

Optical Thin Film Modeling Using FTG's FilmStar Software

Scott Freese SGT, Inc. / GSFC Code 546 2009 Contamination and Coatings Workshop 23 July 2009

Optical Background

- Every material has basic optical properties that define its interaction with light
 - The index of refraction (n) and extinction coefficient (k) vary for the material as a function of the wavelength of the incident light.
- Also significant are the phase velocity and polarization of the incident light
- These inherent properties allow for the accurate modeling of light's behavior upon contact with a surface
 - Reflectance, Transmittance, Absorptance

Reflectance Curve

of an Aluminum Mirror

 Comparison of modeled opaque Aluminum film (left) to NIST Standard for Vapor Deposited Aluminum (right)

Optical Background

- Reflectance is calculated by:
 - $R = (N_{sub} N_{med})^2 / (N_{sub} -$
 - N_{med} = 1 for vacuum, ≈
 - N = n ik; complex whe negligible
- For glass (SiO₂), n ≈ 1...
 0 in the visible range
 - R = .04, or 4% at each interface
- For a lens, ~8% of inci light is lost
 - Imagine with complex, multiple optic system!

Unwanted Reflectance

- By the time light reaches a sensor, consequential loss can occur.
- This has obvious negative effects on data gathering ability.
 - Less light received, less information to analyze
- Reflectance must be minimized in order to maximize throughput.
 - Or for mirrors, reflectance would ideally be maximized.
 - A similar technique is used.

<u>Optimization</u> of Optical Behavior

- For a single layer anti-reflective coating:
 - $n_{medium} / n_{coating} = n_{coating} / n_{substrate}$
 - $n_{coating} = \sqrt{n_{substrate}}$, since $n_{medium} = 1$ for vacuum/air
- Can be further optimized by adjusting layer thickness.
 - Even more so by introducing multiple layers.

Optimization of Optical Behavior

- Since glass has an index of refraction of n = 1.52, the ideal single layer AR coating has n = 1.23
 - Closest common film is MgF_2 , n = 1.38
 - Can reduce loss to ~1%, a 4x improvement over bare surface.

<u>Optimization</u> of Optical Behavior

- Reflectance is actually optimized for a defined wavelength range
 - Since *n*, *k* are wavelength specific
- Principle is used to create coatings with a specific purpose
 - Most instruments focus on a specific wavelength range as well
 - e.g. GSFC Dark Mirror Coating
 - Minimizes reflectance in the visible spectrum

Optimization

of Optical Behavior

- Comparison of measured dark mirror (left) reflectance to modeled (right)
 - Standard layer thicknesses were obtained from George Harris of SGT, Inc./GSFC Code 546
 - From substrate: 100nm Al, 37-40 nm SiO, 5-7 nm Cr, 50-53 nm SiO
 - Thicknesses used in model:

• From substrate: 100nm Al, 38nm SiO, 12nm Cr, 50nm SiO

Use of FilmStar Software

- FilmStar automates the calculation of reflectance (as well as transmittance, absorptance) for each wavelength
 - Uses data tables of *n* and *k* values for materials
 - Many common materials included, but still a need for others along with extended/updated tables of existing materials
- Task broken into two individual pieces of software
 - Index and Design
 - Index: creates/modifies data tables of n, k values
 - <u>Design</u>: the workhorse
 - Incorporates data tables, calculates behavior, and allows for modification and optimization.

Use of FilmStar: Design

- Allows for creation of custom coatings
 - First, a substrate is selected from materials
 - Can model bare substrate, one layer, or numerous layers
 - Each layer also to be selected from list of materials
 - Each set to custom thickness
- Automated calculation of optical behavior
 - Numerous options for results
 - %R, %T, %A, thickness relationship
 - Makes calculation using *n*, *k* values
 - Leaves option for what reflections to take into account

- Layer thickness is first input manually
- Design then has a function for optimization
 - User selects a target reflectance (or A, T)
 - Can be selected for any wavelength range
 - User also has option to select what layers the program is allowed to adjust
 - When inputs are set, the program calculates the coating thickness required to meet target
 - Further inputs for maximum change, and number of iterations to perform

- The JWST Primary Mirror has a base gold film, with a protective coating
 - Gold is thick enough to be considered substrate
- Optimizing the surface coating
 - Exact "formula" unknown, but similar concept used
 - Started with formula of:
 - Gold Substrate; 30nm Al₂O₃; 200nm SiO_x
 - Optimization for $1\mu m$ led to formula of
 - Gold Substrate; 77nm Al₂O₃; 241nm SiO_x
 - Increase from 97.1 %R to 97.9 %R at 1 μm

Optimization of JWST Primary Mirror for Reflectance at 1um

Contamination Modeling

- Extra advantage to thin film modeling
 - Can also model films that shouldn't be present
 - Determine worst case scenarios for materials expected to be present.
 - Need to assume a perfect thin film
 - e.g. Water ice on JWST Primary mirror

- Further capability of determining contamination details from observed data
 - Change in behavior of sensors can be related to a contamination film on it or in optics path
- Possible to classify the type of contamination, as well as thickness
 - Also possible to rule out a specific contaminant, or contamination in general

- SDO HMI Throughput Issue
 - Data showed an apparent dramatic signal difference between two CCDs at -90C in thermal vacuum cycling.
 - Possibly a significant change in throughput, or possibly data error
 - Film of water ice proposed by vendor, among other possible issues.
 - Exact CCD layering was unknown, but similar was modeled.
 - Created analysis of transmittance vs. thickness of water ice on a likely CCD substrate
 - At 473 nm, the peak wavelength of LED test source

Contamination Modeling

- Model showed a maximum increase of ~3% in transmittance with water ice on SiO₂ substrate (a likely CCD surface)
 - Significantly less change than what was observed.
 - Meant that water ice contamination was probably not the culprit
 - Limited data made it difficult to determine what was or was not the real cause
 - Also possible the effect was a data error in CCD efficiencies, not a real transmission effect

Limitations and Weakness

For Thin Film Modeling

- Need a complete and accurate model of the optical system
 - Inaccuracy in layers, materials, or thickness can greatly affect the outcome
 - Must interact with instrument teams to increase modeling strength
- Limited n, k data for some materials
 - Possibility for in house measuring

Limitations and Weakness

For Contamination Modeling

- Must assume a perfect thin film
 - Contamination is often scattered and/or localized
 - Water condenses in spots converging outward
 - Think of frost on a car windshield
 - Possible interpretation as a weighted average of contamination's effect on the exposed optical area
- Must have an idea of what contaminants to expect
 - Some cases fairly predictable
 - Based on surface temperature for condensation

Future Capabilities

- Possibility for determining *n*, k values for less common materials, especially contaminants
 - Can be performed with existing spectroreflectometer instruments and extended FilmStar software: *Measure*
- Increased interaction with optical systems designers will vastly improve the modeling capability
 - Should also lead to better understanding of contamination limits, and improved contamination control plans