

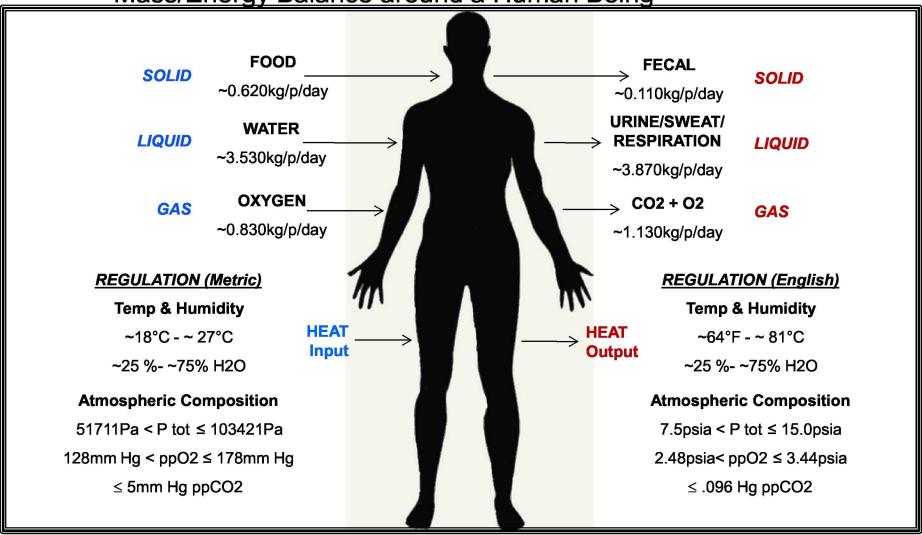
Environmental Control and Life Support System (ECLSS)

System Engineering Workshop Life Sciences Department

ISU SSP 2009

Ames Research Center, USA

Agenda



- Recap SSP09 Lecture on ECLSS
 - ✓ ECLS Subsystems
 - ✓ Non Regenerative (Backpacking) vs. Regenerative
 - Open loop vs. Closed Loop
 - Physical-chemical vs. Bioregenerative
 - ✓ Equivalent System Mass (ESM)
 - Applications for ECLS subsystem design
- US Spacecraft ECLS Subsystem component description
 - ✓ Mercury, Gemini, Apollo, Skylab, Shuttle, ISS, CEV, LL, LO
 - Detail Air Revitalization, Pressure Control, and Water
- Team Projects
 - ✓ Split into 4 teams → Shop at "ECLS-mart" → Determine ESM
 - 2 teams with Mission Scenario #1
 - 2 teams with Mission Scenario #2
 - ✓ Out brief ESM to Department and discuss variations

The Human "Box"

Mass/Energy Balance around a Human Being

Recap on ECLSS (1/4)

☐ You already learned...

- Why we need ECLSS? → To SUSTAIN human life and workability
- Main Subsystems (Functions) of ECLSS
 - ✓ Atmosphere Revitalization and/or Pressure Control Subsystem (ARS, ACS, or PCS)
 - CO₂ and trace gas removal
 - Pressure control (gas storage, relief valves, introduction valves, pressure gages)
 - Atmospheric constituents monitoring (O₂, N₂, H₂O, CO₂, trace gasses)
 - · Forced convection air flow
 - ✓ Potable Water Recovery and Management Subsystem (PWS or WRM)
 - · Potable water processing and/or storage
 - Alternate water processing and/or storage
 - Water quality monitoring (TOC, pH, Microbiology)
 - ✓ Temperature and Humidity Control (THC)
 - Depending on vehicle, may be performed with ARS + Active Thermal Control Subsystem
 - Atmospheric control of temperature and humidity with heat exchanger and forced convection
 - Passive equipment cooling (via cabin airflow)
 - ✓ Waste Management and/or Collection Subsystem (WMS or WCS)
 - Human waste management solid, liquid, and gas seperation
 - ✓ Fire Detection and Emergency Management Subsystem (FDS)
 - · Smoke detectors, fire extinguishers, portable breathing masks
 - Strategy for cabin fire, chemical release, and/or depressurizing cabin

Recap on ECLSS (2/4)

☐ You already learned...(continued)

Non Regenerative / Open Loop

- ✓ Backpacking mission (high consumables / resupply usage)
- ✓ Simple, reliable
- ✓ Resources are linearly dependent on flight time.

Regenerative / Closed Loop

- ✓ Recycling of resources (low consumables / resupply usage)
- ✓ Minimized overboard losses
- ✓ Increased power, thermal, and initial mass requirements
- ✓ Lower reliability, based on higher complexity
- ✓ Trade off for closed loop occurs for missions of ~3 months in duration.
 - Varies dependent on number of crew, spacecraft volume, in situ resources, etc.

"Physical – chemical – mechanical"

✓ Uses physical, chemical, and mechanical devices for ECLS processing

Bioregenerative

- ✓ Uses living organisms to produce or break down organic molecules for ECLS processing
- ✓ "Put the Earth in a little box" so we can go somewhere else

Recap on ECLSS (3/4)

☐ You already learned...(continued)

- One of many analysis tools used to trade spacecraft system optimization is...
- Equivalent System Mass (ESM)
 - ✓ Evaluates trade study options for spacecraft life support systems
 - ✓ Identifies which option meets all the requirements while providing the lowest launch cost
 - Mass
 - Volume
 - Power
 - Cooling
 - Crew Time
 - ✓ Provides a 'total system impact' for comparison in overall vehicle life support system selection

Recap on ECLSS (4/4)

☐ You already learned...(continued)

•
$$ESM = M + (V \cdot Veq) + (P \cdot Peq) + (C \cdot Ceq) + (CT \cdot D \cdot CTeq)$$

where *ESM* = the equivalent system mass value of the system of interest [kg],

- M = the total mass of the system [kg],
- V = the total pressurized volume of system [m₃],
- Veq = the mass equivalency factor for the pressurized volume infrastructure [kg/m_i],
- P = the total power requirement of the system [kW.] .,
- *Peq* = the mass equivalency factor for the power generation infrastructure [kg/kW.],
- C = the total cooling requirement of the system [kW,],
- Ceq= the mass equivalency factor for the cooling infrastructure [kg/kW_s],
- CT = the total crewtime requirement of the system[CM-h/y],
- D= the duration of the mission segment of interest [y],
- CTeq = the mass equivalency factor for the crewtime support [kg/CM-h]

US Spacecraft ECLSS – Mercury (1960-1963)

- AND PROPERTY AND A STATE OF THE PARTY OF THE
- First flight May 5th, 1961, Alan Shepard, 15 min sub-orbital flight
- ❖ Six total manned flights with 1 crewmember
 - Longest was 34 hours, 19 minutes, 49 seconds
- Crewmembers wore suit for duration of flight
 - Suit revitalized atmosphere, controlled temperature & relative humidity
- Spacesuit normally unpressurized during flight
 - If necessary, crewmember could pressurize suit by closing visor
- ❖ Pressurized Volume = 1.56m³

Subsystem Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2 Atmosphere : 100% O2 @ 34.5kPa (5psia)	Stored H2O Disinfection by residual chlorine
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	O2 in 2 x 1.8kg Ni plated tanks at 51.7MPa (7500psia)	6lb Bladder tank back pressurized via squeeze bulb

US Spacecraft ECLSS – Gemini (1964 – 1966)

Two unmanned flights + Ten manned flights

- Manned flights were ~5 hours to ~14 days
- Two crewmembers on each flight
- Crewmembers again wore suits for the duration of the flight
 - Air revitalization, temperature, and humidity controlled separately in suit and in cabin
- Improvements to life support system vs. Mercury
 - Supercritical O2 storage vs. high pressure
 - Integrated heat exchanger + water separator
 - Modularity in components for easier in-flight maintenance

❖ Pressurized Volume = 2.26m³

Subsystem Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2 Atmosphere : 100% O2 @ 34.5kPa (5psia)	Stored H2O CI biocide added prelaunch
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	Supercritical cryogenic O2 in 1 spherical tank at 5.86MPa (850psia)	Bladder tank back pressurized with O2

US Spacecraft ECLSS – Apollo (1968 – 1972)

Eleven crewed missions

- Two Earth orbiting & two Lunar orbiting
- One Lunar "swing by"
- Six Lunar landings

Apollo missions split into two sections

- Command and Service Module (CSM)
 - Transported crew of 3 from Low Earth Orbit (LEO) to Low Lunar Orbit (LLO) and back to Earth
 - SM unpressurized with water, gas, electrical, etc.
 - Similar to CEV Crew Module (CM) & Service Module (SM)
- Lunar Excursion Module (LEM) or Lunar Module (LM)
 - Ferried two crewmembers to the lunar surface and back to CSM
- Both contained separate life support systems

US Spacecraft ECLSS – Apollo (CSM)

❖ CSM Life Support

- Capable of providing life support for 3 crewmembers for 14 days
- Fuel cells provided energy + drinking water
- Oxygen tanks in SM fed CM for crew consumption as well as fuel cells
- ❖ Pressurized volume = 5.9m³

Subsystem Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2 Atmosphere : 100% O2 @ 34.5kPa (5psia)	Fuel cell provided + Cl biocide added daily
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	Supercritical cryogenic O2 in 2 x 145kg spherical Inconel Dewar tanks at 6.20MPa (900psia)	Al alloy tank with polyisoprene bladder, back pressurized w/ O2

US Spacecraft ECLSS – Apollo (LEM)

- Allowed 12 astronauts to walk on the surface of the moon
 - 2 crewmembers
 - Pressurized volume = 4.5m³

Subsystem Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2 Atmosphere: 100% O2 @ 34.5kPa (5psia)	Stored H2O with iodine biocide (CI corrosion concerns) added via "MCV"
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	Descent: compressed O2 at 18.6MPa (2700psia) Ascent: Supercritical cryogenic O2 in Inconel bottles at 5.86MPa (850psia)	3 tanks (1 descent, 2 ascent) silicone rubber bladder

US Spacecraft ECLSS – Skylab (1973 – 1974)

- **❖** First U.S. Space Station (pressurized volume = 361m³)
 - Study effects of long-duration space flight on humans
 - Three Skylab missions of 28, 59, and 84 days
 - 3 crewmembers on each mission
- Skylab life support (updates)
 - Added a 2 canister molecular sieve vs. LiOH
 - Method for monitoring water biocide (iodine) in-flight
 - UV smoke detectors

Subsystem Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	Partially closed loop (some overboard loss) CO2 chemically removed via regenerative source	Stored O2/N2 Atmosphere: Mixed 72%O2 / 28%N2 @ 5psia (34.5kPa)	Stored H2O (iodine biocide, added in-flight, but removed prior to drinking)
Hardware (kg)	2 canister molecular sieve, regenerative Zeolite combination adsorbs CO2 + H2O & desorbs when exposed to vacuum	O2/N2 stored in gaseous form @ 3000psia (20.7MPa) in bottles	10 stainless steel metal bellows tanks back pressurized with N2

US Spacecraft ECLSS – Shuttle (1981 – present)

- **❖** 4 − 7 crewmembers per mission
- **❖** Varying mission durations of ~14days
 - Early missions were ~4 days, and missions have been as long at 18days.
- Always Low Earth Orbit Operations
- Pressurized Volume = 132m³

Subsystem Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2/N2 <u>Atmosphere</u> : Mixed 21.7%O2 / 78.3%N2 @ 14.7psia (101kPa)	Stored H2O (iodine biocide, added pre-flight, and during with MCV, but removed prior to drinking)
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	O2/N2 stored in gaseous form @ 3300psia (22.8MPa) in bottles. 4N2 tanks, O2 cryogenic storage.	4 stainless steel metal bellows tanks back pressurized with N2

US Spacecraft ECLSS – USOS ISS (2000 – present)

- **❖** Crewed since Oct 31st, 2000
- Currently provide life support for 6 person crew
- US Operating Segment designated "National Laboratory"
- 6 month expeditions (current human limit requirement)
- Pressurized Volume = 711m³ (as of July 2009)

Subsystem Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	Partially closed loop (some overboard loss) CO2 chemically removed	Atmosphere: Mixed 21.7%O2 / 78.3%N2 @ 14.7psia (101kPa)	Stored water (iodine or AgF biocide) or processed via WPA/UPA
Hardware (kg)	4 bed molecular sieve with 2 regenerative Zeolite beds to remove CO2, desorbed with heat and pressure	Oxygen @ max 3000psia for EVAs or generated with Oxygen Generation Assembly (electrolysis)	Stored in WPA tanks fed to the US water bus or stored in collapsible containers (CWCs/PWRs)

US Spacecraft ECLSS Orion/CEV (~2015)

- Initial Operational Capability, ~2015
- **❖** Similar split to Apollo
 - CM = Crew Module (pressurized volume 15.6m³ [~550cu ft])
 - SM = Service Module (unpressurized, storage volume)
- ❖ ISS mission
 - Expected 4 person crew to ISS with 6 months quiescent operations + ~6 days maximum active crew time
- ❖ Lunar mission ~2020
 - ~21 days maximum active crew time + ~6 months quiescent operations during lunar habitation

Subsystem Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	Partially closed loop (some overboard loss) CO2 chemically removed	Mixed O2/N2 @ 14.7psia – ISS, ~10.2psia – lunar	Stored water (baselined AgF biocide)
Hardware (kg)	Regenerative pressure swing assembly w/ solid amine adsorbs CO2 + H20 & desorbs when exposed to vacuum	O2/N2 stored @ ~5000psia in Composite Overwrap Pressure Vessels	~5 Inconel bellows tanks in service module

US Spacecraft ECLSS Altair/Lunar Lander (~2020)

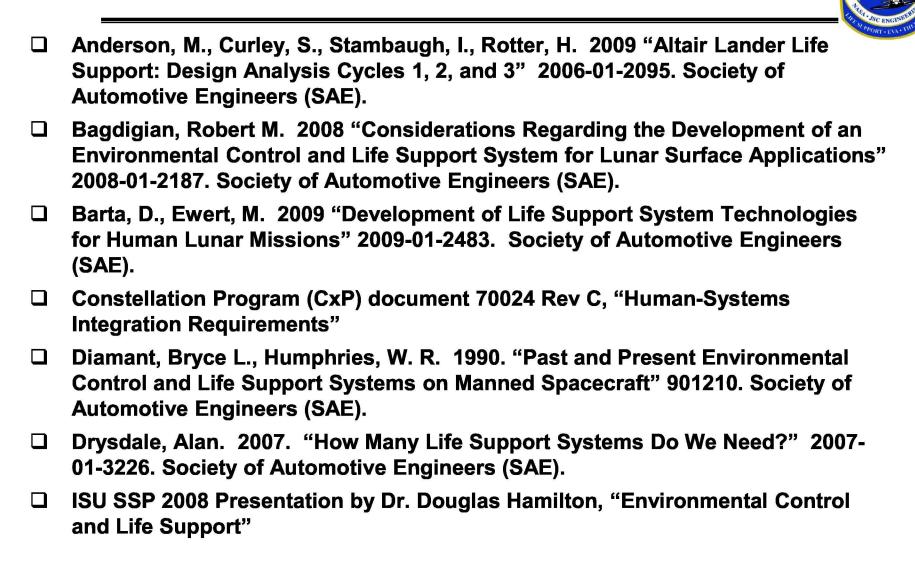
- Initial Operational Capability, ~2020
- Lunar sortie (~8 days on the Moon)
 - Expected 4 person crew on CEV to the Moon, with ~8 days active operations in Altair/Lunar Lander
 - No support from pre-positioned surface assets, primarily suited operations
- ❖ Lunar habitation (~6 months on the Moon)

 4 person crew on CEV to the Moon, with ~6 months active operations on the moon (mixed between Lunar Lander and Lunar Outpost)

Subsystem Feature	Air Revitalization (CO2 Removal)	Pressure Control	Potable Water
Method	CO2 chemically removed with consumable	Stored O2/N2 <u>Atmosphere</u> : Mixed O2/N2 @ ~10.2psia	Stored water
Hardware (kg)	Lithium Hydroxide (LiOH) parallel (redundant) path	N2/O2 stored in descent stage Only O2 stored in ascent stage	Expected in suit drink bag

US Spacecraft ECLSS Lunar Outpost (TBD)

- Initial Operational Capability, TBD
- Lunar habitation (~6 months on the Moon)
 - 4 person crew on CEV to the Moon, with ~6 months active operations on the moon (mixed between Lunar Lander and Lunar Outpost)
 - Expected to include power, habitats, surface mobility (LER), and resource utilization
- Opportunity for closed loop, bioregenerative life support
 - Will most likely stage the approach
 - Initial capability/construction (similar to Altair life support)
 - Interim capability/construction physical/chemical life support (similar to ISS but relying on 1/6 g)
 - Final capability/sustaining bioregenerative mixed with physical/chemical


Team Projects

□ Split into teams of 4 (count off)

- 2 teams = Mission Scenario #1
 - √ 6 crewmembers, 30 days, 0 g, pressurized volume
 - Veq=
 - Peq=
 - Ceq=
 - CTeq=
- 2 teams = Mission Scenario #2
 - √ 4 crewmembers, 180 days, Lunar Gravity (1/6 g), pressurized volume
 - Veq=
 - Peq=
 - Ceq=
 - CTeq=
- No Discussion between teams with the same scenarios
- ☐ Assumptions
 - All infrastructure is the same (not included in ESM calculation)
 - ✓ Ducts, pipes, crew interfaces, power interface, etc.

References (1/2)

References (2/2)

ISU SSP 2008 Presentation by Dr. N. Tolyarenko, "Environmental Control and Life Support System" ISU SSP 2009 Presentation by Dr. Angie Buckley and Dr. Gilles Clement, "Life **Support Systems during Space Missions**" Levri, Julie A. et. al. September 2003. NASA/TM-20030212278, "Advanced Life **Support Equivalent System Mass Guidelines Document**" Lewis, John F., et. al. 2009. "Crew Exploration Vehicle Environmental Control and Life Support Development Status" 2009-01-2457. Society of Automotive Engineers (SAE). Lewis, John F., Russell, James F. 2008 "Project Orion, Environmental Control and Life Support System Integrated Studies" 2008-01-0198. Society of **Automotive Engineers (SAE).** Peterson, Laurie, et. al. 2006 "Crew Exploration Vehicle (CEV) Potable Water System Verification Coordination" 2008-01-2083. Society of Automotive Engineers (SAE). Peterson, Laurie, et. al. 2006 "Recommendations for Water Systems in Future Space Applications" 2006-01-2095. Society of Automotive Engineers (SAE).

