The application layer provides applica-
tion programs that a robot can execute.
Examples of application programs in-
clude those needed to perform such pre-
scribed maneuvers as avoiding obstacles
while moving from a specified starting
point to a specified goal point or turning
a robot in place through a specified az-
imuthal angle. Each robot is provided
with application software representing its
own unique set of commands. The soft-
ware establishes a graphical user inter-
face (GUI) for exchanging command in-
formation with external computing
systems. Via the GUI and its supporting
interface software, a user can select and
assemble, from the aforementioned set,
commands appropriate to the task at
hand and send the commands to the

robot for execution. System software that
interacts with the R4SA software at all
three levels establishes a synchronized
control environment.

The RA4SA software features two
modes of execution: before real time
(BRT) and real time (RT). In the BRT
mode, a text configuration file is read in
(each robot has its own unique file) and
then device-driver-layer, device-layer,
and application-layer initialization func-
tions are executed. If execution is suc-
cessful, then the system jumps into the
RT mode, in which the system is ready to
receive and execute commands.

One goal in developing the R4SA ar-
chitecture was to provide one computer
code for many robots. The unique exe-
cutable code for each robot is built by

use of a configuration feature file. The
set of features for a given robot is se-
lected from a feature database on the
basis of the hardware and mechanical
capabilities of that robot. Recompilation
of code is straightforward: modifications
can readily be performed in the field by
use of simple laptop-computer develop-
ment and debugging software tools.

This work was done by Hrand Aghazar-
ian, Eric Baumgartner, and Michael Garrett
of Caltech for NASA's Jet Propulsion Labora-
tory. Further information is contained in a
TSP (see page 1).

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-41796.

¢ R4SA for Controlling Robots

NASA's Jet Propulsion Laboratory, Pasadena, California

The R4SA GUI mentioned in the im-
mediately preceding article is a user-
friendly interface for controlling one or
more robot(s). This GUI makes it possi-
ble to perform meaningful real-time
field experiments and research in robot-
ics at an unmatched level of fidelity,
within minutes of setup. It provides such
powerful graphing modes as that of a
digitizing oscilloscope that displays up to
250 variables at rates between 1 and 200
Hz. This GUI can be configured as mul-
tiple intuitive interfaces for acquisition
of data, command, and control to en-

able rapid testing of subsystems or an en-
tire robot system while simultaneously
performing analysis of data.

The R4SA software establishes an intu-
itive component-based design environ-
ment that can be easily reconfigured for
any robotic platform by creating or edit-
ing setup configuration files. The R4SA
GUI enables event-driven and condi-
tional sequencing similar to those of
Mars Exploration Rover (MER) opera-
tions. It has been certified as part of the
MER ground support equipment and,
therefore, is allowed to be utilized in

conjunction with MER flight hardware.
The R4SA GUI could also be adapted to
use in embedded computing systems,
other than that of the MER, for com-
manding and real-time analysis of data.

This work was done by Hrand Aghazarian
of Caltech for NASA's Jet Propulsion Labora-
tory. Further information is contained in a
TSP (see page 1).

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-41797.

3 Bio-Inspired Neural Model for Learning Dynamic Models

This model could be a basis for fast speech- and image-recognition computers.
NASA's Jet Propulsion Laboratory, Pasadena, California

A neural-network mathematical
model that, relative to prior such mod-
els, places greater emphasis on some of
the temporal aspects of real neural
physical processes, has been proposed
as a basis for massively parallel, distrib-
uted algorithms that learn dynamic
models of possibly complex external
processes by means of learning rules
that are local in space and time. The al-
gorithms could be made to perform
such functions as recognition and pre-
diction of words in speech and of ob-
jects depicted in video images. The ap-

NASA Tech Briefs, July 2009

proach embodied in this model is said
to be “hardware-friendly” in the follow-
ing sense: The algorithms would be
amenable to execution by special-pur-
pose computers implemented as very-
large-scale integrated (VLSI) circuits
that would operate at relatively high
speeds and low power demands.

It is necessary to present a large
amount of background information to
give meaning to a brief summary of the
present neural-network model:

» A dynamic model to be learned by the

present neural-network model is of a

type denoted an internal model or pre-
dictor. In simplest terms, an internal
model is a set of equations that pre-
dicts future measurements on the basis
of past and current ones. Internal
models have been used in controlling
industrial plants and machines (in-
cluding robots).

* One of the conclusions drawn from
Pavlov’s famous experiments was the
observation that reinforcers of learn-
ing (basically, rewards and punish-
ments) become progressively less effi-
cient for causing adaptation of

37



