NASA/TM-2009-215723/REV1 NESC-PB-04-05

White Paper on Factors of Safety

Ivatury Raju/NESC and John Stadler/NESC Langley Research Center, Hampton, Virginia

Julie Kramer-White/NESC Johnson Space Center, Houston, Texas

Robert Piascik/NESC Langley Research Center, Hampton, Virginia Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peerreviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing information desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at <u>http://www.sti.nasa.gov</u>
- E-mail your question to <u>help@sti.nasa.gov</u>
- Fax your question to the NASA STI Information Desk at 443-757-5803
- Phone the NASA STI Information Desk at 443-757-5802
- Write to: STI Information Desk NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320

NASA/TM-2009-215723/REV1 NESC-PB-04-05

White Paper on Factors of Safety

Ivatury Raju/NESC and John Stadler/NESC Langley Research Center, Hampton, Virginia

Julie Kramer-White/NESC Johnson Space Center, Houston, Texas

Robert Piascik/NESC Langley Research Center, Hampton, Virginia

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23681-2199

October 2012

Revision History

Revision 1 (Oct. 2012) - Table 3.2 has been revised and included as Appendix C.

The use of trademarks or names of manufacturers in the report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320 443-757-5802

Title:

Document #:

White Paper on Factors of Safety

Version:

1.0

Signature Page

Original signature on file Ivatury Raju, Lead, NESC-LaRC NDE - Structures Original signature on file John Stadler, NESC-LaRC SEO – Systems Engineer

Original signature on file Julie Kramer-White, NESC-JSC NDE – Mechanical Analysis Original signature on file Robert Piascik, NESC-LaRC NDE - Materials

Table of Contents

1.	XECUTIVE SUMMARY	1
2.	VTRODUCTION	2
3.	ACTORS OF SAFETY (FOS)	4
3.		
	1.1. Alternate Definitions	5
3.	Basis of Factor of Safety	7
3.	FOS _{ult} for Airframes	3
3.	FOS _{ult} for Aerospace Structures	
	URRENT FACTOR OF SAFETY STANDARDS 10	
4.	NASA FOS Standards10)
4.	Non-NASA Standards1	
	ROJECT FOS _{ult} AUDIT 12	
5.		
	1.1. Document(s) for structural FOS _{ult}	
	1.2. Requirements for structural FOS _{ult}	
	1.3. FOS _{ult} definition	
	1.4. Waivers or deviations from this requirement	
	1.5. Waivers or deviations documentation	
	1.6. List of current waivers to structural FOS _{ult}	
5.	External Tank (J. Neeley, MSFC) 17	
	2.1. Documentation for structural FOS _{ult}	
	2.2. Requirements for structural FOS _{ult}	
	2.3. FOS _{ult} definition 17	7
	2.4. Waiver or deviations from this requirement	7
	2.5. Waivers or deviations documentation	
	2.6. List of current waivers to structural FOS _{ult}	
5.	Other Space Shuttle Program Elements (J. Kramer-White, JSC)	
	3.1. Document(s) for structural FOS _{ult}	
	3.2. Requirements for structural FOS _{ult}	
	3.3. FOS _{ult} definition	
	3.4. Waivers or deviations from this requirement	
	3.5. Waivers or deviations documentation	
-	3.6. List of current waivers to structural FOS _{ult}	
5.	X-43 (M. Kehoe, DRFC)	
	4.1. Documentation for structural FOS _{ult}	
	4.2. Requirements for structural FOS	
	4.3. FOS _{ult} definition	
	4.4. Waiver or deviations from this requirement	
	4.5. Waivers or deviations documentation	
-	4.6. List of current waivers to structural FOS_{ult}	
5.		
	5.1. Documentation for structural FOS _{ult}	5

5.5.2	Requirement for structural FOS _{ult}	
5.5.3	FOS _{ult} Definition	
5.5.4		
5.5.5	5. Waiver or deviations documentation	
5.5.6	5. List of current waivers to structural FOS _{ult}	
5.6.	Audit Summary	
	CUSSION AND RECOMMENDATIONS	
6.1.	FOS _{ult} when testing is not available	
6.2.	Requirement Relaxation	
	FOS _{ult} Waivers Not a Precedent	
6.4.	Maintaining FOS Over the Life of a Program	
	Probabilistic Approaches	
	nces	

1. EXECUTIVE SUMMARY

Following the Columbia Accident Investigation Board (CAIB) Report, the "Diaz Team" identified CAIB Report elements with Agency-wide applicability. The "Diaz Report", *A Renewed Commitment To Excellence*, generated an action to "Review current policies and waivers on safety factors". This white paper addresses this action.

Four different projects from four different centers were audited on their definition, requirements, and use of structural ultimate Factor of Safety (FOS_{ult}): Orbiter managed at JSC, External Tank managed at MSFC, X-43 managed at DFRC, and the Swift spacecraft managed at GSFC.

The projects were asked to provide the document that defines their FOS_{ult} requirements, provide the FOS_{ult} requirement, provide the project's definition of the FOS_{ult} , and provide a list of any waivers to the FOS_{ult} requirement.

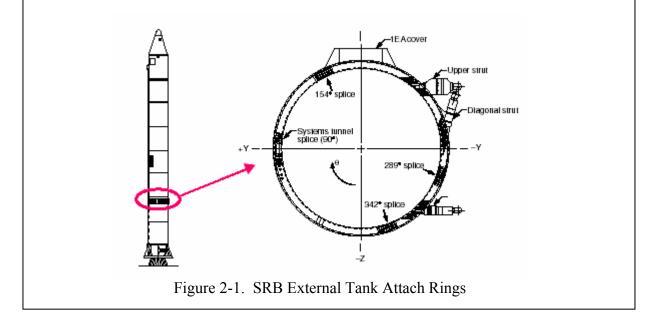
All of the projects audited utilize NASA-STD-5001 for the overall structure FOS_{ult} requirements but ultimately customized the NASA-STD-5001 requirement(s) into their own internal requirements document.

The vast majority of the projects met NASA-STD-5001 structural FOS_{ult} value of 1.4. As expected, there were exceptions when a waiver was granted or the requirement relaxed for a particular piece of hardware. Although a technical justification was provided to the waiver/relaxation, the audit found the technical justification was necessary, but not sufficient.

The audit has made the following five recommendations. These are discussed in more detail in Section 6 of this paper.

- 1. **FOS**_{ult} for no-test hardware: Perform study to determine if higher FOS_{ult} values are required for no-test hardware and update NASA-STD-5001 to include specific guidance and suggested no-test FOS requirements.
- 2. **Requirement Relaxation:** Reduction of the standard FOS_{ult} value should be documented via a waiver or deviation as opposed to a relaxation of the requirement.
- 3. **FOS**_{ult} **Waivers should not be used as a Precedent:** For reusable or recurring flight hardware, a waiver should be considered a one time exception and not a precedent.
- 4. **Maintaining FOS**_{ult} **Over the Life of a Program:** Due to aging effects, the Margin of Safety (MOS_{ult}) and FOS_{ult} should be periodically reevaluated.

5. **Probabilistic Approaches (PA):** Conduct a study to determine if Probabilistic Approaches can be used as an alternate method to traditional FOS methods. PA may exhibit excellent promise in reducing the FOS requirements while maintaining the overall reliability of the system.


2. INTRODUCTION

The CAIB provided the following Observation:

O10.10-1 NASA should reinstate a safety factor of 1.4 for the Attachment Rings, which invalidates the use of ring serial numbers 16 and 15 in their present state, and replace all deficient material in the Attachment Rings.

Background

The External Tank Attach (ETA) rings are located on the Solid Rocket Boosters (SRBs) on the forward end of the aft motor segment (Figure 2-1). The rings provide the aft attach points for the SRBs to the External Tank (ET). Tensile tests of ETA ring web material found the ETA ring material strengths were lower than the design requirement. The ring material was from a previously flown and subsequently scrapped ETA ring which is representative of current flight inventory material.

Following the CAIB Report, the NASA Administrator assigned an Executive Team to identify CAIB Report elements with Agency-wide applicability. This team became known as the "Diaz Team" and its Report, *A Renewed Commitment To Excellence*, as the "Diaz Report".

Based on the above CAIB observation, the Diaz Report found "design and safety factors have been developed by many engineering and manufacturing organizations with a broad

base of underlying test and supporting data" and the Office of Chief Engineer assigned the following specific action to NESC – Action Item 16:

- 16) Review current policies and waivers on safety factors.
 - a. Conduct an audit of no less than three programs. Determine if the programs are using a 1.4 safety factor, and what waivers have been granted.
 - b. Compile the results and develop a recommendation.
 - c. If required, develop or rewrite a policy for minimum safety factors, and associated waivers.

The purpose of this white paper is to document the response(s) to the above action item. The paper is organized in the following order.

- An overview is presented of the FOS.
- Review of the structural FOS standards used at several of the NASA Field Centers.
- Survey of FOS_{ult} used by four programs at various centers and the results of the audit of these FOS_{ult} are presented.
- Discussion of waivers used by various programs and followed by the recommendations.

This report utilizes the definitions for various terms presented in Section 3 of the NASA-STD-5001 [1]. Relevant definitions used in this document are presented in Appendix A.

3. FACTORS OF SAFETY (FOS)

3.1. General

To account for uncertainties and unknowns, including material variations, analysis uncertainties, etc., a structural member must be designed to carry a load considerably larger than the maximum expected applied load. To determine the appropriate design load, the maximum expected applied load is multiplied by a FOS. In the 1930's there was ambiguity among the definitions used for design load, expected load and applied loads. Therefore, the U.S. Army Air Corps established the following definitions summarized in Table 3-1 which are used today in the Aerospace industry.

Term	Definition
Limit Load	Maximum expected load on the structure.
Ultimate Load ¹	Product of the Limit Load times the Ultimate Factor of Safety (FOS _{ult}). This is the load for which a structure is designed for ultimate strength and must be less than the Allowable Ultimate Load.
Yield Load	Product of the Limit Load times the Yield Factor of Safety (FOS_{yield}). This is a load for which a structure is designed for yield strength and must be less than the Allowable Yield Load.
Allowable Ultimate Load	The highest load that will not cause material failure.
Allowable Yield Load	The highest load that will not cause material plastic deformation.
Note 1) Ultimate Load is also oft Load".	en referred to as "Ultimate Design Load" or "Design Ultimate

Table 3-1.	Terminology	Definitions
------------	-------------	-------------

Therefore the Factor of Safety is defined as:

 $FOS_{ult} = \frac{Ultimate Load}{Limit Load}$ $FOS_{yield} = \frac{Yield Load}{Limit Load}$

The Aerospace industry also uses an additional term called the Margin of Safety (MOS). The MOS relates the design load to the allowable load.

$$MOS_{ult} = \frac{Allowable Ultimate Load}{Ultimate Load} - 1$$
$$= \frac{Allowable Ultimate Load}{Limit Load \cdot FOS_{ult}} - 1$$

and

$$MOS_{yield} = \frac{Allowable Yield Load}{Yield Load} - 1$$
$$= \frac{Allowable Yield Load}{Limit Load \cdot FOS_{yield}} - 1$$

When the MOS_{ult} equals zero, the Allowable Ultimate Load, or capability, equals Ultimate Load, the load for which the structure was designed.

Figure 3-1 schematically presents the loads defined above and the relationship between FOS_{ult} and MOS_{ult} . The load is plotted against the stress of a linear elastic structure. This is an idealized figure for illustration purposes only.

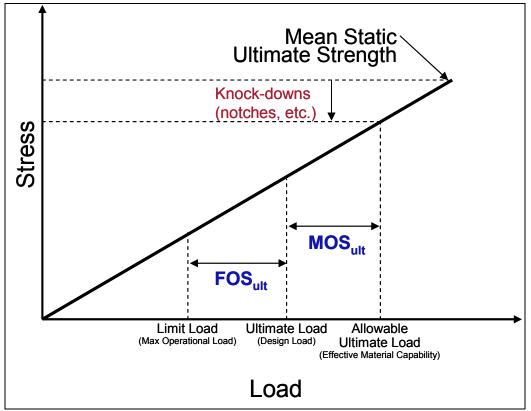


Figure 3-1. Graphical Illustration of Relationship between FOS and MOS.

3.1.1. Alternate Definitions

Some additional discussion on the definition of FOS and MOS is pertinent here. The definitions above are used widely throughout the Aerospace industry including NASA. Recall that the Ultimate Load is the product of the Limit Load and FOS_{ult} , and according to this definition the Ultimate Load has no relationship to the material Allowable Ultimate Load. However, the MOS_{ult} relates the Ultimate Load to the Allowable Ultimate Load.

In numerous non-aerospace fields, as well as many classical mechanical engineering text books, the concept of a separate design load is not used and the FOS is simply defined as:

$$FOS_{ult} = \frac{Allowable Ultimate Load}{Limit Load}$$

and MOS is defined as:

$$MOS_{ult} = FOS_{ult} - 1$$
.

Additionally, since the relationship between load and stress is often linear, many engineering texts will define the FOS and MOS with respect to stress as opposed to loads.

The above definitions are different than those used throughout NASA. Throughout this white paper, therefore, the definitions in Section 3.1 apply.

3.2. Basis of Factor of Safety

The FOS utilized in aerospace design is intended to cover various uncertainties in the way the structure is analyzed. The magnitude of the factor is dependent upon how accurately the structure is understood and modeled, material property understanding, and manufacturing control processes. The factor is based on engineering judgment and experience.

The determination of this factor must consider the following:

- Types of loads
 - Static or dynamic
 - Cyclic loading
- Processing and fabrication defects (variability on workmanship quality)
- Variations in material properties
- Accuracy and methods of analysis
 - Limitations of modeling methods/techniques (e.g. two-dimensional, shell, three-dimensional, etc.)
 - Limitations of analysis methods (e.g., finite element method, boundary element method, etc.)
 - Inadequate knowledge of factors such as boundary conditions, residual stresses, etc.
 - Limitation of analysis types (e.g. linear elastic, elastic-plastic, dynamics, etc.)
- Failure mode criticality
 - o Catastrophic
 - Non-catastrophic
 - Redundancy
- Levels of test verification
 - o Test vs. No test
 - Component vs. System
- Manned vs. Unmanned Mission

The FOS is applicable for the life of the system and, therefore, must address any material property degradation during service.

The FOS is not designed to account for uncertainty of external loads, major variation in material properties (poor material manufacturing process control, material defects such as flaws, cracks, voids, etc.), or poor/limited understanding of failure modes.

In 1932 there was evidence that components of successfully designed airplanes did not yield, that is, permanently deform. Since the common structural material at that time

was 17ST aluminum alloy having an ultimate-to-yield stress ratio of 1.5, the arbitrary 1.5 safety factor at ultimate was universally accepted. Since this factor is determined from historical experience rather than physics-based methodologies, there is a tendency to challenge its value and application.

3.3. FOS_{ult} for Airframes

The FOS_{ult} for airframes is defined as in Section 3.1, the ratio of ultimate load to the limit load. The limit load is the highest load experienced by the structural component in the life of the aircraft fleet. The FOS_{ult} conventionally used for commercial transport aircraft airframes remains at 1.5.

3.4. FOS_{ult} for Aerospace Structures

Based on improved aluminum alloys, and involving historically-driven programmatic requirements for optimized performance, a 1.4 design ultimate safety factor is now the official NASA standard as defined in NASA-STD-5001 for metallic structures (Protoflight Approach [1]). This commonly utilized aerospace structural FOS is considered applicable for a system with well characterized materials, well understood load paths, and manufactured to aerospace standard processes. Note that for non-metallic materials, such as composites, a higher ultimate factor of safety is used (see NASA-STD-5001).

The NASA–STD-5001 [1] establishes recommended practice of standard structural design and test factors for space flight hardware development and verification. In addition, NASA-STD-5005 [2] provides design criteria for ground support equipment while STD–5003 [3] and STD-5007 [4] provide fracture control requirements for payloads using the space shuttle and manned space flight systems, respectively.

A historical perspective of the design FOS used throughout major NASA missions is summarized in Table 3.2.

Table 3.2. Historical Design Factors for NASA Space Vehicles

(Data summarized	in this	table was	provided by	y NASA JSC)
------------------	---------	-----------	-------------	-------------

Mid 11 11 11 10 11							(Data s	umm	ur ı2	200	in i	mis	iut	ne	wus p	JOVI	ueu D	<i>y</i> 1	102	1990)								
international int int int int <t< td=""><td></td><td></td><td>Apollo (NASA-MSC)</td><td>Gemini (NASA-MSC)</td><td>Mercury (NASA-MSC)</td><td>MOL (USAF)</td><td>JYNA SOAR (USAF)</td><td>Skylab S-IVB (NASA-MSFC)</td><td>Shuttle</td><td>Space Hab</td><td>SSA SSP 30559</td><td>S-IVB (NASA-MSFC)</td><td>S-II (NASA-JSFC)</td><td>S-I (NASA-MSFC)</td><td>Manned-General VASA-MSC</td><td>Manned-General NASA-MSFC</td><td>Vlanned-General AFSC-DH 3-2⁶</td><td>Ċ.</td><td>-unar Orbiter (Boeing)</td><td>Thor/Delta Thor/Agena (MDAC - Santa Monica)</td><td>Jnmanned Spacecraft (Lockheed MSC)</td><td>Agena (Lockheed MSC)</td><td>⊃olaris (Lockheed MSC)</td><td>Scout (LTV Aerospace)</td><td>Atlas (GD/C)</td><td>Joneer</td><td>viking (MMC - JPL)</td><td>Fitan III-C (MMC)</td></t<>			Apollo (NASA-MSC)	Gemini (NASA-MSC)	Mercury (NASA-MSC)	MOL (USAF)	JYNA SOAR (USAF)	Skylab S-IVB (NASA-MSFC)	Shuttle	Space Hab	SSA SSP 30559	S-IVB (NASA-MSFC)	S-II (NASA-JSFC)	S-I (NASA-MSFC)	Manned-General VASA-MSC	Manned-General NASA-MSFC	Vlanned-General AFSC-DH 3-2 ⁶	Ċ.	-unar Orbiter (Boeing)	Thor/Delta Thor/Agena (MDAC - Santa Monica)	Jnmanned Spacecraft (Lockheed MSC)	Agena (Lockheed MSC)	⊃olaris (Lockheed MSC)	Scout (LTV Aerospace)	Atlas (GD/C)	Joneer	viking (MMC - JPL)	Fitan III-C (MMC)
Number Number No. N	General Structure											07																
ande-logiding Yield 1.3 . . 1 1.5 1.1 1		Yield	1.1	1.1	1.1	1.0		1.1	-	1.1	1.1	1.1	1.1	1.1	1.0	1.1	1.1	1.0	1.15	1.0	1.0	1.0	1.0	1.15	1.0	1.0	1.0	1.0
ropellant and Other programmed methods Yield 1.3 1.5 1.5 1.5 1.6 1.1 1.1 1.1 1.1 1.1 1.0		Ultimate	1.5	1.36	1.5	1.4	1.5	1.4	1.4	1.4	1.5	1.4	1.4	1.4	1.5	1.4	1.4	1.36	1.5	1.25	1.25	1.25	1.25	1.5	1.25	1.5	1.25	1.25
builty characterization Proof 1.3 1.5 1.5 1.5 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.1 <td>Tanks-Liquid</td> <td>Mada</td> <td>4 0 0</td> <td></td> <td></td> <td></td> <td>1 5</td> <td></td> <td></td> <td>ĺ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4 4</td> <td></td> <td>4.0</td>	Tanks-Liquid	Mada	4 0 0				1 5			ĺ						4 4												4.0
Proof 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.1 1.05 1.7 1.0<		Yield	1.33	-	-	1	1.5	1.1				1.1	1.1	1.1	1.1	1.1												1.0
Yield . <td>r luius-cryogenics</td> <td>Proof</td> <td>1.33</td> <td>1.5</td> <td>1.5</td> <td>1.5</td> <td>1.5</td> <td>1.05</td> <td></td> <td></td> <td></td> <td>1.1</td> <td>1.05</td> <td>1.1</td> <td>1.1</td> <td>1.05</td> <td>1.5</td> <td></td> <td></td> <td>1.05</td> <td>1.67</td> <td>1.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0</td>	r luius-cryogenics	Proof	1.33	1.5	1.5	1.5	1.5	1.05				1.1	1.05	1.1	1.1	1.05	1.5			1.05	1.67	1.1						1.0
Yield . <td></td> <td>Ultimate</td> <td>15</td> <td>20</td> <td>20</td> <td>20</td> <td>1.33 x 1.5</td> <td>14</td> <td></td> <td></td> <td></td> <td>14</td> <td>14</td> <td>14</td> <td>15</td> <td>1.4</td> <td>1 33 x 1</td> <td>5</td> <td></td> <td>1.33</td> <td>2 22</td> <td>1 25</td> <td></td> <td></td> <td>1 25</td> <td></td> <td></td> <td>1 25</td>		Ultimate	15	20	20	20	1.33 x 1.5	14				14	14	14	15	1.4	1 33 x 1	5		1.33	2 22	1 25			1 25			1 25
Proof 1.1 1.5 1.5 1.5 1.6 1.	Propellant Lines			2.0	2.0	2.0																						
unmae ·. ·		Yield	-	-	-	-	-	-									1									-		
vessels (high Presonal) vial 1.3 1.0 1.0 1.1 1.1 1.1 1.5 1.5 1.5 1.5 1.6 <td></td> <td>Proof</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td>		Proof	-	-	-	-	-	-									1.5							1.5				
vessels (high Presonal) vial 1.3 1.0 1.0 1.1 1.1 1.1 1.5 1.5 1.5 1.5 1.6 <td></td> <td>Lilitimate</td> <td>_</td> <td></td> <td>1.88</td> <td></td> <td>1 65</td> <td></td> <td></td> <td></td> <td></td> <td>2.5</td> <td></td> <td></td> <td></td> <td></td>		Lilitimate	_														1.88		1 65					2.5				
Vield 1.33 1.0 1.0 1.0 1.1 1.1 1.1 1.5 1.3 1.0 1.0 1.0 2.25 1.0 1.0 2.25 1.0 1.	Vessels (High Pres	Olimale	-	-	-	-	-	-									1.00		1.05					2.5				
Proof 1.33 1.67 1.7 1.5 - 1.1 0 1.05 1.05 1.67 2.0 1.33 0 1.67 2.0 1.37 1.67	Bottle) Vent Lines	Yield	1.33	1.0	1.0	1.0	-	1.1				1.1	1.15	1.15	1.33	1.1		1.0	1.5						1.0		2.25	
Yield 1.0 1.3 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <th< td=""><td>Plumbing, etc.</td><td>Proof</td><td>1.33</td><td>1.67</td><td>1.7</td><td>1.5</td><td>-</td><td>1.1</td><td></td><td></td><td></td><td>1.1</td><td>1.05</td><td>1.05</td><td>1.33</td><td>1.05</td><td></td><td>1.67</td><td>2.0</td><td>1.33</td><td></td><td></td><td></td><td></td><td>1.67</td><td>1.66</td><td>2.0</td><td></td></th<>	Plumbing, etc.	Proof	1.33	1.67	1.7	1.5	-	1.1				1.1	1.05	1.05	1.33	1.05		1.67	2.0	1.33					1.67	1.66	2.0	
Yield 1.0 1.3 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <th< td=""><td></td><td>L Iltimata</td><td>1 5</td><td>2 22</td><td></td><td>2.0</td><td></td><td>4.0</td><td></td><td></td><td></td><td>4.0</td><td>1 4</td><td>1 4</td><td>2.0</td><td>1 4</td><td></td><td>2 22</td><td></td><td>1 5</td><td></td><td></td><td></td><td></td><td>2.0</td><td>2.0</td><td>4.0</td><td></td></th<>		L Iltimata	1 5	2 22		2.0		4.0				4.0	1 4	1 4	2.0	1 4		2 22		1 5					2.0	2.0	4.0	
virtucks, Ducts, etc. Proof NA 1.33 - 1.33 1.2 - 1.1 1.5 1.5 1.6 1.36 1.4 1.36 1.4 1.36 1.4 1.36 1.4 1.36 1.4 1.36 1.4 1.4 1.6 1.4 1.6 1.6 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6	Pressurized	Ullimate	1.5	2.22	2.2	2.0	-	4.0				4.0	1.4	1.4	2.0	1.4				1.5					2.0	2.0	4.0	
Proof NA 1.33 - 1.33 1.2 - 1.1 1.5 1.5 1.6 <th1.6< th=""> <th1.6< th=""> <th1.6< th=""></th1.6<></th1.6<></th1.6<>	Structure-Cabins,	Yield	1.0	1.0	1.3	1.0	1.0	-	-	1.65	1.7						1.1	1.0										
Utimate 1.5 2.0 2.0 1.5 - 1.5 2.0 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 2.0 1.4 1.4 2.0 1.4 1.0 1.0 1.1 <th< td=""><td>Airlocks, Ducts, etc.</td><td>Proof</td><td>NA</td><td>1.33</td><td>-</td><td>1.33</td><td>1.2</td><td>-</td><td>1.1</td><td>1.5</td><td>1.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.36</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Airlocks, Ducts, etc.	Proof	NA	1.33	-	1.33	1.2	-	1.1	1.5	1.5							1.36										
yield neumatic Sys. (incl. ines, Fitting, Tubing) Yield - 1.0 1.0 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.5 2.25 2.0 Proof 2.0			4 5																									
Yield - 1.0 1.0 1.0 1.1 1.1 1.1 1.0 1.0 1.0 2	Hydraulic and	Ultimate	1.5	2.0	2.0	2.0	1.5	-	1.5	2.0	2.0						1.4	2.0										
Proof 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.0 1.5 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 1.5 2.0 2.0 2.0 1.5 1.5 1.5 2.0 2.0 2.0 1.5 1.5 1.5 2.0 2.0 2.0 1.5 1.5 1.5 2.0 2.0 2.0 1.5 1.5 2.0 2.0 2.0 2.0 1.5 1.5 2.0 <th< td=""><td>Pneumatic Sys. (Incl.</td><td>Yield</td><td>-</td><td>1.0</td><td>1.0</td><td>1.0</td><td></td><td>1.1</td><td></td><td></td><td></td><td>1.1</td><td></td><td></td><td></td><td></td><td>1.0</td><td>1.0</td><td>2.0</td><td></td><td></td><td></td><td></td><td>1.5</td><td></td><td></td><td>2.25</td><td>2.0</td></th<>	Pneumatic Sys. (Incl.	Yield	-	1.0	1.0	1.0		1.1				1.1					1.0	1.0	2.0					1.5			2.25	2.0
Ultimate 4.0	Lines, Fitting, Tubing)	Proof	2.0	2.0	2.0	2.0	2.0	2.0				2.0	2.0				2.0	2.0	2.0	2.5	2.0	1.5		1.5			2.0	2.0
Yield Yield 1.0 1.0 1.0 1.0 1.5 0 1.6 1.6 Utimate Image: Stress of the stress of		Ultimate	4.0	4.0	4.0	4.0	4.0	4.0				4.0	4.0				4.0	4.0	4.0	5.0	4.0	3.0		2.5			4.0	4.0
Ultimate Image	Nonflight: Dangerous To Personnel	Yield				1.0											1.0			1.5							1.6	
Yield Image: Not Danger- us To Personnel Yield Image: Not Danger- Utimate Yield Image: Not Danger- Utimate Yield Image: Not Danger- Utimate Yield Image: Not Danger- Utimate Yield Image: Not Danger- Image: Not Danger- Utimate Yield Image: Not Danger- Image: Not Danger- Utimate Yield Image: Not Danger- Image: Not Danger- Not Dang		Ultimate		1	1						1								1							1		
Yield Image: Normal State in the interval of the	Nonflight: Not Danger-	Junate			-	6.1			-		-		-	-	<u> </u>		1.0			4.0							2.0	
Ineumatic and Hydraulic tystem Components Heat tystem Components Heat tystem Components Heat tystem Components Heat tystem Conducting Cold tystem Conducting Con	ous To Personnel	Yield				1.0											1.0			1.0	1.15		1.15	<u> </u>				1.0
Yield 1.0 </td <td></td> <td>Ultimate</td> <td></td> <td></td> <td></td> <td>1.25</td> <td></td> <td>1.25</td> <td></td> <td></td> <td>1.33</td> <td>1.50</td> <td></td> <td>1.50</td> <td></td> <td></td> <td></td> <td></td> <td>1.25</td>		Ultimate				1.25											1.25			1.33	1.50		1.50					1.25
Note Note <th< td=""><td>Pneumatic and Hydraulic</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td> </td><td></td><td></td><td></td><td></td><td></td></th<>	Pneumatic and Hydraulic																											
Proof 1.3 1.5 1.5 1.5 1.5 1.5 1.5 witches, Regulators Image: State St	Exchangers (Including Cold	Yield		1.0	1.0	1.0												1.0								<u> </u>	-	1.0
witches, Regulators	Panels). Quick Disconnect, Blowers, ValvesPressure	Proof	1.33	1.5	1.5	1.5	1.5											1.5			1.5							1.5
	Switches, Regulators	Ultimate	1.5	2.5	2.5	2.0	2.5											2.5			2.5							2.5

4. CURRENT FACTOR OF SAFETY STANDARDS

4.1. NASA FOS Standards

Many of the field centers developed customized standards to address applications not included in NASA-STD-5001, as presented in Table 4-1.

NASA Field Center	Commonly used Standards ¹
Dryden Flight Center	DHB-R-001 Dryden Flight Research Center Hand Book For Structural Design, Proof Test, and Flight Test Envelope Guidelines [5]
Glenn Research Center	NASA-STD-5001 Structural Design and Test Factors of Safety for Spaceflight Hardware [1]
Goddard Space Flight Center	GSFC-GEVS-SE General Environmental Verification Specification [6]
Johnson Space Center Space Shuttle Program (SSP)	NSTS 07700 Vol X Space Shuttle Flight and Ground System Specification, and the Shuttle Interface Control Documents (ICD's) [7]
Strang Chuttle Daulanda	NSTS 1700.7B Safety and Policy Requirements for Payload using STS[8]
Space Shuttle Payloads	NSTS 14046D Payload Verification Requirements
	SSP 30559 Structural Design and Verification Requirements
International Space Station	
Langley Research Center	NASA-STD-5001 Structural Design and Test Factors of Safety for Spaceflight Hardware [1]
Marshall Space Flight Center	NASA-STD-5001 Structural Design and Test Factors of Safety for Spaceflight Hardware [1]
	MSFC-HDBK-505A Structural Strength Design and Verification Requirements [9]
Space Shuttle Elements	NSTS 07700 Vol X Flight and Ground System Specification - Book 1, Requirements [7]
General	ED22-OWI-001 MSFC Organizational Work Instruction, Strength Analysis [10]
Stennis Space Center	ASME Boiler Standards

1) This Table is not intended to be an exhaustive listing of all of the Standards used at the NASA Field center, but as an indication of the various documents used.

4.2. Non-NASA Standards

The Federal Aviation Administration (FAA) requires an aircraft structural FOS_{ult} of 1.5. Similarly, the Department of Defense (DoD) requires an FOS_{ult} of 1.5 for aircraft and 1.4 for aerospace structures [11]. Table 4-2 below lists FOS_{ult} and standards used by non-NASA organizations.

	I able 4-2. FUS Sta	ndards used by non-NASA Organizations	
	Organization	Standard	FOS _{ult}
FAA			
•	Transport Aircraft	Federal Aviation Regulation Part 25 Sec 25.303	1.5
•	Normal, Utility, Acrobatic,	Federal Aviation Regulation Part 23 Sec 23.303	1.5
	Commuter Aircraft		
DoD			
•	Aircraft Structures	MIL-A-8860B	1.5
•	Aluminum Aerospace Structures	MIL-HDBK-340A/MIL-HDBK-343	1.4

Table 4-2. FOS Standards used by non-NASA Organizations

5. **PROJECT FOS**_{ult} AUDIT

Five Projects were selected for the survey: *Orbiter, External Tank, X-43 ,other Space Shuttle Program Elements,* and *Swift Spacecraft*, located at JSC, MSFC, DRFC, and GSFC, respectively. From each of the centers, an engineer was chosen to research the FOS_{ult} and waivers from the project. The engineers acquired the answers to the following questions:

- 1. What documents does the program use to define the requirements for structural FOS_{ult} ?
- 2. What is the requirement for structural FOS_{ult}?
- 3. How is this factor defined?
- 4. Does the program have any waivers or deviations from this requirement?
- 5. Where are these deviations or waivers documented?
- 6. Provide a list of the current waivers to structural FOS_{ult}.

Table 5-1 summarizes the center, audited program/project, and the engineer responsible for the research and audit.

Center	Project	Engineer
JSC	Orbiter	J. Kramer-White
MSFC	External Tank	J. Neeley
JSC	Other Shuttle Program Elements	J. Kramer-White
DRFC	X-43	M. Kehoe
GSFC	Swift spacecraft	A. Posey

 Table 5-1. Summary of Center, Project, and Audit Engineer

After the initial research was concluded, the engineers were asked to audit the programs FOS_{ult} and the waivers. The audit involved an independent review of the program documentation and determination of reported FOS_{ult} and review of the initial and final waivers and deviations.

The following sections describe the results of the research and the audit of each of the programs.

5.1. Orbiter (J. Kramer-White, JSC)

5.1.1. Document(s) for structural FOS_{ult}

The Orbiter structural FOS_{ult} is defined in NSTS 07700, Volume X, *Flight and Ground System Specification - Book 1, Requirements* [7]. The FOS_{ult} requirements are detailed in Section 3.2.2.1.5, *Structure*. Section 3.2.2.1.5 is reproduced in Figure 5-1, a through c.

5.1.2. Requirements for structural FOS_{ult}

Ultimate FOSs are listed in NSTS 07700, Volume X, Book 1, Table 3.2.2.1.5.2, *Ultimate Factors of Safety*, which is reproduced in Figure 5-2, a through c. There are no requirements on FOS_{yield}.

In general the structure FOS_{ult} must be greater than or equal to 1.4, with more specific requirements for glass, pressurized compartments, pressure vessels, pressurized lines, and landing gear.

5.1.3. FOS_{ult} definition

See relevant definitions in NSTS 07700 Volume X, Book1, Section 3.2.2.1.5.1 Definitions [7]. The FOS_{ult} is defined as:

FOS_{ult} = Ultimate load/Limit Load

5.1.4. Waivers or deviations from this requirement

There are no structural FOS_{ult} waivers for the space shuttle orbiter. This is because the program actively utilizes one of two methods, Modification or Performance Placarding, to avoid a FOS_{ult} lower than the requirements. These methods are briefly discussed below.

Modification: When increased systems performance from the NSTS is required, evaluation of the primary structure of the orbiter is conducted. Affected areas are identified and analyzed in detail. On occasion additional capability may be obtained through increased modeling fidelity and/or by decreasing the analytical conservatism. If the performance increase is large, or the ascent trajectory changes are significant, major vehicle modifications may be required. For example, certification of the orbiter for the 6.0 loads cycle required significant modification of the wing root structure; specifically, the addition of several doublers at the spar root to accommodate increased wing loads. Therefore, vehicles could not fly the 6.0 loads trajectories until they had completed the modification program.

Placarding: Placarding limits external environments to ensure the FOS_{ult} requirements are met. Vehicle ascent performance placarding may be utilized until such time as the required modifications can be accomplished, or, if the performance penalty is not significant, placarding may be used in lieu of modifications. For example, when a negative margin issue surfaced on Columbia's vertical tail in 1999, the ascent trajectory was modified to preclude reaching critical load. This trajectory modification had a small, negative effect on launch probability and enabled additional flight data to be gathered. The additional flight data allowed a better definition of the loads which ultimately led to removal of the placard.

5.1.5. Waivers or deviations documentation

There are no waivers or deviations for the orbiter project.

5.1.6. List of current waivers to structural FOS_{ult}

There are no waivers or deviations for the orbiter project.

3.2.2.1.5 Structure

The Shuttle Vehicle structure, including pressure vessels and mechanical systems, shall have adequate strength and stiffness, at the design temperature, to withstand limit loads and pressures without loss of operational capability for the life of the vehicle and to withstand ultimate loads and pressures at design temperature without failure. The structure shall not be designed to withstand loads, pressures, or temperatures arising from malfunctions that prevent a successful abort. Major structural elements shall not be designed by non-flight conditions, i.e., conditions other than prelaunch (vehicle mating) through landing except for SRB water recovery. Structure and pressure vessels shall be designed to withstand the effect of a failure of a MPS oxygen or hydrogen ullage pressure flow control valve during nominal ascent. An intact abort combined with the failure of an MPS oxygen or hydrogen ullage pressure flow control valve is not a design requirement for primary structure and pressure vessels.

3.2.2.1.5.1 Definitions

For the purpose of interpretation of this section, the following definitions will apply:

- <u>Limit Load</u> The maximum load expected on the structure during mission operation including intact abort.
- b. <u>Ultimate Factor of Safety</u> The factor by which the limit load is multiplied to obtain the ultimate load.
- <u>Ultimate Load</u> The product of the limit load multiplied by the ultimate factor of safety.
- <u>Allowable Load</u> The maximum load which the structure can withstand without rupture or collapse.
- e. <u>Maximum Operating Pressure</u> The maximum pressure applied to the pressure vessel by the pressurizing system with the pressure regulators and relief valves at their upper limit, with the maximum regulator fluid flow rate, and including the effects of system environment such as vehicle acceleration and pressure transients.
- f. <u>Proof Pressure</u> The pressure to which production pressure vessels are subjected to fulfill the acceptance requirements of the customer, in order to give evidence of satisfactory workmanship and material quality. Proof pressure is the product of maximum operating pressure times the proof factor.
- g. Margin of Safety The ratio of allowable load to ultimate load minus one.
- h. <u>Safe-life</u> A design criteria under which failure will not occur because of undetected flaws or damage during the specified service life of the vehicle; also, the period of time for which the integrity of the structure can be ensured in the expected operating environments.

Volume X - Book 1 3-54 Revision M

Figure 5-1(a). NSTS 07700 Volume X Book 1 Section 3.2.2.1.5

3.2.2.1.5.2 Ultimate Factors of Safety

The ultimate factors of safety given in Table 3.2.2.1.5.2 shall be used for the Shuttle Vehicle structure. The following specific conditions are allowed:

- The ultimate factors of safety for LO₂ tank buckling shall not be less than 1.25 prior to initiation of prepressurization.
- A safety factor of 1.491 for Power Reactant Storage Assembly is acceptable for Power Reactant Supply and Distribution (PRSD) tank unit-part No. MC282-0063-0100 S/N SX T0010.
- c. The ultimate factor of safety for the SSME spark igniter casings shall not be less than 1.25.
- d. The ultimate factors of safety for the following SSME pressurized lines and fittings of less than 1.5 inch diameter shall be greater than or equal to 1.5:

Part Number	Description	
RS007049	Rigid Oxidizer Tank Pressurant Duct	
RS007083	Heat Exchanger Inlet Line	
RS007186	Oxidizer Preburner, Aerodynamic Sensitive Item (ASI) Oxidizer Line	
RS007187	Fuel Preburner, ASI Oxidizer Line	
RS007363	Tap B06A-To-Transducer Line	
R0019585	Fuel System Drying Purge Line	
R0011053	Fuel Preburner, ASI Oxidizer Inlet Line	
RS009525	Fuel Preburner, ASI Fuel Inlet Tube	
R0011052	Oxidizer Preburner, ASI Oxidizer Inlet Tube	
RS009524	Oxidizer Preburner, ASI Fuel Inlet Tube	
RS007083	Heat Exchanger Inlet Line	
R0018051	Fuel Preburner, ASI Oxidizer Line	
R0018052	Fuel Preburner, ASI Fuel Line	
RS009035	Preburner ASI Oxidizer Inlet	
RS009016	Preburner ASI Fuel Inlet	
RS009086	Preburner ASI Oxidizer Inlet Flange	
R0010751	Oxidizer P/B ASI Fuel Supply Line	
Volume X - Book 1 Revision M	3-55 CHANGE NO. 247	

Figure 5-1(b). NSTS 07700 Volume X Book 1 Section 3.2.2.1.5

CHANGE NO. 305

.

R0010752	Fuel P/B ASI Fuel Supply Line	TABLE 3.2.2.1.5.2 ULTIMATE FACTORS OF SAFETY
R0010758	Preburner Fuel Supply Line	
RS009168	Nozzle, High-Pressure Oxidizer	Components Factors of Safety Ultimate
RES1001 RS007119	Turbopump (HPOTP) Purge Line Hydraulic Supply Flexhose Main Oxidizer Valve (MOV) Hydraulic	General structure and main propellant tanks Pressurized windows A. Annealed panes Initial F. S. ≥2.0
RS007120	Supply Manifold MFVA Hydraulic Supply Manifold	Final F. S. ≥1.0 B. Tempered panes Initial F. S. Initial F. S. ≥2.0 Final F. S. ≥2.0
RS007212	MOVA Hydraulic Supply Manifold	Pressurized manned compartments ≥1.5 Pressure alone ≥1.5
the SSME Pre e. The RSRM aft stiffener equal to 1.4 with respe	3, Heat Exchanger Inlet Line, has been identified twice in ssurized lines listing. segment shall maintain a factor of safety greater than or ct to case buckling for the induced environments unch surface winds specified below.	Main propellant tanks ET and SRB (pressure alone) (C) (H) Pressure vessels (other than main propellant tanks) ≥ 1.5 (A) (B) (K) Pressurized lines and fittings ≥ 4.0 (E) (F)
Wind Direction	Volume X Allowable Requirement Wind Speed	1.5 in. diameter or greater ≥ 1.5 (A) Reference Paragraph 3.2.2.1.6.
91 - 100	34 Knots 34 Knots*	(B) Reference Paragraph 3.2.2.1.8.
101 - 110 111 - 120	34 Knots 31 Knots 34 Knots 30 Knots	(C) Factor of safety specified in element Contract End Item (CEI) and as determined by Paragraph 3.2.2.1.8.
121 - 134	34 Knots 29 Knots	(D) (Deleted).
135 - 140	31 Knots (@ 140 deg) 28 Knots	(E) Design of hydraulic systems shall be in accordance with MIL-H-5440F.
<u>141 - 150</u> * Indicates no change to requirements. NOTE: This is applica	27 Knots (@ 150 deg) 27 Knots* o NSTS 07700, Volume X - Book 2, Appendix 10.10 ble to Bolck II engines.	(F) Lines and fittings of less than 1.5 in. diameter may be designed to a minim factor of safety of 1.5, where advantageous to the Shuttle Vehicle, providir the rigor of design analysis and verification testing performed is equivalent that applied to other critical systems/components. Whenever the exception allowed by this paragraph is utilized by an element, the affected system/com- ponents shall be identified along with a brief description of the analysis and testing applied in order to justify adequacy and acceptability of the lower far of safety. All exceptions must be approved by the Manager, Space Shuttle Program.
Volume X - Book 1 Revision M	3-56 CHANGE NO. 272	Volume X - Book 1 3-69 CHANGE NO. Revision M

Figure 5-1(c). NSTS 07700 Volume X Book 1 Section 3.2.2.1.5

Figure 5-2(a). NSTS 07700 Volume X Book 1 Table 3.2.2.1.5.2

TABLE 3.2.2.1.5.2

ULTIMATE FACTORS OF SAFETY - Continued

(G) The design of the landing gear system shall be in compliance with the following structural loads design criteria:

Loading Condition	Loads Definition	Factor of Safety	Material Allowable
Landing Touchdown Loads	Design	1.0	Yield
Rollout and Ground Handling	Limit	≥1.4	Ultimate

* From MIL-A-8862, Airplane Strength and Rigidity Landplane Landing and Ground Handling Loads, Paragraph 3.1.3

- (H) SRB general structure and SRB case before separation and during BSM firing, the ultimate factor of safety shall be equal to or greater than 1.4, except reused stiffener segment stubs which are certified safe for flight by proof testing. After BSM firing, the ultimate factor of safety shall be equal to or greater than 1.25.
- (I) For the ET the factor of safety for highly predictable quasi-static loads shall be equal to or greater than 1.25. Examples of such loads are steady thrust, inertial loads from steady acceleration, and weight. Thus the combined factor of safety requirement for ET structure subjected to quasi-static and not quasistatic loads is determined by:

TABLE 3.2.2.1.5.2

ULTIMATE FACTORS OF SAFETY - Concluded

FOS =	(% QUASI-STATIC)	· X (1.25) +	(% NOT QUASI-STATIC)	- X (1.4)
100	100%	X(1.20) ·	100%	X(I.I)
	range of 75% to 100%. F safety shall be 1.4. There 1.25 to 1.29 for quasi-stat	or quasi-static fore, the comb ic loads rangin from 74% to 0	y shall be limited to a quas loads less than 75%, the f bined factor of safety can ra ig from 100% to 75% and i 0. The factor of safety requ hardware component.	actor of ange from s 1.4 for
(J)		of safety greate	in NSTS 07700, Volume X er than or equal to 1.35 sha aration bolt.	
(K)	This includes any compon a pressure container follow		equired by design intent to n a primary pressure barrie	
(L)	shall be equal to or greate 180,000 pounds per squa to or greater than 1.10 du pounds per square inch. least 1,218,000 pounds bu	er than 1.25, ba re inch. The fa ring preloading Each SRB hole ut no more tha (Effective for	or of safety of the SRB hol ased on an ultimate streng actor of safety on yield sha g based on a yield strength ddown stud shall be load te n 1,228,000 pounds and n STS-37, STS-39, STS-40,	th of Il be equal of 150,000 ested to at ot experi-
(M)		e 1.30 factor o	f safety is based on a mini	
(N)	The ET LH ₂ aft dome shall	ll be designed	for stability using K ₁ = K ₂ =	= 1.25.
	n/Waiver 662 is applicable Book 4, Active Deviations/		.1.5.2.	
Volume X Revision		3-71	CHAM	IGE NO. 247

Figure 5-2(b). NSTS 07700 Volume X Book 1 Table 3.2.2.1.5.2

3-70

Volume X - Book 1

Revision M

Figure 5-2(c). NSTS 07700 Volume X Book 1 Table 3.2.2.1.5.2

CHANGE NO. 295

5.2. External Tank (J. Neeley, MSFC)

5.2.1. Documentation for structural FOS_{ult}

The External Tank (ET) uses NSTS 07700, Volume X, *Flight and Ground System Specification - Book 1, Requirements* [7] and *CPTO1MO9A External Tank Contract End Item Specification –* Part 1 [12].

5.2.2. Requirements for structural FOS_{ult}

The ET structural FOS_{ult} requirements vary from 1.25 to 1.4 and depends on how well defined the loads are known. The FOS_{ult} requirements from the *External Tank Contract End Item Specification* are shown in Figure 5-3, a through i.

Note that this specification allows for "Deviations from these factors will be allowed in those instances where sufficient data on loads and strength variations are provided to establish structural integrity on a probability basis."

5.2.3. FOS_{ult} definition

The ET FOS_{ult} is defined in NSTS 07700, Volume X, Table 3.2.2.1.5.2, as:

For the ET the factor of safety for highly predictable quasi-static loads shall be equal to or greater than 1.25. Examples of such loads are steady thrust, inertial loads from steady acceleration, and weight. Thus the combined factor of safety requirement for ET structure subjected to quasi-static and not quasi-static loads is determined by:

 $FOS_{ult} = -----X (1.25) + (\% \text{ NOT QUASI-STATIC}) \\ 100\% + 100\% + 100\%$

For ascent, the combined factor of safety shall be limited to a quasi-static load range of 75% to 100%. For quasi-static loads less than 75%, the factor of safety shall be 1.4. Therefore, the combined factor of safety can range from 1.25 to 1.29 for quasi-static loads ranging from 100% to 75% and is 1.4 for quasi-static loads ranging from 74% to 0. The factor of safety requirement may be determined individually for each hardware component.

Note this definition deviates from the standard definition used in the aerospace industry and NASA–STD-5001.

5.2.4. Waiver or deviations from this requirement

There are no current waivers for flight structural FOS_{ult} . There is one retired flight FOS_{ult} waiver, waiver # 662. This waiver covered ET stainless steel tubing, helium inject tubing, intertank purge lines, and nose cone purge lines. The waiver was only applicable for ET 66 and ET-71 through ET-75 and is therefore retired. Waiver #662 is shown in Figure 5-4, a through d.

Although ET does not have any current waivers, there are many components on the ET that have a FOS_{ult} less than the 1.4 aerospace standard. The ET project requirements allow a FOS_{ult} as low as 1.25 (reference Figure 5-3[†]) if the load is "well defined". Components with a FOS_{ult} less than 1.4 are listed in Table 5-2.

Component	FOS _{ult} Requirement			
Intertank Thrust Panel	1.27 to 1.4 depending on Mach number			
LO ₂ Tank	1.29 to 1.4 depending on Mach number			
Aft SRB Attach Fitting ¹	1.34			
Note:				
1) The FOS _{ult} relaxation was only applicable to pre-Super Light Weight Tanks				
(SLWT). The current SLWT H	FOS_{ult} requirement is 1.4.			

 Table 5-2. ET Components with FOSult Requirements less than 1.4

Additionally, there is one waiver and one deviation for an item of ET Ground Support Equipment, the Ground Umbilical Carrier Assembly.

5.2.5. Waivers or deviations documentation

NSTS 07700, Volume X, Book 4, *Flight and Ground System Specification, Active Deviations/Waivers* [7], and NSTS 07700, Volume X, Book 6, *Flight and Ground System Specification, Retired Deviations/Waivers* [7].

5.2.6. List of current waivers to structural FOS_{ult}

None. However, the FOS_{ult} requirements for numerous components are less than the aerospace standard of 1.4. Refer to Table 5-2 for a list of components that have a FOS_{ult} less than 1.4.

^{\dagger} In Figure 5.3(d), the equivalent FOS is defined as

Equivalent FOS = [(% Quasistatic loads) * 1.25 + (% Not quasistatic loads) * 1.4] / (Total limit loads).This definition is incorrect. The correct definition is

Equivalent FOS = [(% Quasistatic loads) * 1.25 + (% Not quasistatic loads) * 1.4] / 100.

PART I	PART I
Specification No. CPTO1MO9A	Specification No. CPTO1MO9A
Revision: Basic	Revision: Basic
Date: April 9, 1980	Date: April 9, 1980
 3.2.1.5.1.1 Interface Performance The ET structural subsystem shall meet the interface performance requirements of ICDs specified in Paragraph 3.6 of this EIS. 3.2.1.5.2.1 Performance Requirements. 3.2.1.5.2.1 Fatigue - Safe Life design shall be adopted for all major load-carrying structures. These structures shall be capable of surviving without failure one proof test cycle and a total number of mission cycles that is a minimum of four (4) times greater than the total number of mission cycles expected in service (shown by analysis or by test through a rationally derived cycle conding and temperature spectrum). One (1) mission cycles shall be capable that interval beginning with events just after tank proof test and ending 60 seconds after Orbiter/ET separation. This does not preclude fails-ade structural features. 3.2.1.5.2.2 Design Factors of Safety - The design factors of safety defined in Table 3.2.3 shall be applied to ET system, subsystem or component limit loads or pressures to obtain the design loads and pressures. The combined factor of safety requirement for ET Structure subjected to quasi-static and not quasistatic loads is determined by: FOS = (% Quasi-Static) x(1.25) + (% Not Quasi-Static) x (1.4) 100% for quasi-static loads ranging from 100% to 75% to 100%. For quasi-static loads ranging from 74% to 0%. The factor of safety requirement can be determined individually for each hardware component, but must be approved and documented in the EIS. Individual Hardware Components include the following: The Intertank Thrust Panel has a revised factor of safety (FOS) due to the load mix for well-defined loads between mach - 1.55 and mach < or = 1.8. At mach 1.55 the factor of safety is interpolated linearity. Between mach > 1.8 and mach < or = 2.2 the factor of safety is 1.27. The LO2 Tank has a revised factor of safety (FOS) due to the load mix for well-defined loads between mach > 1.55 and mach < or = 1.8. At mach 1.55 the factor	Deviations from these factors will be allowed in those instances where sufficient data on loads and strength variations are provided to establish structural integrity on a probability basis. Requests for deviations with supporting data will be forwarded to MSFC for approval prior to implementation. Elongation criteria rather that the yield factors of safety specified in Table 3.2.3 may be applied with the following restrictions: a. The structural integrity of the component affected shall be demonstrated by adequate analysis or test. b. There shall be no deformations that adversely affect the function of the component. c. The service life requirements or paragraph 3.2.1.5.2.1 shall be met. The design factors of safety shall be applied to loads derived from the environment specified for nominal trajectories in Paragraphs 3.2.7.2, Induced Environments, and 3.2.7.1, Natural Environments Design Requirements, of this End Item Specification. Unless otherwise noted, loads derived from Oft-nominal conditions shall not have the factors defined in Table 3.2.3 applied for design purposes except for one SSME out or the failure of a single MPS flow control valve (FCV) during nominal accent. Instead, off-nominal loads shall be assessed against structural capability derived from nominal loads to determine the factor of failer stor of safety as no failure case. NASA shall be advised on a case by case basis whenever the factor of safety for failure modes is less than that specified for the nominal case. 3.2.1.5.2.3 Deleted 3.2.1.5.2.4 External Tank (ET) Entry Heating - To ensure safe disposal of the ET and as after separation for the normal on the intext ood trains des esparation. Secret entry are identified in paragraph 3.2.7.2 in the basic document and Appendix 40.
SCN 409 09/08/98	SCN 445 03/01/01
66	67

Figure 5-3(a). ET FOS_{ult} Requirements

Figure 5-3(b). ET FOS_{ult} Requirements

	DE	<u>T/</u> SIGN FACTORS OF S	ABLE 3.2.3 SAFETY ANI	D PROOF FACTORS	
_	COMPONENT	FACTORS OF	SAFETY	MINIMUM PROC (Use Temperati	
_		ULTIMATE (Note 2)	YIELD	FRACTURE CONTROLLED	NOT FRACTU CONTROLLEI
1.	General Structure Limit Load				0.000
	Well Defir		1.10	N/A	N/A
	• Other	1.40	1.10	N/A	N/A
2.	Main Propellant Tanks (a) Limit Load (See Para.6.1)				
	• Well Defir	ied 1.40	1.10	1.05	1.05
	 Other 	1.40	1.10	1.05	1.05
	(b) LH2 Tank Aft D Elastic Buckling		N/A	N/A	N/A
3.	Propulsion System (a) Propellant Feed and all other line than 1.25 inch di the more critical	s greater iameter, of:			
	Limit Pres Limit Load		1.25	1.20	1.20
	(b) Lines Less Than 1.50 inch diamet		1.10	1.05	1.05
	Limit Pres (Notes 3,4	,9)	1.25	1.20	1.20 40
	 Actuating Cylind Valves, Filters, a Switches 	ind			
	Limit Pres	sure 2.00	1.50	1.50	1.50
					SCN 409 04/08/98

Figure 5-3(c). ET FOS_{ult} Requirements

	PART I Specification No. CPTO1MO9A Revision: Basic Date: April 9, 1980	
	TABLE 3.2.3 (continued)	
NOTES:	DESIGN FACTORS OF SAFETY AND PROOF FACTORS	
	d or proof pressure, multiply the proof factor by the limit load or limit pre- trimental yielding at proof load or proof pressure.	ssure.
To determine proof	factors for temperatures other than use temperatures, use the following eq	uations:
FRACTURE CONTROLLE	ED COMPONENTS:	
Proof Factor = (Test Temperature)	$\label{eq:linear} \begin{array}{lll} \underline{K_{I_{\underline{C}}} \mbox{ of Material @ Proof Temperature}} & x & Proof Factor \\ K_{I_{\underline{C}}} \mbox{ of Material @ Use Temperature} & (Use Temperature) \end{array}$	
NON-FRACTURE CONTR	ROLLED COMPONENTS:	
Proof Factor = (Test Temperature)	Fty of Material @ Proof Temperature x Proof Factor Fty of Material @ Use Temperature (Use Temperature)	
Refer to MMC-ET- components.	SE13 for definition of fracture controlled and not fracture controlled	
Note: See Appendix 40 for	ET 96 thru ET 606 (SLWT) Requirement.	SCN 445
2. Ultimate Factor of S	afety Application:	
	= 1.25 for quasi-static loads. = 1.40 for not quasi-static loads.	
	or of Safety is derived by the equation:	
Equivalent Factor of	Safety = (% Quasi-Static Loads)(1.25) + (% Not Quasi-Static Loads)(1.4 Total Limit Loads)
The Equivalent Facto	or of Safety must be between the limits 1.25 and 1.40.	
Should the Equivaler Factor of Safety of 1	nt Factor of Safety exceed 1.40, the total limit load will be multiplied by a .40.	
Should the Equivaler Factor of Safety of 1	nt Factor of Safety be less than 1.25, the total limit load will be multiplied .25.	by a
	SCN 445 3/01/01	
	70	

Figure 5-3(d). ET FOS_{ult} Requirements

	PART I Specification No. CPTO1MO9A Revision: Basic Date: April 9, 1980 TABLE 3.2.3 (continued) DESIGN FACTORS OF SAFETY AND PROOF FACTORS		PART I Specification No. CPTO1MO9A Revision: Basic Date: April 9, 1980 3.2.1.5.3 Combined Loads - The ET structural design shall exclude the use of pressure stabilized structures with the exercision of main propulsion tanks during flight and during periods
NOT 3. 4. 5. 6. 7. 8. 9. 10. 11.		SCN 409 SCN 409	 stabilized structures with the exception of main propulsion tanks during flight and during periods as specified in ICD-2-12001 and ICD-2-04002. Pressure load shall not be used in ground operations analyses when it relieves or increases stability, except as noted above. The mechanical, external, thermally induced, and internal pressure loads shall be combined in a rational manner according to the equations given in Paragraph 6.1 to determine the design loads. In circumstances where certain loads (stresses) have a relieving, stabilizing or otherwise beneficial effect on structural load capability, the minimum expected value of such loads shall be used and shall not be multiplied by the factor of safety in calculating the design yield or ultimate load. (Except as shown in Note (1) below.) For example, the ultimate compressive load in pressure vehicle tankage shall be calculated as follows: Ultimate Load = Safety Factor x Body Loads - Minimum Expected Pressure Load Any other loads induced in the structure, e.g., during manufacturing, shall be combined in a rational manner. Note (1): For LO2 Tank on the pad with propellants loaded, Ultimate Load = Safety Factor x (Body Loads - Minimum Expected Pressure Loads). 3.2.1.5.4 Allowable Mechanical Properties - The ET shall be designed using the applicable allowable mechanical properties of multHDBK-5. MLI-HDBK-17, or NASA approved supplier guaranteed properties. Where values for mechanical properties on a statistical basis. The effects of temperatures, thermal eycling and gradients, and derimental environments shall be accounted for in defining allowable mechanical properties. Mater tests are required, they shall be accounted for in defining allowable mechanical properties. Mater tests are required, they shall be eater x (Body Loads or by the values for mechanical properties on a statistical basis. The effects of temperatures, thermal eycling and gradients, and detimental environments shall be accounted for
			Note: See Appendix 40 for ET 96 thru ET 606 (SLWT) Requirement. SCN 445
			3.2.1.5.4.1 Unavailable Allowable Mechanical Properties or Unavailable Properties of Existing Material in New Environment - Not Applicable.
			Note: See Appendix 40 for ET 96 thru ET 606 (SLWT) Requirement. SCN 445
	SCN 409 04/0	8/98	SCN 445 03/01/01
	71		72

Figure 5-3(e). ET FOS_{ult} Requirements

Figure 5-3(f). ET FOS_{ult} Requirements

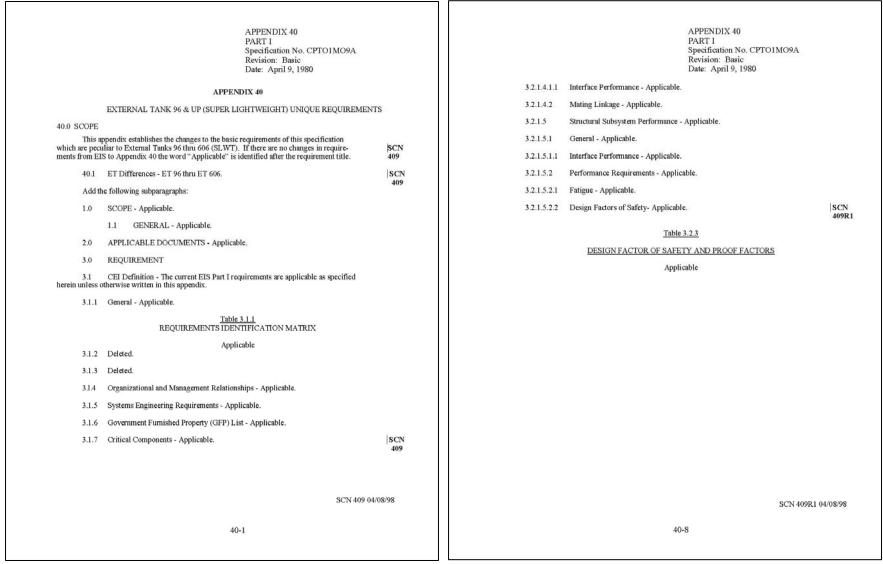


Figure 5-3(g). ET FOS_{ult} Requirements

Figure 5-3(h). ET FOS_{ult} Requirements

	APPENDIX 40 PART I
	Specification No. CPTO1MO9A Revision: Basic Date: April 9, 1980
NOTES:	
	oof or proof pressure, multiply the proof factor by the limit load or limit here shall be no detrimental yielding at proof load or proof pressure.
To determin following ec	e proof factors for temperatures other than use temperatures, use the quations:
FRACTUR	E CONTROLLED COMPONENTS:
Proof Factor	${\rm K_{IC}}^{*}$ of Welded Material @ Proof Temperature Proof Factor
(Test Temperature)	= KIC * of Welded Material @ Use Temperature (Use Temperature)
NOT FRAC	CTURE CONTROLLED COMPONENTS:
Proof Factor	Fty of Material @ Proof Temperature Proof Factor
(Test Temperature)	= Fty of Material @ Use Temperature (Use Temperature)
	MMC ET SE12 For AI 2105 the proof fostors shall be surify
	by simulated service testing. AC-ET-SE13 for definition of fracture controlled and not fracture
controlled co	by simulated service testing. AC-ET-SE13 for definition of fracture controlled and not fracture omponents. 4 and 9 - Applicable.
controlled co	by simulated service testing. AC-ET-SE13 for definition of fracture controlled and not fracture omponents.
controlled co	by simulated service testing. AC-ET-SE13 for definition of fracture controlled and not fracture omponents. 4 and 9 - Applicable. 423
controlled cc NOTES: 2 through 3.2.1.5.2.3 3.2.1.5.2.4 3.2.1.5.2.5 SLWT (ET-96 thm 4 rupture prior to 177	by simulated service testing. AC-ET-SE13 for definition of fracture controlled and not fracture omponents. 4 and 9 - Applicable. 4 and 9 - Applicable. Deleted. External Tank(ET) Entry Heating - Applicable. ET/Orbiter Safe Separation Distance and ET Rupture Altitude - For the 506) condition that minimizes the ET rupture time, the SLWT shall not seconds after ET separation. For the SLWT shall not rupture between the ET and Orbiter at rupture, the SLWT shall not rupture
controlled cc NOTES: 2 through 3.2.1.5.2.3 3.2.1.5.2.4 3.2.1.5.2.5 SLWT (ET-96 thru npture prior to 177 the relative distance	by simulated service testing. AC-ET-SE13 for definition of fracture controlled and not fracture omponents. 4 and 9 - Applicable. 4 and 9 - Applicable. Deleted. External Tank(ET) Entry Heating - Applicable. ET/Orbiter Safe Separation Distance and ET Rupture Altitude - For the 506) condition that minimizes the ET rupture time, the SLWT shall not seconds after ET separation. For the SLWT shall not rupture between the ET and Orbiter at rupture, the SLWT shall not rupture
controlled cc NOTES: 2 through 3.2.1.5.2.3 3.2.1.5.2.4 3.2.1.5.2.5 SLWT (ET-96 thru npture prior to 177 the relative distance	by simulated service testing. AC-ET-SE13 for definition of fracture controlled and not fracture omponents. 4 and 9 - Applicable. 4 and 9 - Applicable. Deleted. External Tank(ET) Entry Heating - Applicable. ET/Orbiter Safe Separation Distance and ET Rupture Altitude - For the 506) condition that minimizes the ET rupture time, the SLWT shall not seconds after ET separation. For the SLWT shall not rupture between the ET and Orbiter at rupture, the SLWT shall not rupture
controlled cc NOTES: 2 through 3.2.1.5.2.3 3.2.1.5.2.4 3.2.1.5.2.5 SLWT (ET-96 thru npture prior to 177 the relative distance	AC-ET-SE13 for definition of fracture controlled and not fracture omponents. 4 and 9 - Applicable. Deleted. External Tank(ET) Entry Heating - Applicable. ET/Orbiter Safe Separation Distance and ET Rupture Altitude - For the 506) condition that minimizes the ET rupture time, the SLWT shall not seconds after ET separation. For the SLWT shall not nupture
controlled cc NOTES: 2 through 3.2.1.5.2.3 3.2.1.5.2.4 3.2.1.5.2.5 SLWT (ET-96 thru npture prior to 177 the relative distance	by simulated service testing. AC-ET-SE13 for definition of fracture controlled and not fracture omponents. 4 and 9 - Applicable. SCN 423 Deleted. External Tank(ET) Entry Heating - Applicable. ET/Orbiter Safe Separation Distance and ET Rupture Altitude - For the 506) condition that minimizes the ET rupture time, the SLWT shall not seconds after ET separation. For the SLWT shall not rupture after ET separation.

Figure 5-3(i). ET FOS_{ult} Requirements

DEVIATIONS/WAIVERS AUTHORIZED FOR REQUIREMENTS CONTAINED IN THIS DOCUMENT – Continued	DEVIATIONS/WAIVERS AUTHORIZED FOR REQUIREMENTS CONTAINED IN THIS DOCUMENT - Continued
	used for the Shuttle Vehicle structure. The following specific conditions are allowed: f. The ultimate factor of safety of 1.50 against ICD max pressure conditions is acceptable for ET intertank and nose cone purge systems.
	MMC has performed a stress analysis for the purge system components for maximum operating and relief pressure conditions with the results as follows:
	 All components satisfy ET-EIS requirements for max ICD operating pressure
	 All components have factors of safety (F.S). ±1.0 for relief pressure
	 All components have adequate proof factors for both pressure conditions
	NOTE: EXCEPTION: For ET-66 and ET-71 thru ET-75, the ultimate factor of safety of 1.5 may be excepted to allow flight use of external tank nose cone purge line 1/4 inch tubing which has demonstrated an ultimate factor of safety of 1.37.
	Table 3.2.2.1.5.2 Ultimate factors of safety requires that pressurized lines and fittings less than 1.5 inches diameter have an ultimate factor of safety greater than or equal to 4.0 and lines and fittings greater than or equal to 1.5 inches have an ultimate factor of safety greater than or equal to 1.5.
662. REQUIREMENT: Paragraph 3.2.2.1.5.2 Ultimate Factors of Safety. The ultimate factors of safety given in Table 3.2.2.1.5.2 shall be	
Volume X - Book 6 6–53 CHANGE NO. 200 Revision L	Volume X - Book 6 6—54 CHANGE NO. 200 Revision L

Figure 5-4(a). ET FOS_{ult} Retired Waiver 662

Figure 5-4(b). ET FOS_{ult} Retired Waiver 662

U	TABLE 3.2.2			 Temperature sensors in N/C and I/T would detect leak and allow safing procedures to be performed. Facility helium differential pressure would detect leak and
		FACTORS OF SAFETY		allow for safing procedures to be performed.
COMPO	IENTS	ULTIMATE		One on/off pressure cycle during cryo loading activities.
General structure & mair Pressurized windows	propellant tanks	≥1.40 (A) (G) (H) (I) (J) (L) (M) (N) (B)		 1000 plus cycle capability based on fracture analysis.
A. Annealed panes Initial F. S. Final F. S. B. Tempered panes		≥2.0 ≥1.0		Helium inject, nose cone purge and intertank purge 3/8 in. stainless steel tubing fabricated from lot HSN is acceptable for flight.
Initial F. S. Final F. S.		≥2.0 ≥2.0	EFFECTIVITY:	ET-74
Pressurized manned cor Pressure alone	npartments	≥2.0 ≥1.5 ≥1.5	AUTHORITY:	Space Shuttle PRCBDs S082908A, dated 11/10/95 and S082908AR1, dated 11/20/95.
alone) Pressure vessels (other tanks) Pressurized lines and fitt Less than 1.5 in. diamu 1.5 in. diameter or great WAIVER:	ings ster ater	(C) (H) ≥1.5 (A) (B) (K) ≥4.0 (E) (F).1.5 •••••••••••••••••••••••••••••••••••		
	stainless steel tubing	to allow an ultimate factor of safety of tubing, 1.35 for intertank purge, and		
RATIONAL E	Eactor of safety demo	unstrated by proof test exceeds ultimate		
RATIONALE:	Factor of safety demo requirements.	onstrated by proof test exceeds ultimate		
RATIONALE:	requirements.	Ultimate required = 4.0 Demonstrated F. S. = 15.95		
RATIONALE:	requirements. - Helium inject: - Intertank purge:	Ultimate required = 4.0 Demonstrated F. S. = 15.95 Ultimate required = 1.5		
RATIONALE:	requirements. - Helium inject: - Intertank purge: - Nose cone purge:	Ultimate required = 4.0 Demonstrated F. S. = 15.95		
RATIONALE:	requirements. - Helium inject: - Intertank purge: - Nose cone purge:	Ultimate required = 4.0 Demonstrated F. S. = 15.95 Ultimate required = 1.5 Demonstrated F. S. = 3.71 Ultimate required = 1.5 Demonstrated F. S. = 3.75 t 3/8" diameter tubing during prelaunch		

Figure 5-4(c). ET FOS_{ult} Retired Waiver 662

Figure 5-4(d). ET FOS_{ult} Retired Waiver 662

5.3. Other Space Shuttle Program Elements (J. Kramer-White, JSC)

This section describes details for the Space Shuttle Program elements other than the orbiter and the ET discussed previously. These elements include the SRB, SRM, and the SSME.

5.3.1. Document(s) for structural FOS_{ult}

The structural FOS_{ult} for all space shuttle systems are defined in NSTS 07700 Volume X, *Flight and Ground System Specification - Book 1, Requirements* [7]. The FOS_{ult} requirements are detailed in Section 3.2.2.1.5, *Structure*. Section 3.2.1.5 is reproduced and provided in Figure 5-1, a through c.

5.3.2. Requirements for structural FOS_{ult}

Ultimate FOSs are listed in NSTS 07700, Volume X, Book 1, Table 3.2.2.1.5.2, *Ultimate Factors of Safety*, which is reproduced and provided in Figure 5-2, a through c. There are no requirements on Yield FOS.

Generally, the structure FOS_{ult} requirement is greater than or equal to 1.4, with more specific requirements for glass, pressurized compartments, pressure vessels and pressurized lines, landing gear and exceptions for some specific SRB elements (i.e., SRB after separation > 1.25).

Note that if a requirement has been changed to allow an exception, then it is NOT considered a waiver or deviation. Therefore, a program can cite an exception because general/original requirements are not met. Such situations are cited in notes (F) through (M) of Table 3.2.2.1.5.2, which is reproduced and provided in Figure 5-2, a through c.

5.3.3. FOS_{ult} definition

See relevant definitions in NSTS 07700, Volume X, Book 1, Section 3.2.2.1.5.1, *Definitions* [7], but specifically, FOS_{ult} is defined as:

FOS_{ult} = Ultimate load/Limit load

5.3.4. Waivers or deviations from this requirement

There are a total of 5 waivers: Waivers #387, 448, 449, 512 and 692.

Note: Since the time of this audit, the Shuttle Program has invested considerable effort to eliminate FOS waivers as part of the return-to-flight activity. Recently, these efforts resulted in the retirement of waivers #387, 448, and 449.

5.3.5. Waivers or deviations documentation

NSTS 07700, Volume X, Book 4, *Flight and Ground System Specification, Active Deviations/Waivers* [7], and NSTS 07700, Volume X, Book 6, *Flight and Ground System Specification, Retired Deviations/Waivers* [7].

5.3.6. List of current waivers to structural FOS_{ult}

Appendix B of this paper lists the current waivers for space shuttle elements.

5.4. X-43 (M. Kehoe, DRFC)

5.4.1. Documentation for structural FOS_{ult}

The HYPER-X structural FOS requirements are documented in Hyper-X document HX-280 Rev G Hyper-X, Flight System Performance Requirements [13].

Hyper-X Launch Vehicle (HXLV) delivers the Hyper-X Research Vehicle (HXRV) and adapter to its flight separation point. After that point the HXRV will fire its scramjet propulsion system while traveling at hypersonic speeds. Thus the two vehicles have vastly different FOS.

5.4.2. Requirements for structural FOS

Refer to Tables 5-3 and 5-4.

Factors of Safety				
Mechanical loads	Yield	1.1		
	Ultimate	1.5		
Thermal loads *,**	Yield	1.0		
	Ultimate	1.0		
* D C / HYOFI OL C		· · · ·		

Table 5-3. HXLV Requirements for Boost and Free-Flight

* Refer to HXGFI-01 Section H7010-M7-01-ST for additional requirements on uncertainty factors for thermal analysis.

** The FOS defined for thermal loads shall be applied to internal stresses within a component. Loads that cross a mechanical joint and the loads within that joint shall use as a minimum the FOS for mechanical loads.

Table 5-4.	HXRV Re	quirements for	Captive Carry	Flight
------------	---------	----------------	----------------------	--------

Factors of Safety				
Mechanical loads	Metallic Structures	2.25		
	Non-metallic Structures	3.0		

5.4.3. FOS_{ult} definition

The project uses the following definition:

FOS_{ult} = Ultimate Load/Limit Load

5.4.4. Waiver or deviations from this requirement

There are no waivers or deviations for the X-43 project.

5.4.5. Waivers or deviations documentation

There are no waivers for structural FOS_{ult} . Normally deviation and waiver documentation is managed by the Project led by the Configuration Control Board (CCB). The CCB consists of representatives from the project, engineering, quality assurance, safety, and science (if applicable). The CCB reviews the waiver and waiver rationale and approves or rejects the waiver.

5.4.6. List of current waivers to structural FOS_{ult}

There are no waivers or deviations for the X-43 project.

5.5. Swift Spacecraft (A. Posey, GSFC)

The Swift program is a GSFC program managed out of the Explores Program Office (Code 410). There are three scientific instruments on the Observatory. Goddard is building one of the instruments (BAT - Burst Alert Telescope) in-house while the two other instruments are being provided by Penn State University [Ultra-Violet Optical Telescope (UVOT) and X-ray Telescope (XRT)] in partnership with donated hardware being provided by Mullard Space Science Laboratory and the University of Leicester in the (UK), and the Osservatorio Astronomico di Brera (Italy). The spacecraft is being procured through the Goddard Rapid Spacecraft Development Office (RSDO) with Spectrum-Astro being responsible for spacecraft bus and system integration.

5.5.1. Documentation for structural FOS_{ult}

For the Instruments and Optical bench, the minimum FOSs are defined in the Swift Instrument Requirement Document (IRD), Section 3.8. The contract specification for the Spectrum-Astro bus did not specify minimum FOSs. The minimum FOSs are specified in Spectrum-Astro's own internal design document (1143-EW-M22361).

5.5.2. Requirement for structural FOS_{ult}

The FOS requirements are tracked in the project's Requirement Verification Matrix (RVM) and verified at component delivery when the End Item Data Package (EIDP) is submitted and reviewed. The RVM points to the particular stress analysis or applicable report.

5.5.3. FOS_{ult} Definition

Table 5-5 details the various FOSs for the different Swift Observatory elements.

Table 5-5. FOS for Switt Observatory Elements					
Swift Observatory	FOS _{yield}	FOS _{ult}	FOS _{yield} ¹	FOS _{ult} ¹	
Element			-		
BAT (GSFC H/W)	1.25	1.4	1.6	2.0	
UVOT	1.25	1.4	1.6	2.0	
XRT	1.25	1.4	1.6	2.0	
OPTICAL BENCH	1.25	1.4	1.6	2.0	
(GSFC H/W)					
S/C BUS STRUCTURE	1.25	1.4	1.6	2.0	
(SPECTRUM-ASTRO)					
MGSE ³	3.0	5.0			

Table 5-5. FOS for Swift Observatory Elements

¹These FOSs are for hardware elements that were not qualified during the strength test program and were therefore qualified through analysis only.

² The instrument was "build to print" that was qualified by similarity from a previous program.

³Mechanical Ground Support Equipment

5.5.4. Waivers or deviations from this requirement

There are no structural FOS_{ult} waivers.

5.5.5. Waiver or deviations documentation

Waivers are documented through a Project led by the CCB. The CCB consists of representatives from the project, engineering, quality assurance, safety, and science (if applicable). The CCB reviews the waiver and waiver rationale and approves or rejects the waiver.

5.5.6. List of current waivers to structural FOS_{ult}

There are no structural FOS_{ult} waivers.

5.6. Audit Summary

Table 5-6 provides a summary of the Project Audited, the Structural Ultimate FOS_{ult} used and the number of deviations to the required FOS_{ult} .

Program/Project	Required FOS ult	Current Waivers						
Orbiter	1.4	None						
ET	1.25 to 1.4	None						
SRB, SRM, SSME	1.4	2SRB ¹ , 2 SRM ¹ , 1ET (retired)						
X-43	1.5	None						
Swift Spacecraft	1.4	None						
Note 1) Since the time of the original audit both SRB waivers and 1 SRM								
waiver above have been	en retired.							

Table 5-6. Summary FOS_{ult} and Waivers for all Programs Reviewed

6. DISCUSSION AND RECOMMENDATIONS

The audit discovered that all of the projects used NASA-STD-5001 for the overall structure FOS_{ult} requirements but ultimately customized these requirement(s) into their own internal requirements document. In addition to the aerospace FOS_{ult} requirement of 1.4, the aeronautical project reviewed used the higher FAA requirement of structural $FOS_{ult} \ge 1.5$.

Most of the projects surveyed met the NASA-STD-5001 structural FOS_{ult} value of 1.4. The exception was the Space Shuttle Program's non-orbiter projects. There were five active waivers for structural FOS_{ult} . (Since the time of the original audit the Space Shuttle Program has undertaken considerable effort to eliminate FOS_{ult} waivers as part of the return-to-flight activity. This has resulted in retirement of three of the five waivers discussed previously.) In addition to the waivers there were several examples of FOS_{ult} requirement relaxation below the 1.4 standard. When the requirement was relaxed, there was no need for a waiver.

The justification for a relaxed or waived structural FOS_{ult} varied, but in all cases was limited at best. An often cited justification was the "loads were well known". This was a necessary condition but insufficient as the "loads were well known" was a requisite for originally reducing the FOS_{ult} from 1.5 to 1.4 and cannot be used again to further reduce the FOS_{ult} below 1.4. An uncertainty factor, applied to analysis results, accounts for the load knowledge fidelity. As the loads become well known, the uncertainty factor reduces to unity (reference NASA-STD-5002 "Load Analysis of Spacecraft", paragraph 4.2.4.2 [14]). Load knowledge fidelity should not impact the value of the FOS_{ult} (reference NASA-STD-5001, paragraph 1.2). Since the FOS_{ult} requirement is derived from historical data and not from fundamental physics, one cannot simply extrapolate outside of the known database when no valid, statistically significant, data exists. To justify the waiver in the absence of a physics/mathematical model, only the generation of a statistically significant data set can be used, or unknowns significantly reduced (i.e., test verified model, measured loads, etc.). It is of concern that engineering judgment may often be used that has neither mathematical basis nor statistically significant test data to support a technically sound determination.

Based on the work performed during the course of this action item, five recommendations are presented below.

6.1. FOS_{ult} when testing is not available

Although NASA-STD-5001, Section 4.1.2.3, provides general information on test versus no-test options, it does not provide specific FOS_{ult} guidance for no-test hardware. GSFC General Environmental Verification Specification (GEVS) [6] provides specific guidance on no-test FOS_{ult} (2.0 for Yield and 2.6 for Ultimate) and some Projects (Swift spacecraft) use a higher FOS_{ult} when qualification is performed by analysis only. Other Centers do not have such guidelines and, therefore, no single number, if any, is used for no-test hardware. Whenever possible, higher FOS_{ult} values are recommended when qualification is performed using analysis only. It is required for no-test hardware.

6.2. Requirement Relaxation

In rare instances it was observed that to maintain a positive MOS_{ult} , the standard FOS_{ult} requirement was relaxed instead of issuing a waiver. With this practice one loses visibility into the rationale behind the modification. Additionally, NASA loses the ability to look at waivers across the agency to gather statistical evidence on how often the standard FOS_{ult} is reduced.

It is recognized that unique situations may exist where the FOS_{ult} requirements, based on project maturity, can be revised from the 1.4 value with negligible increased risk. The specific case involves the single use Shuttle External Tank (ET) Project where a comprehensive operational database of flight experience, manufacturing process characterization, analytical modeling, and test validation justified the change of the FOS_{ult} from 1.4 to 1.25 for static pressure loads. However, the FOS_{ult} requirement change should have been documented by the generation of a deviation and not a contractual requirements relaxation. This allows system visibility on the rationale used to justify the alteration and appreciation of any potential synergistic affects.

It is recommended that Projects not relax requirements to meet hardware performance, but rather utilize the waiver and deviation processes when appropriate.

6.3. FOS_{ult} Waivers Not a Precedent

Waivers should be considered a *one time exception*. For reusable (i.e., Space Shuttle Program elements) or flights of recurring hardware (i.e. off the shelf spacecraft bus) a waiver should not be a precedent to continue flying with a deficiency, but an indication that corrective action must be taken.

6.4. Maintaining FOS Over the Life of a Program

Structural strength or load carrying capability is often only computed one time during the life of the hardware. While this may be appropriate for elements that are one time use, or have only a very limited life, this is not an appropriate approach for the certification of an element that will be utilized for many years. Over the life of a system, reduction of the original Allowable Ultimate Load may occur for several reasons:

- Degradation of materials or coatings (e.g. corrosion, atomic oxygen, etc.)
- Wear and Tear/Operationally induced damage
- Maintenance induced damage

Reduction of the Allowable Ultimate Load results in a corresponding reduction of MOS_{ult} . To maintain a positive MOS_{ult} , the FOS_{ult} is often reduced.

NASA-STD-5001 should be modified to include requirements for periodic recertification of hardware capability throughout a program's life. While programs tend to recognize the impact of changing missions and therefore loads as a valid reason for recomputing the MOS and potentially FOS, this revalidation process should also include relevant information from hardware inspection, problem reports and material review board (MRB) actions as it relates to structural integrity.

6.5. Probabilistic Approaches

The FOS_{ult} approach that is traditionally used can be described as illustrated in Figure 6-1. The load that is calculated on the structural component is multiplied by the FOS_{ult} and the strength or equivalent material property (shown as resistance in this figure) is multiplied by a number called the knock-down factor (usually to account for presence of stress raisers such as holes, defects, etc., hot-wet conditions, etc.). The FOS_{ult} are usually greater than unity while knock-down factors are less than unity. The difference between the two dashed bars shown in the figure is the MOS. This traditional approach has been proven to be useful during the past five to six decades for aerospace components.

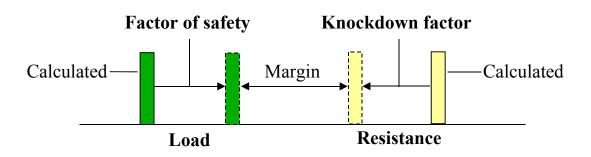


Figure 6-1. Traditional Method based on FOSult

Figure 6-2 illustrates an alternative to the FOS_{ult} approach called the probabilistic approach or reliability-based design approach. Here both the load and the strength are characterized by probability density functions. These distributions are due to uncertainties in the loads applied and to the strengths of material of the structural component. The overlap region (where the load exceeds the strength) indicates the probability of failure.

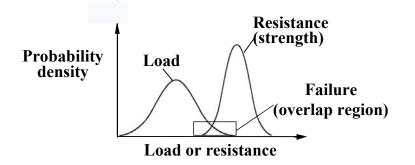


Figure 6-2. Reliability-based Design Methodology

The traditional design procedures, however, have several shortcomings. First in the traditional approach, FOS_{ult} value was determined empirically and not based on any physics or mathematics. Second, measures of reliability are not available from the design

process. Consequently, it is not possible to determine the relative importance of various design options on the reliability of the component. Third, with no measure of reliability, it is unlikely that the reliability and performance will be consistent throughout the vehicle. This situation can lead to excess weight with no corresponding improvement in overall reliability.

An approach that has the potential to yield the degree of reliability needed in each component of a system will be beneficial to aerospace structures and structural components. Probabilistic approaches hold excellent promise in these directions [15, 16]. Therefore, it is recommended that NASA perform further research in these areas.

References

- 1. NASA-STD-5001, Structural Design and Test Factors of Safety for Spaceflight Hardware, June 21, 1996.
- 2. NASA-STD-5005, Design Criteria Requirements for Payloads Using the Space Shuttle, September 15, 2003.
- 3. NASA-STD-5003, Fracture Control Requirements for Payloads Using the Space Shuttle, October 7, 1996.
- 4. NASA-STD-5007, General Fracture Control Requirements for Manned Spaceflight Systems, March 13, 2001.
- 5. DHB-R-001, Dryden Flight Research Center Handbook For Structural Design, Proof Test, and Flight Test Envelope Guidelines, February 1999.
- 6. GSFC-GEVS-SE, General Environmental Verification Specification, June 1996.
- 7. NSTS 07700, Volume X, Books 1-6 (specifically Book 1, section 3.2.2.1.5 for structure), November 10, 1998.
- 8. NSTS 1700.7B, Safety and Policy Requirements for Payload using STS, January, 1989.
- 9. MSFC-HDBK-505A, Structural Design and Verification Requirements, January, 1981.
- NASA MSFC ED22-OWI-001, Rev B, Organizational Instruction Strength Analysis, July 24, 2003.
- 11. Muller, G.E. and Clement S.J.: "Factor of Safety USAF Design Practice", Air force Flight Dynamics Lab Wright Paterson AFB, April 1978.
- 12. CPT01M09-A, External Tank Contract End Item Specification Part 1, 1980.
- 13. HYPER-X Flight System Performance Requirements, HX-280, Rev. G, September 9, 2003.
- 14. NASA-STD-5002, Loads Analyses of Spacecraft and Payloads, June 21, 1996.
- 15. Cruse, T.A., "Nondeterministic, Non-traditional methods (NDNTM)". NASA CR-2001-210976, 2001.
- 16. Zang T. A, Hemsch, M. J., Hilburger, M W., Kenny, S. P., Luckring, J. M., Maghami, P., Padula, S. L., and Stroud, W. J., "Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles", NASA TM-2002-2114602, 2002.

Appendix A

Acronyms & Definitions

Acronyms

BAT	Burst Alert Telescope
BSM	Booster Separation Motor
CAIB	Columbia Accident Investigation Board
CCB	Configuration Control Board
CLA	Coupled Loads Analysis
CR	Change Request
DFRC	Dryden Flight Research Center
DoD	Department of Defense
EIDP	End Item Data Package
ELV	Expendable Launch Vehicle
EMU	Extravehicular Mobility Unit
ET	External Tank
ETA	External Tank Attach
FAA	Federal Aviation Administration
FOS	Factor of Safety
FOS _{ult}	Ultimate Factor of Safety
FOS _{yield}	Yield Factor of Safety
GEVS	General Environmental Verification Specification
GSFC	Goddard Space Flight Center
HXLV	Hyper-X Launch Vehicle
HXRV	Hyper-X Research Vehicle
IRD	Instrument Requirement Document (Swift)
JSC	Johnson Space Center
LaRC	Langley Research Center
LO_2	Liquid Oxygen
MDP	Maximum Design Pressure
MGSE	Mechanical Ground Support Equipment
MOS	Margin of Safety
MSFC	Marshall Space Flight Center
MUF	Model Uncertainty Factor
NASA	National Aeronautics and Space Administration
NESC	NASA Engineering and Safety Center
NSTS	National Space Transportation System
PA	Probabilistic Approaches
PRCB	Program Requirements Control Board
RSDO	Rapid Spacecraft Development Office
RVM	Requirement Verification Matrix
SRB	Solid Rocket Booster
SRM	Solid Rocket Motor
SSME	Space Shuttle Main Engine

UVOT	Ultra-Violet Optical Telescope
XRT	X-ray Telescope

Definitions

Acceptance Test

A test performed on each article of the flight hardware to verify workmanship, material quality, and structural integrity of the design. In the protoflight structural verification approach, acceptance, proof, and protoflight tests are synonymous.

Creep

Time-dependent permanent deformation under sustained load and environmental conditions.

Detrimental yielding

Yielding that adversely affects the fit, form, function, or integrity of the structure.

Factors Of Safety (Safety Factors)

Multiplying factors to be applied to limit loads or stresses for purposes of analytical assessment (design factors) or test verification (test factors) of design adequacy in strength or stability.

Failure

Rupture, collapse, excessive deformation, or any other phenomenon resulting in the inability of a structure to sustain specified loads, pressures, and environments, or to function as designed.

Fatigue

The cumulative irreversible damage incurred in materials caused by cyclic application of stresses and environments resulting in degradation of load carrying capability.

Limit Load

The maximum anticipated load, or combination of loads, which a structure may experience during its service life under all expected conditions of operation or use.

Maximum Design Pressure (MDP)

The highest possible operating pressure considering maximum temperature, maximum relief pressure, maximum regulator pressure, and, where applicable, transient pressure excursions. MDP for Space Shuttle payloads is a two-failure tolerant pressure, i.e., will accommodate any combination of two credible failures that will affect pressure during association with the Space Shuttle. MDP also accommodates the maximum temperature to be experienced in the event of an abort to a site without cooling facilities.

Pressure Vessel

A container designed primarily for storing pressurized gases or liquids and (1) contains stored energy of 14,240 foot-pounds (19,309 Joules) or greater, based on adiabatic expansion of a perfect gas; or (2) experiences a limit pressure greater than 100 pounds per square inch absolute (psia) (689.5 kiloPascal [kPa] absolute); or (3) contains a pressurized fluid in excess of 15 psia (103.4 kPa absolute), which will create a safety hazard if released.

Pressurized Component

A line, fitting, valve, or other part designed to contain pressure and that (1) is not made of glass, or (2) is not a pressure vessel, or (3) is not a propellant tank, or (4) is not a solid rocket motor case.

Proof Test

A test performed on the flight hardware to verify workmanship, material quality, and structural integrity of the design. In the protoflight structural verification approach, proof, acceptance, and protoflight tests are synonymous.

Proof Test Factor

A multiplying factor to be applied to the limit load or MDP to define the proof test load or pressure.

Protoflight Test

A test performed on the flight hardware to verify workmanship, material quality, and structural integrity of the design. In the protoflight structural verification approach, protoflight, acceptance, and proof tests are synonymous.

Prototype Test

A test performed on a separate flight-like structural test article to verify structural integrity of the design. Prototype tests and qualification tests are synonymous.

Qualification Test

A test performed on a separate flight-like structural article of each type to verify structural integrity of the design. Qualification and prototype tests are synonymous.

Qualification Test Factor

A multiplying factor to be applied to the limit load or MDP to define the qualification test load or pressure.

Safety Critical

A classification for structures, components, procedures, etc., whose failure to perform as designed or produce the intended results would pose a threat of serious personal injury or loss of life.

Service Life

All significant loading cycles or events during the period beginning with manufacture of a component and ending with completion of its specified use. Testing, transportation, lift-off, ascent, on-orbit operations, descent, landing and post-landing events shall be considered.

Service Life Factor (Life Factor)

A multiplying factor to be applied to the maximum expected number of load cycles in the service life to determine the design adequacy in fatigue or fracture.

Ultimate Design Load

The product of the ultimate factor of safety and the limit load. Also referred to as *Ultimate Load* and *Design Ultimate Load*.

Ultimate Strength

The maximum load or stress that a structure or material can withstand without incurring failure.

Yield Design Load

The product of the yield factor of safety and the limit load.

Yield Strength

The maximum load or stress that a structure or material can withstand without incurring detrimental yielding.

Appendix **B**

Summary of Waivers for Space Shuttle Elements (SRB, SRM, SSME)

Waiver process used by the Space Shuttle Program:

"When it is considered to be in the best interest by the Space Shuttle Program (SSP) element/project managers to change, waive or deviate from these requirements, an SSP Change Request (CR) shall be submitted to the Secretary of the Program Requirements Control Board (PRCB). The CR must include a complete description of the change, waiver or deviation and the rationale to justify its consideration. All such requests will be processed in accordance with NSTS 07700, Volume IV - Book 1 and dispositioned by the Manager, Space Shuttle Program, on a Space Shuttle PRCB Directive (PRCBD)."

Table B.1 presents waiver numbers 387, 448, 449, 512, 662, and 692. Note that the retired waivers are included in this table.

	Table B	B.1. List of	Space Shuttle Elemen	t Structural FOS Waivers			
Num	Requirement	Element	Waiver or Deviation	Rational	Effectivity	Authority	Date
387 Retired	Paragraph 3.2.2.1.5 Structure. The Shuttle Vehicle structure, including pressure vessels and mechanical systems, shall have adequate strength and stiffness, at the design temperature, to withstand limit loads and pressures without loss of operational capability for the life of the vehicle and to withstand ultimate loads and pressures at design temperature without failure. The structure shall not be designed to withstand loads, pressures or temperatures arising from malfunctions that prevent a successful abort. Major structural elements shall not be designed by nonflight conditions, i.e., conditions other than prelaunch (vehicle mating) through landing except for SRB water recovery. Retired (Reference Space Shuttle PRCBD, S094174L, dated 8/10/04)	SRB	Waiver: The above requirement is waived for system tunnel parts with negative margins which occur during splashdown.	N/A	STS-26 thru STS- 999	Level II PRCBD S94174A	9/10/1988
448 Retired	Paragraph 3.2.2.1.5 Structure. The Shuttle Vehicle structure, including pressure vessels and mechanical systems, shall have adequate strength and stiffness, at the design temperature, to withstand limit loads and pressures without loss of operational capability for the life of the vehicle and to withstand ultimate loads and pressures at design temperature without failure. The structure shall not be designed to withstand loads, pressures or temperatures arising from malfunctions that prevent a successful abort. Major structural elements shall not be designed by nonflight conditions, i.e., conditions other than prelaunch (vehicle mating) through landing except for SRB water recovery. Retired (Reference Space Shuttle PRCBD S094174L, dated 8/10/04)	SRM	Waiver: APU isolation mounts (see part number below) which have a negative margin of safety at water impact. P/N 10201-0062- 801(M2), S/N's V7J003, V9D002, V9D007, V9D012; P/N 10201-0061- 801 (M3), V9D008, V9D010, V9D011, V8E002	N/A	STS-26 & subs	Level II PRCBD S94554	9/21/1988
449 Retired	Paragraph 3.2.2.1.5 Structure. The Shuttle Vehicle structure, including pressure vessels and mechanical systems, shall have adequate strength and stiffness, at the design temperature, to withstand limit loads and pressures without loss of operational capability for the life of the vehicle and to withstand ultimate loads and pressures at design temperature without failure. The structure shall not be designed to withstand loads, pressures or temperatures arising from malfunctions that prevent a successful abort. Major structural elements shall not be designed by nonflight conditions, i.e., conditions other than prelaunch (vehicle mating) through landing except for SRB water recovery. Retired (Reference Space Shuttle PRCBD S094174L, dated 8/10/04)	SRB	Waiver: forward skirt access door fasteners with negative margins which occur during splashdown	N/A	STS-26 & subs	Level II PRCBD S94741A	9/21/1988

	Table B.1. List of Space Shuttle Element Structural FOS Waivers										
Num	Requirement	Element	Waiver or	Rational	Effectivity	Authority	Date				
512 Open	Paragraph 3.2.2.1.8 Fracture Control. In addition to the ultimate factors of safety presented in Paragraph 3.2.2.1.5.2, designs for primary structure, windows, glass components of other subsystems, and tanks shall consider the presence of sharp cracks, crack-like flaws, or other stress concentrations in determining the life of the structure for sustained loads and cyclic loads coupled with environmental effects. Parts (other than SSME) determined to be fracture critical shall be controlled in design, fabrication, test, and operation by a formal, NASA-approved fracture control plan as specified in SE-R-0006, JSC Requirements For Materials And Processes. SSME parts determined to be fracture critical shall be subjected to fracture mechanics analysis as specified in RSS-8589. Where analysis does not demonstrate that the detectable flaw size will not grow to critical size during the service life, a risk assessment will be made to determine the acceptability of the part for flight and the conditions for this use. SE-R-0006, Paragraph 2.4.2, Fracture Control Plan. Quality Assurance. The quality assurance system applied to fracture-critical parts will verify that materials and parts conform to engineering requirements. Specifically, the capability of Nondestructive Evaluation (NDE) techniques to reliably detect initial flaws defined by engineering will be verified based on applicable production experience or by laboratory demonstration with realistic flaws and production or inservice inspection conditions.	EMU	Deviation "Waiver: Allows exemption from Nondestructive Evaluation (NDE) of the liners for PLSS composite pressure vessels (SV778895)."	N/A	STS-26 & sub- sequent	Level II PRCBD S41427B	2/2/1989				
662 Retired	Paragraph 3.2.2.1.5.2 Ultimate Factors of Safety. The ultimate factors of safety given in Table 3.2.2.1.5.2 shall be used for the Shuttle Vehicle structure. Retired per SSP DOC-422, dated 3/31/99. (Reference Space Shuttle PRCBD S082908A, dated 11/10/95). See Book 6.	ET	Waiver: 3/8 inch external tank stainless steel tubing to allow an ultimate factor of safety of 1.75 for helium inject tubing, 1.35 for intertank purge, and 1.37 for the nose cone purge lines		ET-74	Space Shuttle PRCBDs S082908A; S082908AR 1	11/10/1995; 11/20/95				

	Table B.1. List of Space Shuttle Element Structural FOS Waivers										
Num	Num Requirement		Waiver or	Rational	Effectivity	Authority	Date				
			Deviation								
692 Open	Paragraph 3.2.2.1.6 Ultimate Combined Loads. The mechanical external, thermally induced, and internal pressure loads shall be combined in a rational manner according to the equation given below to determine the design loads. Any other loads induced in the structure, e.g., during manufacturing, shall be combined in a rational manner. In no case shall the ratio of the allowable load to the combined limit loads be less than the factor in Paragraph 3.2.2.1.5.2.	SRM	Waiver: RSRM nozzle adhesive bondlines. Nozzle bondline analysis for EA946 and EA913NA adhesives does not explicitly include manufacturing residual stresses, accommodation is by increased safety factor	Test and analysis support conclusion that the nozzle will remain bonded prelaunch and through flight. Process and materials improvements have increased A-basis properties strength from 1500 psi to 2390 psi. Generally nozzle adhesive bonds are structurally fail-safe: phenolic rings mechanically interlocked and loaded in compression during motor operation. Primary structure (nozzle metal housings) meets 1.4 SF without including support of the adhesive bonds and phenolics. Multiple low probability events necessary to thermally fail nozzle due to gas flow between phenolics and housing. All 260 nozzles in SRM and RSRM program have met design requirement of thermally protecting housings. Residual stresses have been significantly reduced and bond line robustness increased through process control improvements. STS-109 (RSRM-83) and subsequent motor effectivities identified for this waiver are safe to fly	STS-107, STS-109 thru STS- 118	Space Shuttle PRCBDs S071796; S071796R1	2/22/2002; 10/9/2003				

Appendix C: Revised Historical Design Factors for NASA Space Vehicles

		-	-		-	-	-					-	-		-	-	-	-	-	-	-			-	-		
HISTORIC DESIGN FACTOR SPACE VEHICLES Component Factor	S FOR	Apollo (NASA-MSC)	Gemini (NASA-MSC)	Mercury (NASA-MSC)	MOL (USAF)	DYNA SOAR (USAF)	Skylab S-IVB (NASA- MSFC)	Shuttle	Space Hab	ISSA SSP 30559	S-IVB (NASA-MSFC)	S-II (NASA-JSFC)	S-I (NASA-MSFC)	Manned-General NASA- MSC	Manned-General NASA- MSFC	Manned-General AFSC- DH 3-26	Airlock (MDAC - St. Louis)	Lunar Orbiter(Boeing)	Thor/Delta Thor/Agena (MDAC - Santa Monica)	Unmanned Spacecraft(Lockheed MSC)	Agena (Lockheed MSC)	Polaris(Lockheed MSC)	Scout(LTV Aerospace)	Atlas(GD/C)	Pioneer	Viking (MMC - JPL)	Titan III-C (MMC)
General Structure	Yield	1.1 *	1.1 *	11*	1.0	†	1.1	_@	1.1	1.1	1.1	1.1	1.1	1.0	1.1	11	1.0	1.15	1.0	1.0	1.0	1.0	1.15	1.0	1.0	1.0	1.0
	Ultimate	1.5	1.36	1.5	1.4	1.5 ‡	1.4	1.4	1.4	1.5		1.4	1.4	1.5	1.4	1.4	1.36	1.5	1.25	1.25	1.25	1.25	1.5	1.25	1.5	1.25	1.25
Tanks-Liquid Propellant and	Yield	1.33	1.50	1.5	1.4	1.5	1.1	1.4	1.4	1.5	1.1	1.4	1.1	1.1	1.1	1.7	1.50	1.5	1.23	1.20	1.20	1.20	1.5	1.25	1.5	1.20	1.0
Other Fluids-Cryogenics	Proof	1.33	-	- 1.5	1.5	1.5	1.1				1.1	1.1	1.1	1.1	1.1	1.5			1.05	1.67	1.1					+	1.0
	Ultimate	1.55	2.0	2.0	2.0	1.3 1.33 x 1.5	1.05				1.1	1.05	1.1	1.1	1.05	1.3 1.33 x 1.5		1.33	2.22	1.07	1.1		1.25			1.25	1.0
Propellant Lines		1.5	2.0	2.0	2.0	1.33 X 1.3	1.4				1.4	1.4	1.4	1.5	1.4	1.33 X 1.5		1.33	2.22	1.20			1.20			1.25	
	Yield	-	-	-	-	-	-									1							1.5			+	
	Proof	-	-	-	-	-	-									1.5	-	1 / F					1.5 2.5			+	
Vessels (High Pres Bottle) Vent	Ultimate	-	-	-	-	-	-							4.00		1.88		1.65					2.0				
Lines Plumbing, etc.	Yield	1.33	1.0	1.0	1.0	-	1.1				1.1	1.15	1.15	1.33	1.1		1.0	1.5	1.00					1.0		2.25	
	Proof	1.33	1.67	1.7	1.5	-	1.1				1.1	1.05	1.05	1.33	1.05		1.67	2.0	1.33					1.67	1.66	2.0	
Pressurized Structure-Cabins,	Ultimate	1.5	2.22	2.2	2.0	-	4.0				4.0	1.4	1.4	2.0	1.4		2.22		1.5					2.0	2.0	4.0	
Airlocks, Ducts, etc.	Yield	1.0	1.0	1.3	1.0	1.0	-	-	1.65	1.7			-			1.1	1.0									┼──	
	Proof	NA	1.33	-	1.33	1.2	-	1.1	1.5	1.5							1.36									┼──	
	Ultimate	1.5	2.0	2.0	2.0	1.5	-	1.5	2.0	2.0						1.4	2.0									—	
Hydraulic and Pneumatic Sys. (Incl. Lines, Fitting, Tubing)	Yield	-	1.0	1.0	1.0		1.1				1.1					1.0	1.0	2.0					1.5			2.25	2.0
	Proof	2.0	2.0	2.0	2.0	2.0	2.0				2.0	2.0				2.0	2.0	2.0	2.5	2.0	1.5		1.5			2.0	2.0
	Ultimate	4.0	4.0	4.0	4.0	4.0	4.0				4.0	4.0				4.0	4.0	4.0	5.0	4.0	3.0		2.5			4.0	4.0
Nonflight: Dangerous To Personnel	Yield				1.0											1.0			1.5							1.6	
	Ultimate				1.5											1.5			4.0							2.0	
Nonflight: Not Dangerous To Personnel	Yield				1.0											1.0			1.0	1.15		1.15					1.0
	Ultimate				1.25											1.25			1.33	1.50		1.50					1.25
Pneumatic and Hydraulic System Components Heat Exchangers	Yield		1.0	1.0	1.0												1.0										1.0
(Including Cold Panels). Quick Disconnect, Blowers, Valves,	Proof	1.33	1.5	1.5	1.5	1.5											1.5			1.5							1.5
Pressure Switches, Regulators	Ultimate	1.5	2.5	2.5	2.0	2.5											2.5			2.5							2.5

Table C-1. Historical design factors for NASA space vehicles. (Revised from Table 3.2 in original report.)

New values being quoted by Clarence (Tom) Modelin (retired JSC) 1.0 1.1 1.4 0 1.1 on external tank and solid rocket boosters

	NASA Engineering and Safety Center	Document #: PB-04-05	Version: 1.0
Title:			Page#:
	White Paper on Factors of Safety		46 of 46

Approval and Document Revision History

Approved:	Original signature on file	11/4/04
	NESC Director	Date

Г

Version	Description of Revision	Office of Primary Responsibility	Effective Date

	RE	Form Approved OMB No. 0704-0188								
The public reporting gathering and mai collection of inform Reports (0704-018 shall be subject to PLEASE DO NOT	ng burden for this colle ntaining the data need nation, including sugge 38), 1215 Jefferson Da any penalty for failing RETURN YOUR FOR	ection of information is ded, and completing a estions for reducing th avis Highway, Suite 12 to comply with a colle RM TO THE ABOVE	s estimated to average 1 hour pr ind reviewing the collection of in his burden, to Department of De 204, Arlington, VA 22202-4302, ection of information if it does no ADDRESS.	er response, includir formation. Send co fense, Washington H Respondents shou t display a currently	ng the tim mments r Headquar Id be awa valid ON	e for reviewing instructions, searching existing data sources, regarding this burden estimate or any other aspect of this ters Services, Directorate for Information Operations and are that notwithstanding any other provision of law, no person IB control number.				
1. REPORT D	ATE <i>(DD-MM-YY</i> 10 - 2012	(YY) 2. REPC	3. DATES COVERED (From - To)							
4. TITLE AND		Technic	cal Memorandum		5a. CC	I ONTRACT NUMBER				
White Paper of	on Factors of S	afety								
					5b. Gl	RANT NUMBER				
					5c. PF	ROGRAM ELEMENT NUMBER				
6. AUTHOR(S Raju, Ivatury:		Kramer-Whit	e, Julie; Piascik, Rob	ert	5d. PF	ROJECT NUMBER				
	,,,		.,,,,		5e. TA	ASK NUMBER				
					5f. WC	DRK UNIT NUMBER				
					86902	21.05.07.02.01				
			AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER				
	ey Research Co 23681-2199	enter				L-20202 NESC-PB-04-05				
9. SPONSOR	ING/MONITORI	NG AGENCY NA	AME(S) AND ADDRESS	(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)				
National Aero	onautics and Sp	pace Administ	ration			NASA				
w asnington,	DC 20546-00	01				11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
Unclassified Subject Categ Availability: 13. SUPPLEM This white pa	gory 16-Space ' NASA CASI (Transportation (443) 757-580 S n in 2004 and	n andSafety 2 released in 2009 as N	IASA/TM-20	09-21	NASA/TM-2009-215723/REV1 5723. In Revision 1 (Oct. 2012), Table 3.2				
 14. ABSTRACT Following the Columbia Accident Investigation Board (CAIB) Report, the "Diaz Team" identified CAIB Report elements with Agency-wide applicability. The "Diaz Report", A Renewed Commitment To Excellence, generated an action to "Review current policies and waivers on safety factors". This document addresses this action. 15. SUBJECT TERMS 										
	TERMS Team; ETA; SF	RB								
	CLASSIFICATIO	ON OF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF						
a. REPORT	b. ABSTRACT	c. THIS PAGE		PAGES		TI Help Desk (email: help@sti.nasa.gov) TELEPHONE NUMBER (Include area code)				
U	U	U	UU	54	190.	(443) 757-5802				
U	Ŭ			51	1	Standard Form 298 (Rev. 8-98)				

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18