- For limitation of astronaut risks, NASA monitor all exposures to radiation from spaceflight, occupationally related aviation, and medical exposures required for flight certification
 - The monitoring of aviation and medical exposures is a departure from accepted practices within the ground based radiological protection community

Note: this presentation focuses on radiation exposure risks incurred by the Astronaut Corp

Motivation

 The NASA Radiation Health Officer found a need to educate physicians and astronauts on the radiation exposures and relative risks from various procedures

- Particularly at a time when new monitoring requirements were being considered
- This information can also be useful for counseling astronauts reluctant of x-ray exams for fear it may limit their flight career

Required X-rays

Diagnostic X-ray images are required for:

- Acceptance into the Astronaut Corps.
- Screening for mission impacting health issues
- Monitoring of physiological changes due to longterm spaceflight
- Verification of recovery to pre-flight health following long-term spaceflight

Currently Required X-rays

Monitored X-ray Exams	<u>Frequency</u>	
Bone Density (DEXA)	Upon selection into Corps	
	Tri-annual	
	6 months post flight until density recovery	
Chest x-ray	Annual	
Coronary Calcification	Upon selection	
(EBCT)	Males 40+ every 5 years	
	Females 50+ every 5 years	
Dental		
Bitewing	Once per year	
Panoramic	Every 5 years	
Mammogram	Upon selection	
	40-50 years old every two years	
	50+ years annual exams	

Dose Computation

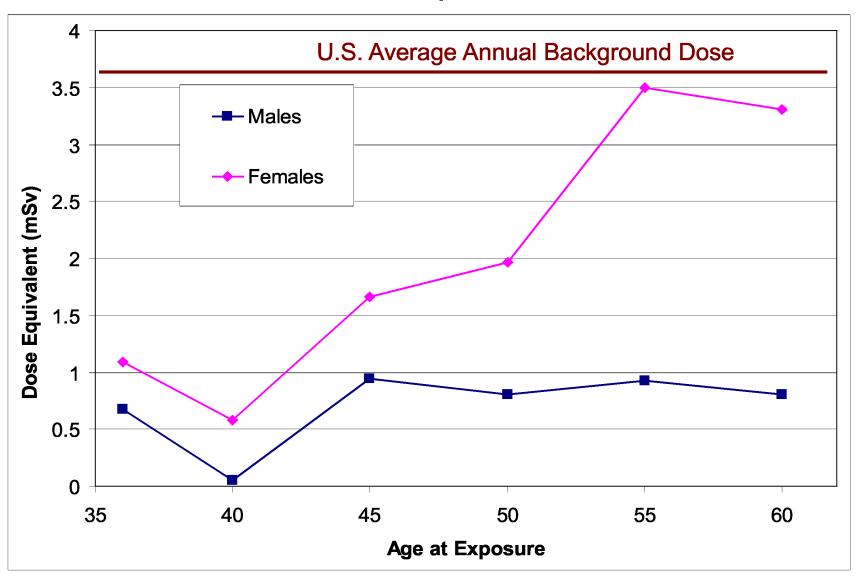
Doses were computed on the average male and female astronaut using commercially available software*:

<u>Male :</u>		<u> Female:</u>		
Height Weight	177 cm 82.7 Kg	Height Weight	169 cm 63.1 Kg	
Average	age at entry	into the Cor	ps 36	
Average age at first mission				
Average age at second mission				

^{*} PCXMC and ImPACT

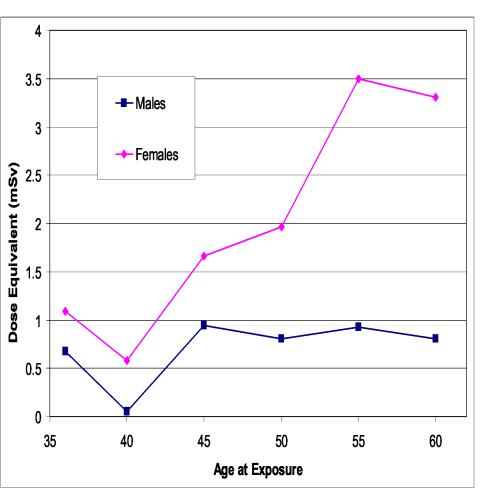
Dose Results

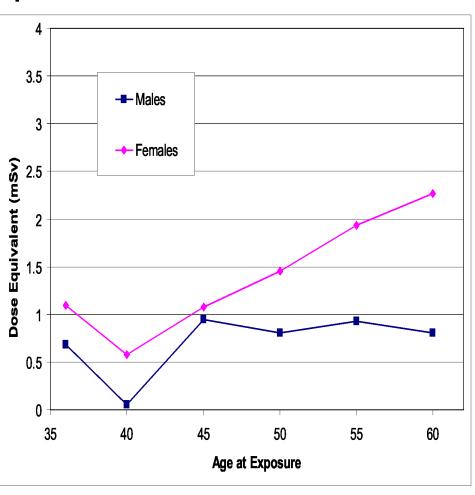
Males


Exam Type	Effective dose per series (mSv)	Percent of average U.S. annual dose
Chest	0.1	3.0 %
EBCT	0.3	8.3 %
Dental Bitewing (4)	0.028	0.78 %
or Panoramic	0.03	0.83 %
DEXA series (7)	0.013	0.4 %

Females

Exam Type	Effective dose per series (mSv)	Percent of average U.S. annual dose
Chest	0.1	3.0 %
EBCT	0.3	8.3 %
Dental		
Bitewing (4)	0.028	0.78 %
or	0.03	0.83 %
Panoramic		
DEXA series (7)	0.025	0.7 %
Mammogram	0.52	14.4 %


Dose Results


Annual Dose from Required Medical Exams

Dose Results

Annual Dose from Required Medical Exams

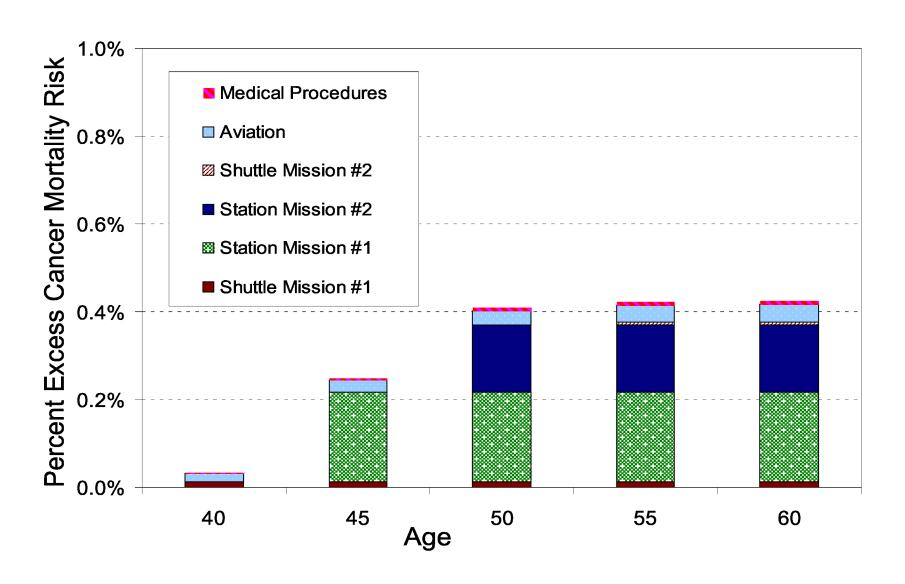
All Breast exams from X-rays

Breast exams Alternating between X-rays and MRIs

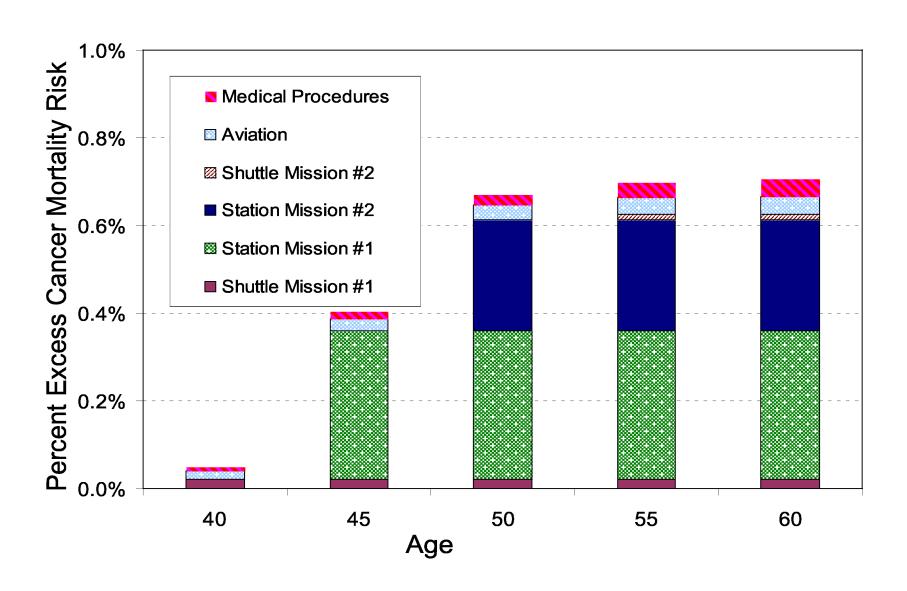
NASA's Risk Model

- REID Risk of Exposure Induced Death
 - Cancer induction is believed to be the most significant health impact from radiation exposure
 - In current model risk varies with the age and sex of the astronaut
 - Non-cancer mortality not currently included
- NASA is required to manage to below a 3% excess risk of death
 - Uncertainties in the risk projection are large enough that NASA manages to the 95% Confidence Interval
- Data on non-cancer mortality are being accumulated and should be reflected in NASA's next risk model

Risks in Perspective


- To compare doses from medical exposures the risks were compared to a long astronaut career
 - Continuing availability for spaceflight is the main concern for most astronauts

Medical doses were compared to a male and female astronaut with a total of 2 typical shuttle missions and 2 typical space station missions.


Currently

Typical Shuttle mission – 300-400 km – 2 weeks – 8 mSv (800 mrem) Typical Station mission – 300-400 km – 6 months – 80 mSv (8000 mrem)

Cumulative Excess Mortality Risk Male

Cumulative Excess Mortality Risk Female

Conclusions

- Medical has a very low overall contribution
 - 1 day in space ≈ 2.5 chest x-rays (0.10 mSv)
 - 1 day in space ≈ 43 days on earth (3.6 mSv / yr)
- Čareer cumulative mortality risk from diagnostic x-rays
 - Males 0.014 % or 1.4 in 10,000
 - Females 0.046 % or 4.6 in 10,000
- Medical x-rays will not prohibit an astronaut (male or female) with an long career from additional missions

Questions?