
36 NASA Tech Briefs, July 2009

nals. For the ith mixture signal, the dis-
torted signal is given by xi = fi(vi), where
fi is one of the initially unknown nonlin-
ear functions. Thus, the vector 

x(n) = [x1(n),x2(n),...xN(n)]T

represents instrumentation signals pre-
sented for analysis. The distortion in sig-
nal xi is removed by means of a corre-
sponding initially unknown inverse
nonlinear function gi. Finally, the signals
are unmixed by means of initially un-

known matrix W to obtain output vector 
u(n) = [u 1(n),u2(n),...uN(n)]T.

In the ideal case, W would be the inverse
of A and the output vector u would equal
the vector, s, of source signals.

The particular nonlinear ICA problem
is to calculate the nonlinear inverse func-
tions gi and matrix W such that u calcu-
lated by use of them is a close approxima-
tion of s. For the purpose of the present
algorithm for solving this problem, it is

assumed that the inverse nonlinear func-
tions gi are smooth and can be approxi-
mated by polynomials. The algorithm
finds the components of the unmixing
matrix W and the coefficients of the poly-
nomial approximations of gi by a gradi-
ent-descent method. This algorithm uti-
lizes the kurtosis of the components of
the output vector u as an objective func-
tion (in effect, an error measure) that it
seeks to minimize. In using the kurtosis,
this algorithm stands in contrast to prior
algorithms that utilize other objective
functions, including statistical functions
other than the kurtosis.

This work was done by Vu Duong and
Allen Stubberud of Caltech for NASA’s Jet
Propulsion Laboratory. 

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:

Innovative Technology Assets Management
JPL
Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
(818) 354-2240
E-mail: iaoffice@jpl.nasa.gov
Refer to NPO-43088, volume and number

of this NASA Tech Briefs issue, and the
page number.

f1
v1s1 g1

x1 u1

f2
v2s2 g2

x2 u2

fN
vNsN gN

xN uN

A W

Mixing Model Unmixing Model

Mixing and Distortion Operations and their inverses are represented in these block-diagram represen-
tations of mixing and unmixing models.

“Robust Real-Time Reconfigurable
Robotics Software Architecture”
(“R4SA”) is the name of both a software
architecture and software that embodies
the architecture. The architecture was
conceived in the spirit of current prac-
tice in designing modular, hard, real-
time aerospace systems. The architec-
ture facilitates the integration of new
sensory, motor, and control software
modules into the software of a given ro-
botic system. R4SA was developed for
initial application aboard exploratory
mobile robots on Mars, but is adaptable
to terrestrial robotic systems, real-time
embedded computing systems in gen-
eral, and robotic toys. 

The R4SA software, written in clean
ANSI C, establishes an onboard, real-
time computing environment. The
R4SA architecture features three lay-
ers: The lowest is the device-driver
layer, the highest is the application

layer, and the device layer lies at the
middle (see figure).

The device-driver layer handles all
hardware dependencies. It completely

hides the details of how a device works.
Activities directed by users are performed
by means of well-defined interfaces. Each
type of device driver is equipped with its
own well-defined interface. For example,
the device-driver interface for an analog-
to-digital converter differs from that for a
digital-to-analog converter.

The device layer provides the means
for abstracting the high-level software in
the application layer from the hardware
dependencies. The device layer provides
all motion-control computations, includ-
ing those for general proportional + in-
tegral + derivative controllers, profilers,
controllers for such mechanical compo-
nents as wheels and arms, coordinate-
system transformations for odometry
and inertial navigation, vision process-
ing, instrument interfaces, communica-
tion among multiple robots, and kine-
matics for a multiple-wheel or
multiple-leg robot.

Robust Software Architecture for Robots
Generalized software can be readily tailored for specific applications.
NASA’s Jet Propulsion Laboratory, Pasadena, California

The R4SA Architecture features three levels
correspond ing to different levels of abstraction.

Device Driver Layer

Hardware

Device Layer

Application Layer

S
Y
S
T
E
M



NASA Tech Briefs, July 2009 37

The application layer provides applica-
tion programs that a robot can execute.
Examples of application programs in-
clude those needed to perform such pre-
scribed maneuvers as avoiding obstacles
while moving from a specified starting
point to a specified goal point or turning
a robot in place through a specified az-
imuthal angle. Each robot is provided
with application software representing its
own unique set of commands. The soft-
ware establishes a graphical user inter-
face (GUI) for exchanging command in-
formation with external computing
systems. Via the GUI and its supporting
interface software, a user can select and
assemble, from the aforementioned set,
commands appropriate to the task at
hand and send the commands to the

robot for execution. System software that
interacts with the R4SA software at all
three levels establishes a synchronized
control environment.

The R4SA software features two
modes of execution: before real time
(BRT) and real time (RT). In the BRT
mode, a text configuration file is read in
(each robot has its own unique file) and
then device-driver-layer, device-layer,
and application-layer initialization func-
tions are executed. If execution is suc-
cessful, then the system jumps into the
RT mode, in which the system is ready to
receive and execute commands.

One goal in developing the R4SA ar-
chitecture was to provide one computer
code for many robots. The unique exe-
cutable code for each robot is built by

use of a configuration feature file. The
set of features for a given robot is se-
lected from a feature database on the
basis of the hardware and mechanical
capabilities of that robot. Recompilation
of code is straightforward: modifications
can readily be performed in the field by
use of simple laptop-computer develop-
ment and debugging software tools.

This work was done by Hrand Aghazar-
ian, Eric Baumgartner, and Michael Garrett
of Caltech for NASA’s Jet Propulsion Labora-
tory. Further information is contained in a
TSP (see page 1). 

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-41796.

R4SA for Controlling Robots
NASA’s Jet Propulsion Laboratory, Pasadena, California

The R4SA GUI mentioned in the im-
mediately preceding article is a user-
friendly interface for controlling one or
more robot(s). This GUI makes it possi-
ble to perform meaningful real-time
field experiments and research in robot-
ics at an unmatched level of fidelity,
within minutes of setup. It provides such
powerful graphing modes as that of a
digitizing oscilloscope that displays up to
250 variables at rates between 1 and 200
Hz. This GUI can be configured as mul-
tiple intuitive interfaces for acquisition
of data, command, and control to en-

able rapid testing of subsystems or an en-
tire robot system while simultaneously
performing analysis of data.

The R4SA software establishes an intu-
itive component-based design environ-
ment that can be easily reconfigured for
any robotic platform by creating or edit-
ing setup configuration files. The R4SA
GUI enables event-driven and condi-
tional sequencing similar to those of
Mars Exploration Rover (MER) opera-
tions. It has been certified as part of the
MER ground support equipment and,
therefore, is allowed to be utilized in

conjunction with MER flight hardware.
The R4SA GUI could also be adapted to
use in embedded computing systems,
other than that of the MER, for com-
manding and real-time analysis of data.

This work was done by Hrand Aghazarian
of Caltech for NASA’s Jet Propulsion Labora-
tory. Further information is contained in a
TSP (see page 1). 

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-41797.

Bio-Inspired Neural Model for Learning Dynamic Models
This model could be a basis for fast speech- and image-recognition computers.
NASA’s Jet Propulsion Laboratory, Pasadena, California

A neural-network mathematical
model that, relative to prior such mod-
els, places greater emphasis on some of
the temporal aspects of real neural
physical processes, has been proposed
as a basis for massively parallel, distrib-
uted algorithms that learn dynamic
models of possibly complex external
processes by means of learning rules
that are local in space and time. The al-
gorithms could be made to perform
such functions as recognition and pre-
diction of words in speech and of ob-
jects depicted in video images. The ap-

proach embodied in this model is said
to be “hardware-friendly” in the follow-
ing sense: The algorithms would be
amenable to execution by special-pur-
pose computers implemented as very-
large-scale integrated (VLSI) circuits
that would operate at relatively high
speeds and low power demands.

It is necessary to present a large
amount of background information to
give meaning to a brief summary of the
present neural-network model:
• A dynamic model to be learned by the

present neural-network model is of a

type denoted an internal model or pre-
dictor. In simplest terms, an internal
model is a set of equations that pre-
dicts future measurements on the basis
of past and current ones. Internal
models have been used in controlling
industrial plants and machines (in-
cluding robots).

• One of the conclusions drawn from
Pavlov’s famous experiments was the
observation that reinforcers of learn-
ing (basically, rewards and punish-
ments) become progressively less effi-
cient for causing adaptation of


