
30 NASA Tech Briefs, August 2009

Adaptive Behavior for Mobile Robots
A robotic system attempts to both preserve itself and progress toward a goal.
NASA’s Jet Propulsion Laboratory, Pasadena, California

The term “System for Mobility and Ac-
cess to Rough Terrain” (SMART) de-
notes a theoretical framework, a control
architecture, and an algorithm that im-
plements the framework and architec-
ture, for enabling a land-mobile robot to
adapt to changing conditions. SMART is
intended to enable the robot to recog-
nize adverse terrain conditions beyond
its optimal operational envelope, and, in
response, to intelligently reconfigure it-
self (e.g., adjust suspension heights or
baseline distances between suspension
points) or adapt its driving techniques
(e.g., engage in a crabbing motion as a
switchback technique for ascending
steep terrain). Conceived for original ap-
plication aboard Mars rovers and similar
autonomous or semi-autonomous mo-
bile robots used in exploration of remote
planets, SMART could also be applied to
autonomous terrestrial vehicles to be
used for search, rescue, and/or explo-
ration on rough terrain.

In SMART, controlling the motion of
the robot, managing the “health” of the
robot, and managing resources are con-
sidered as parts of a free-flow behavior
hierarchy that autonomously adapts to
changing conditions. Tasks that must be
performed in the continuing develop-
ment of SMART are to provide for safe,
adaptive mobility on highly sloped ter-

rain include:
• Determination of strategies for adap-

tive reconfiguration and driving that
are nearly optimal with respect to
safety and are computationally feasible
for on-board implementation,

• Determination of a representation for
uncertainty in sensing and prediction
of the state of the robot and its envi-
ronment, and

• Determination of resource-manage-
ment strategies that mitigate such risks
as those of the loss of battery power
and/or drive motors.
SMART is based largely on a prior ar-

chitecture denoted Biologically In spired
System for Map-based Auton omous
Rover Control (BISMARC), which, in
turn is based on a modified free-flow hi-
erarchy. BISMARC has been used with
success in a number of different simu-
lated mission scenarios, wherein it has
been demonstrated to afford capabilities
for retrieving objects cached at multiple
locations, fault tolerance on missions of
long duration, and preparing terrain
sites for habitation by humans. BIS-
MARC includes provisions for all aspects
of safety, self-maintenance, and achieve-
ment of goals, as needed to support a
sustained presence on the surface of a re-
mote planet.

BISMARC is organized as a two-level

system. From stereoscopic images ac-
quired by cameras aboard the robot, the
first level generates hypotheses of motor
actions. The second level processes these
hypotheses, coupled with external and
internal inputs, to generate control sig-
nals to drive the actuators on the robot.

The figure illustrates the free-flow ac-
tion-selection hierarchy of BISMARC and
SMART. The rectangular boxes represent
behaviors, while the ovals represent sen-
sory inputs (either fixed, direct, or de-
rived). At the top are the high-level behav-
iors, including Don’t Tip Over, Go to
Goal, Avoid Obstacles, Preserve Motors,
Warm Up, Get Power, and Sleep at Night.
The intermediate-level behaviors
(Change Center of Gravity, Avoid Obsta-
cles, Rest, and Sleep) are designed to in-
teract with both the short-term memory
(which corresponds to perceived sensory
stimuli), and the long-term memory
(which encodes remembered sensory in-
formation). Control loops are prevented
by use of temporal penalties, which con-
strain the system to repeat a given behav-
ior no more than a predetermined num-
ber of times. The bottom-level behaviors
(Tilt Arm, Change Shoulder Angles,
Move, Rest, Stop, Sleep) fuse the sensory
inputs and the activations of the higher-
level behaviors in order to select appropri-
ate actions for safety and achieving goals.

ber software-naming conventions and
insight into the architecture of the sys-
tem), programmers working in pairs,
adherence to a set of coding standards,
collaboration of customers and pro-
grammers, frequent verbal communica-
tion, frequent releases of software in
small increments of development, re-
peated testing of the developmental
software by both programmers and cus-
tomers, and continuous interaction be-
tween the team and the customers.

The environment in which the Maes-
tro team works requires the team to
quickly adapt to changing needs of its
customers. In addition, the team cannot
afford to accept unnecessary develop-
ment risk. Extreme programming en-
ables the Maestro team to remain agile
and provide high-quality software and
service to its customers. However, several
factors in the Maestro environment have

made it necessary to modify some of the
conventional extreme-programming
practices. The single most influential of
these factors is that continuous interac-
tion between customers and program-
mers is not feasible. The major resulting
differences between the Maestro and
conventional versions of extreme pro-
gramming are the following:
• Because customers are not always avail-

able for planning sessions, members of
the team act on behalf of customers
during these sessions.

• In an elaboration of the frequent-plan-
ning and incremental-release concept,
releases and planning meetings are syn-
chronized with a fixed one-week itera-
tion cycle that facilitates maintenance
of focus on the development task.

• Metaphors are occasionally used as
needed in specific instances, but the
conventional extreme-programming

concept of a system metaphor is aban-
doned as not being helpful.

• In a departure from the simplest-de-
sign rule, the team sometimes devel-
ops software infrastructure that affords
capabilities, beyond those required in
the current iteration, that may be use-
ful later in the development process.

• In the absence of continuous involve-
ment of customers and of frequent
testing of software by customers, there
is heavy reliance on automated testing.
This work was done by Jeffrey Norris, Jason

Fox, Kenneth Rabe, I-Hsiang Shu, and Mark
Powell of Caltech for NASA’s Jet Propulsion
Laboratory. Further information is contained
in a TSP (see page 1).

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-41811.



Inputs to the behavioral nodes are
calculated as weighted sums. In BIS-
MARC, the weights are fixed; conse-
quently, BISMARC is not capable of
adaptation to changing conditions or
to environments outside an original
world model. In contrast, SMART in-
cludes a learning mechanism that

adapts the weights to changing and
previously unanticipated conditions:
An algorithm, known in the art as the
maximize collective happiness (MCH)
algorithm, adjusts the weights in such a
manner as to maintain the health of
the robot while ensuring progress to-
ward the goal.

This work was done by Terrance Hunts-
berger of Caltech for NASA’s Jet Propulsion
Laboratory.

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California In-
stitute of Technology at (626) 395-2322.
Refer to NPO-40899.

NASA Tech Briefs, August 2009 31

The Free-Flow Action-Selection Hierarchy includes multiple behaviors at different levels. The numerical values shown at several places are examples of
weights assigned to inputs of behavioral modes. In general, such weights are changed as needed to adapt to changing or previously unknown environ-
mental conditions.

Perceived
Tilt

2.0 1.0

Don't Tip
Over

Distance
to Goal

Go to
Goal

Current
Draw

Shoulder
Angle

Arm
Angle

Power

Interior
Temperature

Exterior
Temperature

Preserve
Motors

Warm Up Get Power Sleep at Night TOP LEVEL

INTERMEDIATE
LEVEL

BOTTOM LEVEL

Avoid
Obstacles

Avoid
Obstacles

Rest

Rest Stop

Sleep

Sleep

Change
Center of
Gravity

Change
Shoulder

Angle

N N
E E S

E S

Move

S
W W N

WTilt Arm

3.0 3.0

0.80

0.20
4.0

5.0–1.0

1.5

–1.0

–0.35

Proximity
to Night

Goal
Present

Remembered
Obstacle

Perceived
Heading

Remembered
Goal

Terrain

Perceived
Goal

Perceived
Obstacle

Temporal
Penalty

Protocol for Communication Networking for Formation Flying
This protocol provides for adaptation to changing formation geometry and communication
requirements.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An application-layer protocol and a
network architecture have been pro-
posed for data communications among
multiple autonomous spacecraft that are
required to fly in a precise formation in
order to perform scientific observations.
The protocol could also be applied to
other autonomous vehicles operating in
formation, including robotic aircraft, ro-
botic land vehicles, and robotic under-
water vehicles.

A group of spacecraft or other vehi-
cles to which the protocol applies could
be characterized as a precision-forma-
tion-flying (PFF) network, and each ve-
hicle could be characterized as a node in
the PFF network. In order to support
precise formation flying, it would be
necessary to establish a corresponding
communication network, through which
the vehicles could exchange position
and orientation data and formation-con-

trol commands. The communication
network must enable communication
during early phases of a mission, when
little positional knowledge is available.
Particularly during early mission phases,
the distances among vehicles may be so
large that communication could be
achieved only by relaying across multiple
links. The large distances and need for
omnidirectional coverage would limit
communication links to operation at low
bandwidth during these mission phases.
Once the vehicles were in formation and
distances were shorter, the communica-
tion network would be required to pro-
vide high-bandwidth, low-jitter service to
support tight formation-control loops.

The proposed protocol and architec-
ture, intended to satisfy the aforemen-
tioned and other requirements, are based
on a standard layered-reference-model
concept. The proposed application proto-

col would be used in conjunction with
conventional network, data-link, and
physical-layer protocols. The proposed
protocol includes the ubiquitous Institute
of Electrical and Electronics Engineers
(IEEE) 802.11 medium access control
(MAC) protocol to be used in the data-
link layer. In addition to its widespread
and proven use in diverse local-area net-
works, this protocol offers both (1) a ran-
dom-access mode needed for the early
PFF deployment phase and (2) a time-
bounded-services mode needed during
PFF-maintenance operations. Switching
between these two modes could be con-
trolled by upper-layer entities using stan-
dard link-management mechanisms.

Because the early deployment phase of
a PFF mission can be expected to involve
multihop relaying to achieve network
connectivity (see figure), the proposed
protocol includes the open shortest path


