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Abstract

Given a system which can fail in 1 of n different ways, a fault detection and isolation (FDI) algorithm
uses sensor data in order to determine which fault is the most likely to have occurred. The effectiveness of
an FDI algorithm can be quantified by a confusion matrix, which indicates the probability that each fault
is isolated given that each fault has occurred. Confusion matrices are often generated with simulation
data, particularly for complex systems. In this paper we perform FDI using sums of squares of sensor
residuals (SSRs). We assume that the sensor residuals are Gaussian, which gives the SSRs a chi-squared
distribution. We then generate analytic lower and upper bounds on the confusion matrix elements. This
allows for the generation of optimal sensor sets without numerical simulations. The confusion matrix
bounds are verified with simulated aircraft engine data.

1 Introduction

Many different methods of fault detection and isolation (FDI) have been proposed. Frequency
domain methods include monitoring resonances [1] or modes [2]. Filter-based methods in-
clude observers [3], unknown input observers [4], Kalman filters [5], particle filters [6], sliding
mode observers [7], H∞ filters [8], and set membership filters [9]. There are also methods
based on computer intelligence [10], include fuzzy logic [11], neural networks [12], genetic
algorithms [13], and expert systems [14]. Other methods include those based on Markov
models [15], system identification [16], wavelets [17], Bayesian inference [18], control input
manipulation [19], and the parity space approach [20]. Many other FDI methods have also
been proposed [21], some of which apply to special types of systems.

The parity space approach to FDI compares the sensor residual vector to nominal user-
specified fault vectors, and the closest fault vector is isolated as the most likely fault. If the
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sensor residual vectors are Gaussian, the parity space approach allows an analytic computa-
tion of the confusion matrix. The FDI approach that we propose is philosophically similar to
the parity space approach, but instead of using fault vectors, we use sum-of-squared residuals
(SSRs) in order to detect and isolate a fault. We do not compare our approach with other
FDI methods, but our approach is chosen because of its amenability to a new statistical
method for the calculation of confusion matrix bounds.

If sensor residuals are Gaussian, the SSRs have a chi-squared distribution [22]. This allows
for the specification of SSR bounds for fault detection which have a known false negative rate
and false positive rate. We can also also compare the SSRs for each fault type to determine
which fault is most likely to have occurred, and then find analytic bounds for fault isolation
probabilities. Our FDI algorithm is new, but the primary contribution of this paper is to
show how confusion matrix element bounds can be derived analytically. The FDI algorithm
that we propose is fairly simple, but the confusion matrix analysis that we develop is novel
and its ideas may be adaptable to other FDI algorithms.

Our approach is to first specify the magnitude of each fault that we want to detect, along
with a target false positive rate (FPR). For each fault we then find the sensor set that gives
the largest true positive rate (TPR) for the given FPR. Then we use statistical approaches
to find confusion matrix bounds. The confusion matrix bounds are the outputs of this
process. We cannot specify desired confusion matrix bounds ahead of time; the bounds are
the dependent variables of the sensor selection process.

The goal of this paper is threefold. Our first goal is to present our SSR-based FDI
algorithm, which we do in Section 2. Our second goal is to derive confusion matrix bounds,
which we do in Section 3. Our third goal is to confirm the theory with simulation results,
which we do in Section 4 using an aircraft turbofan engine model. Section 5 presents some
discussion and conclusions.

2 A Simple SSR-Based FDI Algorithm

This section presents an overview of our simple SSR-based FDI algorithm, gives an overview
of confusion matrix theory, and provides some fundamental lemmas that are used later. We
consider FDI of a static, linear system. Sensor residuals are computed at each measurement
time to perform fault detection, and the sum of the squares of the sensor residuals (SSR) are
used to perform fault isolation. If the sensor residuals are Gaussian, then the SSRs have a
chi-squared distribution, which allows the formulation of analytic bounds on the confusion
matrix elements as discussed in Sections 3.1-3.3.

The residual of the ith sensor is denoted as yi and is a measurement of the difference
between the sensor output and its nominal output in the no-fault case. In the no-fault case,
yi is zero mean. In the fault case, the mean of yi is µi. In either case, the standard deviation
of yi is σi. The mean µi depends on which fault occurs, but for simplicity of notation we do
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not indicate that dependence in our notation. An SSR is given as

S =
k∑

i=1

(yi/σi)
2 (1)

where k is the number of sensors used in this particular SSR. If each yi is a zero-mean
Gaussian random variable, then S is a random variable with a chi-squared distribution [22].
Its probability density function (pdf), and cumulative distribution function (cdf), are

f(x, k) =

{
2−k/2(Γ(k/2))−1xk/2−1e−x/2

0
x > 0
x ≤ 0

(2)

F (x, k) =

{
γ(k/2, x/2)(Γ(k/2))−1

0
x > 0
x ≤ 0

(3)

where Γ(·) is the gamma function and γ(·) is the lower incomplete gamma function.

Γ(z) =

∫ ∞

0

tz−1e−t dt (4)

γ(z, a) =

∫ a

0

tz−1e−t dt (5)

We will use a user-specified threshold T to detect a fault.

S ≥ T → fault detected (6)

S < T → no fault detected (7)

Note that fault isolation is a different issue than fault detection. Detection means that
Si ≥ Ti for fault detection algorithm i. However, it may be that Si ≥ Ti for more than one
value of i. In that case multiple faults have been detected and a fault isolation algorithm is
required to isolate the most likely fault.

If a fault occurs, then the yi terms in Equation 1 will not, in general, be zero mean. In
this case S has a noncentral chi-squared distribution [22]. Its pdf and cdf are given as

f(x, k, λ) =
1

2
e−(x+λ)/2(x/λ)k/4−1/2Ik/2−1

(√
λx

)
(8)

F (x, k, λ) =
∞∑

j=0

e−λ/2 (λ/2)j

j!
F (x, k + j/2) (9)

where λ is related to the means µi of the sensor residuals yi, and I(·) is a modified Bessel
function of the first kind.

λ =
k∑

i=1

(
µi

σi

)2

(10)

Im(y) = (y/2)m

∞∑
j=0

(y2/4)j

j! Γ(m + j + 1)
(11)
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We use the notation fx(w) and Fx(w) to denote the pdf and cdf of the random variable
x evaluated at w. In terms of FDI, w will be equal to the SSR. If the random variable that
is being used is clear from the surrounding text and mathematics, we shorten the notation
to f(x) and F (x). We use f(x, k) and F (x, k) to denote the pdf and cdf of the chi-squared
distribution, and f(x, k, λ) and F (x, k, λ) to denote the pdf and cdf of the noncentral chi-
squared distribution.

A confusion matrix specifies the likelihood of isolating each fault, and can be used to
quantify the performance of an FDI algorithm. A typical confusion matrix for FDI is shown
in Table 1. The rows correspond to fault conditions, and the columns correspond to fault
isolation results. The element in the ith row and jth column is the probability that fault j
is isolated when fault i occurs. Ideally the confusion matrix would be an identity matrix,
which would indicate perfect fault isolation.

In Table 1, CCRi is the probability that fault i is correctly isolated given that it occurs.
CNR is the probability that a no-fault condition is correctly indicated given that no fault
occurs. Mij is the probability that fault i is incorrectly isolated given that fault j occurs.
Mi0 is the probability that fault i is incorrectly isolated given that no fault occurs. M0i is
the probability that no fault is isolated given that fault i occurs.

Table 1: Typical confusion matrix format. The rows correspond to fault conditions, and the columns
correspond to fault isolation results.

Fault 1 Fault 2 · · · Fault n No fault
Fault 1 CCR1 M21 · · · Mn1 M01

Fault 2 M12 CCR2 · · · Mn2 M02

...
...

...
. . .

...
...

Fault n M1n M2n · · · CCRn M0n

No fault M10 M20 · · · Mn0 CNR

In the remainder of this paper we use the following lemmas to derive results. These lemmas
can be proven using standard definitions and results derived from probability theory [23, 24].

Lemma 1 The probability that a realization of the random variable x is greater than a
realization of the random variable y is given as

P (x > y) =

∫ ∞

−∞

∫ ∞

y

f(x, y) dx dy (12)

where f(x, y) is the joint pdf of x and y. If x and y are independent, this can be written in
terms of the marginal pdf’s as

P (x > y) =

∫ ∞

−∞

[∫ ∞

z

fx(w) dw

]
fy(z) dz (13)

=

∫ ∞

−∞
[1− Fx(z)] fy(z) dz (14)
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Lemma 2 If y = T + x, where x is a random variable and T is a constant, then

fy(w) = fx(w − T ) (15)

Fy(w) = Fx(w − T ) (16)

Lemma 3 If y = T − x, where x is a random variable and T is a constant, then

fy(w) = fx(T − w) (17)

Fy(w) = 1− Fx(T − w) (18)

Lemma 4 If z = min(x, y), where x and y are independent random variables, then

fz(w) = fx(w)(1− Fy(w)) + fy(w)(1− Fx(w)) (19)

Lemma 5 If z = min(x, T ), where x is a random variable and T is a constant, then

Fz(w) =

{
Fx(w)
1

w < T
w ≥ T

(20)

fz(w) =





fx(w)
0
(1− Fx(w))δ(0)

w < T
w > T
w = T

(21)

where δ(·) is the continuous-time impulse function.

Lemma 6 If z = max(x, y), where x and y are independent random variables, then

fz(w) = fx(w)Fy(w) + fy(w)Fx(w) (22)

Lemma 7 If z = max(x, T ), where x is a random variable and T is a constant, then

Fz(w) =

{
Fx(w)
0

w ≥ T
w < T

(23)

fz(w) =





fx(w)
0
Fx(w)δ(0)

w > T
w < T
w = T

(24)
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3 Confusion Matrix Bounds

This section derives analytic confusion matrix bounds for our SSR-based FDI algorithm.
Section 3.1 deals with the no-fault case and derives bounds for the correct no-fault rate
(CNR), which is the probability that no fault is detected given that no fault occurs. It also
derives bounds for the FPR, which is the probability that at least one fault is detected given
that no fault occurred. Finally it derives an upper bound for the no-fault misclassification
rate, which is the probability that a given fault is isolated given that no fault occurred.
Section 3.2 deals with the fault case and derives bounds for the correction classification
rate (CCR), which is the probability that a given fault is correctly isolated given that it
occurred. Section 3.3 also deals with the fault case and derives upper bounds for the fault
misclassification rate, which is the probability that the incorrect fault is isolated given that
some other fault occurred. Section 3.4 summarizes the bounds and their use in the confusion
matrix, and Section 3.5 discusses the required computational effort.

3.1 No-Fault Case

The true negative rate (TNR) is the probability that S < T given that there are no faults.
The false positive rate (FPR) is the probability that S ≥ T given that there are no faults.
If only one SSR is considered, these probabilities are given as

TNR(T, k) = F (T, k) (25)

FPR(T, k) = 1− F (T, k) (26)

Figure 1 illustrates TNR and FPR for a chi-squared SSR containing k = 10 sensors and a
detection threshold T = 25.

3.1.1 False positive rate: Two fault detection algorithms

Our FDI algorithm will have n fault detection algorithms running in parallel, where n is the
number of possible faults. This will allow for the calculation of n SSRs, which will allow for
their comparisons for fault isolation.

In this section we derive the FPR if two fault detection algorithms are running in parallel.
Suppose that algorithm 1 attempts to detect fault 1 using k1a sensors and threshold T1, and
algorithm 2 attempts to detect fault 2 using k2a sensors and threshold T2. We use the
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Figure 1: Illustration of the chi-squared pdf of an SSR with k = 10 sensors. The true negative rate is the
area to the left of the user-specified threshold T = 25, and the false positive rate is the area to the right of

the threshold.

notation

Y1 = {sensors unique to algorithm 1} (27)

Y2 = {sensors unique to algorithm 2} (28)

Yc = {sensors common to algorithms 1 and 2} (29)

Y1 = {all sensors used by algorithm 1} (30)

= {Y1, Yc} (31)

Y2 = {all sensors used by algorithm 2} (32)

= {Y2, Yc} (33)

Note that some of the sensors used to detect fault 1 might also be used to detect fault 2,
but some of the sensors used to detect fault 1 might not be used for fault 2 (and vice versa).
Our algorithm therefore takes into account those sensor residuals that are unique to a given
fault, and also those residuals that are common between faults. We use the notation Y1i to
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denote the ith normalized residual of the sensors used in algorithm 1, with similar meanings
for Y2i, Y1i, Y2i, and Yci. That is,

S1 =
∑

Y2
1i (34)

=
∑

Y 2
1i +

∑
Y 2

ci (35)

If there are no faults, then the probability that either fault 1 or fault 2 will be detected is

FPR = P
[(∑

Y2
1i > T1

)
or

(∑
Y2

2i > T2

)]
(36)

= P
[(∑

Y 2
1i +

∑
Y 2

ci > T1

)
or

(∑
Y 2

2i +
∑

Y 2
ci > T2

)]
(37)

= P
[(∑

Y 2
ci > T1 −

∑
Y 2

1i

)
or

(∑
Y 2

ci > T2 −
∑

Y 2
2i

)]
(38)

= P
[∑

Y 2
ci > min

(
T1 −

∑
Y 2

1i, T2 −
∑

Y 2
2i

)]
(39)

Note that
∑

Y 2
ci,

∑
Y 2

1i, and
∑

Y 2
2i are three independent random variables. If neither Y1,

Y2, nor Yc are empty, we can use Lemmas 1, 3, and 4 to obtain

FPR =

∫ ∞

−∞
[1− F (y, kc)] [f(T1 − y, k1)F (T2 − y, k2) + f(T2 − y, k2)F (T1 − y, k1)] dy(40)

k1 = |Y1|, k2 = |Y2|, kc = |Yc| (41)

Note that we are using the notation |Z| to denote the number of elements in the set Z. If
Y1 is empty (sensor set 1 does not have any unique sensors), but Y2 and Yc are not empty,
Equation 39 can be written as

FPR = P
[∑

Y 2
ci > min

(
T1, T2 −

∑
Y 2

2i

)]
(42)

= P
[∑

Y 2
ci > min (T1, a)

]
(43)

where a is defined by the above equation. Lemma 3 tells us that

fa(y) = f(T2 − y, k2) (44)

Fa(y) = 1− F (T2 − y, k2) (45)

Equations 42 and 43 can be written as

FPR = P
[∑

Y 2
ci > b

]
(46)

b = min (T1, a) (47)

Lemma 5 tells us that

fb(y) =





fa(y) y < T1

0 y > T1

(1− Fa(y))δ(0) y = T1

(48)
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We can use Lemma 1 in conjuction with Equations 42–48 to write

FPR =

∫ ∞

−∞
[1− F (y, kc)] fb(y) dy (49)

=

∫ T1

−∞
[1− F (y, kc)] fa(y) dy +

∫ T1

T1

[1− F (y, kc)] [1− Fa(y)] δ(0) dy (50)

=

∫ T1

−∞
[1− F (y, kc)] f(T2 − y, k2) dy + [1− F (T1, kc)] [1− Fa(T1)] (51)

=

∫ T1

−∞
[1− F (y, kc)] f(T2 − y, k2) dy + [1− F (T1, kc)] F (T2 − T1, k2) (52)

=

∫ min(T1,T2)

−∞
[1− F (y, kc)] f(T2 − y, k2) dy + [1− F (T1, kc)] F (T2 − T1, k2) (53)

If Y2 is empty (sensor set 2 does not have any unique sensors), but Y1 and Yc are not empty,
we can use Lemmas 1, 3, and 5 to obtain

FPR = P
[∑

Y 2
ci > min

(
T1 −

∑
Y 2

1i, T2

)]
(54)

=

∫ min(T1,T2)

−∞
[1− F (y, kc)] f(T1 − y, k1) dy + [1− F (T2, kc)] F (T1 − T2, k1) (55)

If Yc is empty (the two sensor sets do not have any common sensors), but Y1 and Y2 are not
empty, we can use Lemmas 3 and 4 to obtain

FPR = P
[
0 > min

(
T1 −

∑
Y 2

1i, T2 −
∑

Y 2
2i

)]
(56)

=

∫ 0

−∞
[f(T1 − y, k1)F (T2 − y, k2) + f(T2 − y, k2)F (T1 − y, k1)] dy (57)

3.1.2 False positive rate: More than two fault detection algorithms

The previous section derived the FPR given that two fault detection algorithms are running
in parallel. Now suppose that there are n > 2 fault detection algorithms. In this case we
can write

FPR = P [(S1 > T1) or · · · or (Sn > Tn)] (58)

= 1− P [(S1 < T1), · · · , (Sn < Tn)] (59)

= 1− CNR (60)

where CNR is the correct no-fault rate. CNR is the probability that all of the SSRs are
below their detection thresholds given that no fault occurred, and can be written as

CNR = P [(S1 < T1) , · · · , (Sn < Tn)] (61)
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This can be bounded as
n∏

i=1

TNR(Ti, ki) ≤ CNR ≤ min
i

TNR(Ti, ki) (62)

The lower bound will be exact if none of the fault detection algorithms have any sensors in
common, which means that TNR(Ti, ki) and TNR(Tj, kj) are independent for all i 6= j. The
upper bound will be exact if there is some m such that Ym is a superset of Yi for all i 6= m,
and TNR(Tm, km) ≤ TNR(Ti, ki) for all i 6= m.

We can use Equations 60 and 62 to obtain bounds for the FPR when n > 2 fault detection
algorithms are running in parallel.

1−min
i

TNR(Ti, ki) ≤ FPR ≤ 1−
n∏

i=1

TNR(Ti, ki) (63)

3.1.3 Fault misclassification rates in the no-fault case

Given that no fault occurred, the probability that fault i is incorrectly isolated is called the
misclassification rate, Mi0. In this section we derive upper bounds for this probability.

Suppose that we have n fault detectors running in parallel. Given that a fault is detected,
that is, that the SSR of at least one fault detector exceeds its threshold, we propose isolating
the fault using the following logic.

p̂ = argmaxp

(∑
i

Y2
pi − Tp

)
(64)

Two fault detection algorithms

Suppose that we have only two fault detection algorithms, algorithms 1 and 2. Given that no
fault occurred, the probability that fault 1 is isolated is called the marginal misclassification
of fault 1 relative to fault 2, and is given as

M10,2 = P [(S1 > T1), (S1 − T1 > S2 − T2)] (65)

= P

[∑
i

Y 2
1i > max

(
T1 −

∑
i

Y 2
ci,

∑
i

Y 2
2i + T1 − T2

)]
(66)

If neither Y1, Y2, nor Yc are empty, we can use Lemmas 1, 2, 3, and 6 to obtain

M10,2 =

∫ ∞

−∞
[1− F (y, k1)] [F (y + T2 − T1, k2)f(T1 − y, kc)+ (67)

f(y + T2 − T1, k2) (1− F (T1 − y, kc))] dy

In order to find finite integration limits that do not result in an excessive loss of accuracy
in the computation of M10,2, we use our knowledge that f(w, k) = 0 for w < 0, and we find
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values of z2 and zc such that f(z2, k2) < ε and f(zc, kc) < ε for some small user-specified
threshold ε. This gives

M10,2 =

∫ U

L

[1− F (y, k1)] [F (y + T2 − T1, k2)f(T1 − y, kc)+ (68)

f(y + T2 − T1, k2) (1− F (T1 − y, kc))] dy

L = min(T1 − T2, T1 − zc) (69)

U = max(T1, z2 + T1 − T2) (70)

If Y1 is empty (sensor set 1 does not have any unique sensors), but Y2 and Yc are not empty,
the marginal misclassification rate can be derived as

M10,2 = P

[
0 > max

(∑
i

Y 2
2i + T1 − T2, T1 −

∑
i

Y 2
ci

)]
(71)

= P

(∑
i

Y 2
2i < T2 − T1

)
P

(∑
i

Y 2
ci > T1

)
(72)

= F (T2 − T1, k2) [1− F (T1, kc)] (73)

If Y2 is empty (sensor set 2 does not have any unique sensors), but Y1 and Yc are not empty,
the marginal misclassification rate can be derived as

M10,2 = P

[∑
i

Y 2
1i > max

(
T1 −

∑
i

Y 2
ci, T1 − T2

)]
(74)

We can use Lemmas 1, 3, and 7 to write this equation as

M10,2 =

∫ ∞

−∞
[1− F (y, k1)] [f(T1 − y, kc) + (1− F (T1 − y, kc))δ(y − T1 + T2)] dy (75)

= [1− F (T1 − T2, k1)] [1− F (T2, kc)] +

∫ T1

T1−T2

[1− F (y, k1)] f(T1 − y, kc) dy(76)

If Yc is empty (the two sensor sets do not have any common sensors), but Y1 and Y2 are not
empty, the marginal misclassification rate can be derived as

M10,2 = P

[∑
i

Y 2
1i > max

(∑
i

Y 2
2i + T1 − T2, T1

)]
(77)

We can use Lemmas 1, 2, and 7 to write this equation as

M10,2 =

∫ ∞

−∞
[1− F (y, k1)] [f(y + T2 − T1, k2) + F (y + T2 − T1, k2)δ(y − T1)] dy (78)

= [1− F (T1, k1)] F (T2, k2) +

∫ ∞

T1

[1− F (y, k1)] f(y + T2 − T1, k2) dy (79)

NASA/TM—2009-215655 11



In order to find finite integration limits that do not result in an excessive loss of accuracy
in the computation of M10,2, we find z such that f(z, k2) < ε for some small user-specified
threshold ε. This gives

M10,2 = [1− F (T1, k1)] F (T2, k2) +

∫ z+T1−T2

T1

[1− F (y, k1)] f(y + T2 − T1, k2) dy (80)

Given that no fault occurred and there are only two fault detection algorithms, the proba-
bility that fault 1 is isolated is given by Equation 68, 73, 76, or 80.

More than two fault detection algorithms

If we have n > 2 fault detection algorithms, the probability that fault 1 is isolated given
that no fault occurred is the probability that SSR1 is greater than its threshold, and greater
than all of the other SSRs relative to their thresholds.

M10 = P [(S1 > T1), (S1 − T1 > S2 − T2), · · · , (S1 − T1 > Sn − Tn)] (81)

≤ min
i

M10,i (82)

So in order to obtain an upper bound for the misclassification rate of fault 1 given that
no fault occurred, we use Equations 68, 73, 76, or 80 as appropriate to find the marginal
misclassification rates. Then we use Equation 82 to find an upper bound for M10.

3.2 Correct Fault Classification Rates

The true positive rate (TPR) is defined as the probability that a fault is correctly detected
(S > T ) given that it occurs. This does not take fault isolation into account. It only
considers the probability that the SSR is greater than its detection threshold. The false
negative rate (FNR) is defined as the probability that no fault is detected (S < T ) given
that a fault occurs. If only one SSR is considered, these probabilities can be written as

FNRi = F (Ti, kia, λia) (83)

TPRi = 1− F (Ti, kia, λia) (84)

where kia is the total number of sensors in Yi, and λia is the non-centrality parameter of Si

given that fault i occurred. Note that kia ≥ ki because ki is the number of unique sensors
in Yi, but kia is the total number of sensors in Yi. Figure 2 illustrates TPR and FNR for a
chi-squared SSR containing k = 10 sensors, λ = 40, and a detection threshold T = 20.

Given that some fault occurs, we might isolate the correct fault or we might isolate an
incorrect fault. The probability of isolating the correct fault is called the correct classification
rate (CCR). In this section we derive lower and upper bounds for the CCR.
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Figure 2: Illustration of the noncentral chi-squared pdf of an SSR with k = 10 sensors and λ = 40. The
false negative rate is the area to the left of the user-specified threshold T = 20, and the true positive rate is

the area to the right of the threshold.

3.2.1 Lower bounds for the correct classification rate

Suppose we have only two fault detectors, algorithms 1 and 2, and fault 1 occurs. Consider
the probability that SSR1 is larger than SSR2 relative to their thresholds. We call this the
marginal detection rate D12. Note that we are not considering whether or not the SSRs
exceed their threshold. We are only considering how large the SSRs are relative to their
thresholds. The marginal detection rate is given as

D12 = P [(S1 − T1) > (S2 − T2)] (85)

= P

[(∑
i

Y 2
1i − T1 + T2

)
>

∑
i

Y 2
2i

]
(86)
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Assuming that neither Y1 nor Y2 are empty (that is, both sensor sets have some unique
sensors), we can use Lemmas 1 and 2 to obtain

D12 =

∫ ∞

−∞

(∫ ∞

y

f(x + T1 − T2, k1, λ1) dx

)
f(y, k2) dy (87)

=

∫ ∞

0

(1− F (y + T1 − T2, k1, λ1)) f(y, k2) dy (88)

where
λ1 =

∑
Y 2

1i (89)

If Y1 is empty (sensor set 1 does not have any unique sensors), but Y2 is not empty, the
marginal detection rate can be derived as

D12 = P

(∑
i

Y 2
2i < T2 − T1

)
(90)

= F (T2 − T1, k2) (91)

If Y2 is empty( sensor set 2 does not have any unique sensors), but Y1 is not empty, the
marginal detection rate can be derived as

D12 = P

(∑
i

Y 2
1i > T1 − T2

)
(92)

= 1− F (T1 − T2, k1, λ1) (93)

Now consider the case where there are n > 2 fault detection algorithms. Given that fault
1 occurred, the probability that SSR1 is larger than SSRi for all i > 1, relative to their
thresholds, is given as

D1 = P [(S1 − T1 > S2 − T2) , · · · , (S1 − T1 > Sn − Tn)] (94)

≥
n∏

i=2

D1i (95)

where the inequality arises because the events might not be independent. If none of the fault
detection algorithms have any sensors in common, then the events are independent and the
bound is exact.

Now consider the probability that fault 1 is isolated given that fault 1 occurred. This can
be written as

CCR1 = P [(S1 > T1) , (S1 − T1 > S2 − T2) , · · · , (S1 − T1 > Sn − Tn)] (96)

≥ TPR1D1 (97)

where the inequality arises because the events might not be independent. Equation 97 gives
a lower bound for the correct classification rate for fault 1.
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3.2.2 Upper bounds for the correction classification rate

Next we find an upper bound for the CCR. To begin, suppose that we have only two fault
detectors, algorithms 1 and 2. Given that fault 1 occurs, the probability that it is correctly
isolated is called the marginal CCR. This can be written as

CCR12 = P [(S1 − T1 > S2 − T2), (S1 > T1)] (98)

= P

[∑
i

Y 2
1i > max

(∑
i

Y 2
2i + T1 − T2, T1 −

∑
i

Y 2
ci

)]
(99)

Suppose that both sensor sets have some unique sensors, and the sensor sets also have some
common sensors. That is, neither Y1, Y2, nor Yc are empty. Then we can use Lemmas 1, 2,
3, and 6 to obtain

CCR12 =

∫ ∞

−∞
[1− F (y, k1, λ1)] [F (y + T2 − T1, k2)f(T1 − y, kc, λc)+ (100)

f(y + T2 − T1, k2)(1− F (T1 − y, kc, λc))] dy

where λc is defined analogously to λ1 (see Equation 89). In order to limit the integration
interval while maintaining accuracy in the computation of CCR12, we use our knowledge
that f(w, k) and f(w, k, λ) are both zero for w < 0, and we numerically find values of z2

and zc such that f(z2, k2) < ε and f(zc, kc, λc) < ε for some small user-specified threshold ε.
This gives

CCR12 =

∫ U

L

[1− F (y, k1, λ1)] [F (y + T2 − T1, k2)f(T1 − y, kc, λc)+ (101)

f(y + T2 − T1, k2)(1− F (T1 − y, kc, λc))] dy

L = min(T1 − T2, T1 − zc) (102)

U = max(T1, z2 + T1 − T2) (103)

If Y1 is empty (sensor set 1 does not have any unique sensors), but Y2 and Yc are not empty,
the marginal CCR can be derived as

CCR12 = P

[
0 > max

(∑
i

Y 2
2i + T1 − T2, T1 −

∑
i

Y 2
ci

)]
(104)

= P

(∑
i

Y 2
2i < T2 − T1

)
P

(∑
i

Y 2
ci > T1

)
(105)

= F (T2 − T1, k2) [1− F (T1, kc, λc)] (106)
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If Y2 is empty (sensor set 2 does not have any unique sensors), but Y1 and Yc are not empty,
the marginal CCR can be derived as

CCR12 = P

[(∑
i

Y 2
1i > T1 − T2

)
,

(∑
i

Y 2
1i > T1 −

∑
i

Y 2
ci

)]
(107)

= P

[∑
i

Y 2
1i > max

(
T1 −

∑
i

Y 2
ci, T1 − T2

)]
(108)

We can use Lemmas 1, 3, and 7 to write this equation as

CCR12 =

∫ ∞

T1−T2

[1− F (y, k1, λ1)] [f(T1 − y, kc, λc)+ (109)

(1− F (T1 − y, kc, λc))δ(y − T1 + T2)] dy

= [1− F (T1 − T2, k1, λ1)] [1− F (T2, kc, λc)] + (110)∫ T1

T1−T2

[1− F (y, k1, λ1)] f(T1 − y, kc, λc) dy

If Yc is empty (the two sensor sets do not have any common sensors), but Y1 and Y2 are not
empty, the marginal CCR can be derived as

CCR12 = P

[∑
i

Y 2
1i > max

(∑
i

Y 2
2i + T1 − T2, T1

)]
(111)

We can use Lemmas 1, 2, and 7 to write this equation as

CCR12 =

∫ ∞

T1

[1− F (y, k1, λ1)] [f(y + T2 − T1, k2)+ (112)

F (y + T2 − T1, k2)δ(y − T1)] dy

= [1− F (T1, k1, λ1)] F (T2, k2) + (113)∫ ∞

T1

[1− F (y, k1, λ1)] f(y + T2 − T1, k2) dy

In order to limit the integration interval while maintaining accuracy in the computation of
CCR12, we find z such that f(z, k2) < ε for some small user-specified threshold ε. This gives

CCR12 = [1− F (T1, k1, λ1)] F (T2, k2)+

∫ z+T1−T2

T1

[1− F (y, k1, λ1)] f(y+T2−T1, k2) dy (114)

The overall CCR for fault 1 is the probability that SSR1 is greater than its threshold, and
greater than all of the other SSRs relative to their thresholds.

CCR1 = P [(S1 > T1), (S1 − T1 > S2 − T2), · · · , (S1 − T1 > Sn − Tn)] (115)

≤ min
i

CCR1i (116)
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So in order to obtain an upper bound for the CCR of fault 1, we use Equations 102, 106,
110, and 114 as appropriate to find the marginal CCRs. Then we use Equation 116 to find
the upper bound for CCR1.

3.3 Fault Misclassification Rates

In this section we derive upper bounds for the probability that a fault is incorrectly isolated.
If fault 1 occurs, the probability that fault 2 is isolated is called the misclassification rate
M21.

First suppose that we have two fault detection algorithms, algorithms 1 and 2. The
misclassification rate can then be written as

M ′
21 = P [(S2 − T2 > S1 − T1), (S2 > T2)] (117)

= P

[∑
i

Y 2
2i > max

(∑
i

Y 2
1i + T2 − T1, T2 −

∑
i

Y 2
ci

)]
(118)

where we use the prime symbol on M ′
21 to denote that only two detection algorithms are

in use. Suppose that both sensor sets have some unique sensors, and the sensor sets also
have some common sensors. That is, neither Y1, Y2, nor Yc are empty. We can then use
Lemmas 1, 2, 3, and 6 to obtain

M ′
21 =

∫ ∞

−∞
[1− F (y, k2)] [F (y + T1 − T2, k1, λ1)f(T2 − y, kc, λc)+ (119)

f(y + T1 − T2, k1, λ1)(1− F (T2 − y, kc, λc))] dy

In order to limit the integration interval while maintaining accuracy in the computation of
M ′

21, we use our knowledge that f(w, k, λ) is zero for w < 0, and we find values of z1 and
zc such that f(z1, k1, λ1) < ε and f(zc, kc, λc) < ε for some small user-specified threshold ε.
This gives

M ′
21 =

∫ U

L

[1− F (y, k2)] [F (y + T1 − T2, k1, λ1)f(T2 − y, kc, λc)+ (120)

f(y + T1 − T2, k1, λ1)(1− F (T2 − y, kc, λc))] dy

L = min(T2 − T1, T2 − zc) (121)

U = max(T2, z1 + T2 − T1) (122)

If Y1 is empty (sensor set 1 does not have any unique sensors), but Y2 and Yc are not empty,
the misclassification rate can be derived as

M ′
21 = P

[∑
i

Y 2
2i > max

(
T2 − T1, T2 −

∑
i

Y 2
ci

)]
(123)
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We can use Lemmas 1, 3, and 7 to write this as

M ′
21 =

∫ ∞

T2−T1

[1− F (y, k2)] [f(T2 − y, kc, λc)+ (124)

(1− F (T2 − y, kc, λc))δ(y − T2 + T1)] dy

= [1− F (T2 − T1, k2)] [1− F (T1, kc, λc)] + (125)∫ T2

T2−T1

[1− F (y, k2)] f(T2 − y, kc, λc) dy

If Y2 is empty (sensor set 2 does not have any unique sensors), but Y1 and Yc are not empty,
the misclassification rate can be derived as

M ′
21 = P

[
0 > max

(∑
i

Y 2
1i + T2 − T1, T2 −

∑
i

Y 2
ci

)]
(126)

= P

(∑
i

Y 2
1i < T1 − T2

)
P

(∑
i

Y 2
ci > T2

)
(127)

= F (T1 − T2, k1, λ1) [1− F (T2, kc, λc)] (128)

If Yc is empty (the two sensor sets do not have any common sensors), but Y1 and Y2 are not
empty, the misclassification rate can be derived as

M ′
21 = P

[∑
i

Y 2
2i > max

(∑
i

Y 2
1i + T2 − T1, T2

)]
(129)

We can use Lemmas 1, 2, and 7 to write this equation as

M ′
21 =

∫ ∞

T2

[1− F (y, k2)] [f(y + T1 − T2, k1, λ1)+ (130)

F (y + T1 − T2, k1, λ1)δ(y − T2)] dy

= [1− F (T2, k2)] F (T1, k1, λ1) +

∫ ∞

T2

[1− F (y, k2)] f(y + T1 − T2, k1, λ1) dy(131)

In order to limit the integration interval while maintaining accuracy in the computation of
M ′

21, we find z such that f(z, k1, λ1) < ε for some small user-specified threshold ε. This gives

M ′
21 = [1− F (T2, k2)] F (T1, k1, λ1) +

∫ z+T2−T1

T2

[1− F (y, k2)] f(y + T1 − T2, k1, λ1) dy (132)

Given that we have n > 2 detection algorithms running in parallel, the misclassification
rate M21 is bounded from above by M ′

21. So in order to obtain an upper bound for M21, we
use Equation 121, 125, 128, or 132 as appropriate. This can be repeated for all marginal
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misclassification rates Mij. This gives

Mij = P [(S2 − T2 > S1 − T1), (S2 − T2 > S3 − T3), · · · , (133)

(S2 − T2 > Sn − Tn), (S2 > T2)]

≤ M ′
ij, (i = 1, · · · , n), (j = 1, · · · , n), (i 6= j) (134)

Finally we consider the probability M0i that no fault is indicated when fault i occurs.
This misclassification rate can be bounded from above as

M0i = P (S1 < T1, · · · , Sn < Tn) (135)

≤ P (Si < Ti) (136)

M0i ≤ F (Ti, kia, λia) (137)

3.4 Summary of Confusion Matrix Bounds

Recall the confusion matrix shown in Table 1. The rows correspond to fault conditions, and
the columns correspond to fault isolation results. The element in the ith row and jth column
is the probability that fault j is isolated when fault i occurs. The previous sections derived
the following bounds.

• CCRi for i ∈ [1, n] is the probability that fault i is correctly isolated given that it occurs,
and its lower and upper bounds are given in Equations 97 and 116.

• CNR is the probability that a no-fault condition is correctly indicated given that no
fault occurs, and its lower and upper bounds are given in Equation 62.

• Mij for i, j ∈ [1, n] and i 6= j is the probability that fault i is incorrectly isolated given
that fault j occurs, and its upper bound is given in Equation 134.

• Mi0 for i ∈ [1, n] is the probability that fault i is incorrectly isolated given that no fault
occurs, and its upper bound is given in Equation 82.

• M0i for i ∈ [1, n] is the probability that no fault is isolated given that fault i occurs,
and its upper bound is given in Equation 137.

3.5 Computational Effort

Usually confusion matrices are obtained with simulations. In order to derive an experimental
confusion matrix with N faults, the number of matrix elements that needs to be calculated
is on the order of N2. (For example, if the number of faults doubles, then the computational
effort quadruples.) Also, the required number of simulations for each matrix element calcu-
lation is on the order of N . This is because as the number of possible faults increases, the
number of simulations required to obtain the same statistical accuracy increases in direct
proportion. Therefore the computational effort required for the experimental determination
of a confusion matrix is on the order of N3.
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The bounds derived in this paper also require computational effort that is on the order of
N3. This is because each of the bounds summarized in Section 3.4 required computational
effort on the order of N , and the number of matrix elements is on the order of N2.

4 Simulation Results

In this section we use simulation results to verify the theoretical bounds of the preceding sec-
tions. We consider the problem of isolating an aircraft turbofan engine fault which is modeled
by the NASA Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) [25].
There are five possible faults that can occur: fan, low pressure compressor (LPC), high
pressure compressor (HPC), high pressure turbine (HPT), and low pressure turbine (LPT).
These five faults entail shifts of both efficiency and flow capacity from nominal values. The
fault magnitudes that we try to detect are 2.5% for the fan, 20% for the LPC, 2% for the
HPC, 1.5% for the HPT, and 2% for the LPT. These magnitudes were chosen to give rea-
sonable fault detection ability. The LPC fault has a very small fault signature, so it is not
detectable unless its magnitude is relatively large.

The available sensors and their standard deviations are shown in Table 2. The fault
influence coefficient matrix shown in Table 3 was generated using C-MAPSS and is based
on [26]. The numbers in Table 3 are the partial derivatives of the sensor outputs with respect
to the fault conditions, normalized to the fault percentages discussed above, and normalized
to one standard deviation of the sensor noise.

Table 2: Aircraft engine sensors and standard deviations. The temperature sensor standard deviations are
given in units of degrees Rankine. All other sensor standard deviations are given as a percentage relative to

their nominal values.

Symbol Description Standard deviation
Nc Core speed 0.25%
P15 Bypass duct pressure 0.5%
P24 LPC outlet pressure 0.5%
Ps30 HPC outlet pressure 0.5%
T24 LPC outlet temperature 1 deg
T30 HPC outlet temperature 2 deg
T48 HPT outlet temperature 8 deg
Wf Fuel flow 0.75%

In order to decide which sensors to use for detecting each fault, we included one sensor
at a time in a fault detection algorithm, starting with the sensor with the largest fault
signature. This gave a total of eight possible sensor sets for each fault detection algorithm.
We specified a maximum allowable false positive rate of 0.0001, and calculated the smallest
threshold for each possible sensor set that would give an FPR no greater than 0.0001 (see
Equation 26 and Figure 1). Given the threshold, we next calculated the true positive rate
(see Equation 84 and Figure 2). We then chose the sensor set that gave the largest TPR.
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Table 3: Fault signatures. The rows show the five different fault conditions. The columns show the mean
sensor value residuals for the given fault conditions, normalized to one standard deviation.

Sensors︷ ︸︸ ︷
Nc P15 P24 Ps30 T24 T30 T48 Wf

Faults





Fan 0.80 2.10 1.80 4.05 0.43 0.49 1.21 3.40
LPC 0.00 0.00 4.80 1.20 3.20 0.20 0.80 0.27
HPC 0.72 0.08 0.32 0.64 0.54 5.23 3.08 1.60
HPT 0.96 0.12 0.39 3.27 0.72 2.63 4.40 2.18
LPT 1.20 0.12 0.60 3.56 0.90 3.34 0.03 2.32

As an example, consider the fan fault with the normalized fault signatures shown in
Table 3. The sensors with the largest fault signatures in descending order are Ps30, Wf,
T30, P15, P24, T48, Nc, and T24. This gives eight potential sensor sets for detecting a fan
fault: the first potential set uses only sensor Ps30, the second potential set uses Ps30 and
Wf, and so on. The potential sensor sets along with their detection thresholds and TPRs
are shown in Table 4. Table 4 shows that using five sensors gives the largest TPR given the
constraint that FPR ≤ 0.0001.

Table 4: Potential sensor sets for detecting a fan fault. The thresholds were determined by constraining
FPR ≤ 0.0001. This table shows that using five sensors gives the largest TPR subject to the FPR

constraint.

Sensors Detection threshold T1 True positive rate TPR1

Ps30 15.1 0.563
Ps30, Wf 18.4 0.865
Ps30, Wf, T30 21.1 0.926
Ps30, Wf, T30, P15 23.5 0.949
Ps30, Wf, T30, P15, P24 25.7 0.959
Ps30, Wf, T30, P15, P24, T48 27.9 0.958
Ps30, Wf, T30, P15, P24, T48, Nc 29.9 0.952
Ps30, Wf, T30, P15, P24, T48, Nc, T24 31.8 0.942

This process described in the previous paragraph was repeated for each fault shown in
Table 3. The resulting sensor sets are shown in Table 5 and were therefore chosen for FDI
for each fault type. Note that given an FPR constraint, the detection threshold is a function
only of the number of sensors in each sensor set; the detection threshold is independent of
the specific fault signatures. This is illustrated in Figure 1 where it is seen that f(x, k) is a
function only of x and k (the number of sensors).

Finally we used the fault isolation method shown in Equation 64, and we used the equa-
tions developed in the previous sections to determine theoretical lower and upper bounds for
the confusion matrix as summarized in Section 3.4. We then ran 100,000 fault simulations
in order to obtain an experimental confusion matrix. Table 6 shows the theoretical lower
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bounds of the diagonal elements of the confusion matrix. Lower bounds of the off-diagonal
elements were not obtained because we are typically more interested in upper bounds of
off-diagonal elements. Table 7 shows the theoretical upper bounds of the confusion matrix.
Table 8 shows the experimental confusion matrix. These tables show that the theoretical
results derived in this paper give reasonably tight bounds to the experimental confusion
matrix values.

Recall that we used an FPR of 0.0001 to choose our sensor sets and detection thresholds.
This means that the first five elements in the last row of Table 7 are guaranteed to be no
greater than 0.0001. It further means that the element in the lower right corner of Table 6
is guaranteed to be no greater than 1− 5(0.0001) = 0.9995.

Table 5: Sensor sets for fault detection. These sensor sets give the largest TPR for each fault given the
constraint that FPR ≤ 0.0001.

Fault i Sensor set i Detection threshold Ti True positive rate TPRi

Fan Ps30, Wf, T30, P15, P24 25.7 0.959
LPC P24, T24 18.4 0.943
HPC T30, T48 18.4 0.970
HPT T48, Ps30, T30, Wf 23.5 0.970
LPT Ps30, T30, Wf 21.1 0.844

Table 6: Lower bounds of diagonal confusion matrix elements. Lower bounds for the off-diagonal elements
have not been obtained. The rows specify the actual fault condition, and the columns specify the diagnosis.

Fan LPC HPC HPT LPT No Fault
Fan 0.6691
LPC 0.9342
HPC 0.8692
HPT 0.9345
LPT 0.6623

No Fault 0.9992

Table 7: Upper bounds of confusion matrix elements. The rows specify the actual fault condition, and the
columns specify the diagnosis.

Fan LPC HPC HPT LPT No Fault
Fan 0.7761 0.0000 0.0001 0.1115 0.1899 0.0408
LPC 0.0076 0.9356 0.0000 0.0000 0.0000 0.0573
HPC 0.0097 0.0000 0.8936 0.0769 0.0160 0.0303
HPT 0.0015 0.0000 0.0270 0.9445 0.0014 0.0300
LPT 0.0874 0.0000 0.0030 0.1066 0.7422 0.1557

No Fault 0.0000 0.0000 0.0000 0.0000 0.0001 0.9999

NASA/TM—2009-215655 22



Table 8: Experimental confusion matrix. The rows specify the actual fault condition, and the columns
specify the diagnosis. The numbers are based on 100,000 simulations of each fault. The numbers in each

row should add up to 1 (within rounding error).

Fan LPC HPC HPT LPT No Fault
Fan 0.7614 0.0000 0.0000 0.0370 0.1677 0.0338
LPC 0.0073 0.9354 0.0000 0.0000 0.0000 0.0573
HPC 0.0051 0.0000 0.8875 0.0713 0.0074 0.0288
HPT 0.0016 0.0000 0.0276 0.9422 0.0011 0.0275
LPT 0.0831 0.0000 0.0015 0.0993 0.6680 0.1481

No Fault 0.0000 0.0000 0.0000 0.0000 0.0001 0.9997

Note that it is possible for an element in the experimental confusion matrix in Table 8 to
lie outside the bounds shown in Tables 6 and 7. For example, compare the numbers in the
fourth row and first column in Tables 7 and 8. This is because the numbers in Table 8 are
experimentally obtained on the basis of a finite number of simulations, and are guaranteed to
lie within their theoretical bounds only as the number of simulations approaches infinity. In
fact, that is one of the strengths of the analytic method proposed in this paper. The analytic
bounds are definite, but simulations are subject to random effects. Also, simulations can
give misleading conclusions if the simulation has errors. One common simulation error is the
non-randomness of commonly used random number generators [27].

In summary, the user specifies the maximum FPR for each fault, and then finds the sensor
set that has the largest TPR given the FPR constraint. Analytic confusion matrix bounds
are then obtained using the theory in this paper. If the results are not satisfactory, the user
can iterate by changing the maximum FPR constraint. For example, if a TPR is too small,
then the user will have to increase the FPR constraint. If the confusion matrix bounds of
fault isolation probabilities are not satisfactory, the user will have to iterate on the FPR
constraints in order to obtain different confusion matrix bounds.

5 Conclusion

This paper has introduced a new fault detection and isolation (FDI) algorithm and derived
analytical confusion matrix bounds. The FDI algorithm is fairly simple and has not been
compared with other algorithms. The main contribution of this paper is the generation of
analytic confusion matrix bounds, and the possibility that our methodology could be adapted
to other FDI algorithms. Usually confusion matrices are obtained with simulations. Such
simulations have several potential drawbacks. First, they can be time consuming. Second,
they can give misleading conclusions if not enough simulations are run to give statistically
significant results. Third, they can give misleading conclusions if the simulation has errors
(for example, if the output of the random number generator does not satisfy statistical tests
for randomness). The theoretical confusion matrix bounds derived in this paper do not
depend on a random number generator and can be used in place of simulations.
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Further work in this area could follow several directions. First, the tightness of the
confusion matrix bounds could be quantified. This paper derives bounds but does not
guarantee how loose or tight those bounds are. Second, the bounds could be modified to
be tighter. Third, bounds could be attempted for methods other than the FDI algorithm
proposed here. The fault isolation method we used isolates the fault that has the largest sum
of squares of sensor residuals (SSR) relative to its detection threshold. Other fault isolation
methods could normalize the relative SSR to its standard deviation, or could normalize the
absolute SSR to its detection threshold. Preliminary efforts have not been successful in
deriving bounds for these fault isolation methods, but additional effort might bring success.
All of these FDI methods are static, which means that faults are isolated using measurements
at a single time. Better fault isolation might be achieved if dynamic system information is
used. The derivation of theoretical confusion matrix bounds in this case would require
additional work.
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