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The a(4) Scheme—A High Order Neutrally Stable CESE Solver

Sin-Chung Chang
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

The CESE development is driven by a belief that a solver should (i) enforce conservation
laws in both space and time, and (ii) be built from a non-dissipative (i.e., neutrally stable)
core scheme so that the numerical dissipation can be controlled effectively. To provide a solid
foundation for a systematic CESE development of high order schemes, in this paper we describe
a new high order (4-5th order) and neutrally stable CESE solver of the advection equation
Ou /Ot + adu/dx = 0. The space-time stencil of this two-level explicit scheme is formed by one
point at the upper time level and two points at the lower time level. Because it is associated
with four independent mesh variables u?, (uz)7, (Uzz)}, and (uzzz)7 (the numerical analogues
of u, Ou/dz, 6%u/8z%, and 8%u/8x3, respectively) and four equations per mesh point, the new
scheme is referred to as the a(4) scheme. As in the case of other similar CESE neutrally stable

solvers, the a(4) scheme enforces conservation laws in space-time locally and globally, and it has

the basic, forward marching, and backward marching forms. Assuming |v| # 3 (v et aat/az),

these forms are equivalent and satisfy a space-time inversion (STI) invariant property which
is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic
relations is developed and used to prove that the a(4) scheme must be neutrally stable when
it is stable. Numerically, it has been established that the scheme is stable if |v| < 1/3.

1. Introduction

The space-time conservation element and solution element (CESE) method is a high-resolution and
genuinely multidimensional method for solving conservation laws [1-73]. Its nontraditional features include:
(i) a unified treatment of space and time; (ii) the introduction of conservation elements (CEs) and solution
elements (SEs) as the vehicles for enforcing space-time flux conservation; (iii) a novel time marching strategy
that has a space-time staggered stencil at its core and, as such, fluxes at an interface can be evaluated
without using any interpolation or extrapolation procedure (which, in turn, leads to the method’s ability
to capture shocks without using Riemann solvers); (iv) the requirement that each scheme be built from a
non-dissipative core scheme and, as a result, the numerical dissipation can be controlled effectively; and (v)
the fact that mesh values of the physical dependent variables and their spatial derivatives are considered as
independent marching variables to be solve for simultaneously.

Without using flux-splitting or other special techniques, since its inception in 1991 [1] the unstructured-
mesh compatible CESE method has been used to obtain numerous accurate 1D, 2D and 3D steady and
unsteady flow solutions with Mach numbers ranging from 0.0028 to 10 [51]. The physical phenomena
modeled include traveling and interacting shocks, acoustic waves, vortex shedding, viscous flows, detonation
waves, cavitation, flows in fluid film bearings, heat conduction with melting and /or freezing, electrodynamics,
MHD vortex, hydraulic jump, crystal growth, and chromatographic problems [3—73]. In particular, the rather
unique capability of the CESE method to resolve both strong shocks and small disturbances (e.g., acoustic
waves) simultaneously [13,15,16] makes it an effective tool for attacking computational aeroacoustics (CAA)
problems. Note that the fact that second-order CESE schemes can solve CAA problems accurately is an
exception to the commonly-held belief that a second-order scheme is not adequate for solving CAA problems.
Also note that, while numerical dissipation is needed for shock capturing, it may also result in annihilation of
small disturbances. Thus a solver that can handle both strong shocks and small disturbances simultaneously
must be able to overcome this difficulty.
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In spite of its nontraditional features and potent capabilities, the core ideas of the CESE method are
simple. In fact, all of its key features are the inescapable results of an honest pursuit driven by these
simple ideas. The first and foremost is the belief that the method must be solid in physics. As such, in
the CESE development, conservation laws are enforced locally and globally in their natural space-time unity
forms for 1D, 2D and 3D cases. Moreover, because direct physical interaction generally occurs only among
the immediate neighbors, use of the simplest stencil also becomes a CESE requirement. Obviously, this
requirement is also very helpful in simplifying boundary-condition implementation.

The second idea is derived from the realization that stability and accuracy are two competing issues
in time-accurate computations, i.e., too much numerical dissipation would degrade accuracy while too little
of it will cause instability. In other words, to meet both accuracy and stability requirements, computation
must be performed away from the edge (“cliff”) of instability but not too far from it. This represents a real
dilemma in numerical method development. As an example, schemes with high-order accuracy generally has
high accuracy and low numerical dissipation. However, it is susceptible to instability. In fact, in dealing with
complicated real-world problems, stability of these schemes often is difficult to maintain without resorting
to ad hoc treatments. To confront this issue head-on, in CESE development, it is required that a solver
be built from a non-dissipative (i.e., neutrally stable) core scheme. By definition, computations involving
a neutrally stable scheme are performed right on the edge of instability and therefore the numerical results
generated are non-dissipative. As such numerical dissipation can be controlled effectively if the deviation of
a solver from its non-dissipative core scheme can be adjusted using some built-in parameters. Note that the
above idea also plays an essential role in the recent successful development of a family of Courant number
insensitive schemes [59,61,64,65,67].

Other CESE ideas are: (i) the flux at an interface be evaluated in a simple and consistent manner;
(i) genuinely multidimensional schemes be built as simple, consistent and straightforward extensions of
1D schemes; (iii) triangular and tetrahedral meshes be used in 2D and 3D cases, respectively, so that the
method is compatible to the simplest unstructured meshes and thus can be used to solve problems with
complex geometries; and (iv) logical structures and approximation techniques used be as simple as possible,
and special techniques that has only limited applicability and may cause undesirable side effects be avoided.
Fortunately for the CESE development, as it turns out, the realization of the above lesser ideas (i)—(iv)
follows effortlessly from that of the first two core ideas.

The first model equation considered in the CESE development is the simple convection equation

ou ou
=0 1.1
o % (11)
where the advection speed a # 0 is a constant. Let 21 = z, and zo = ¢ be considered as the coordinates

of a two-dimensional Euclidean space E;. Then, because Eq. (1.1) can be expressed as V - h = 0 with

B (au,u), Gauss’ divergence theorem in the space-time E, implies that Eq. (1.1) is the differential form

of the integral conservation law
$ Fds=o (1.2)
5(V)

As depicted in Fig. 1, here (i) S(V) is the boundary of an arbitrary space-time region V in Fs, and (ii)
ds = do i with do and i, respectively, being the area and the unit outward normal vector of a surface element
on S(V). Note that: (i) because & - d3 is the space-time flux of & leaving the region V' through the surface
element d3, Eq. (1.2) simply states that the total space-time flux of R leaving V through S(V) vanishes;
(ii) in E9, do is the length of a line segment on the simple closed curve S(V); and (iii) all mathematical
operations can be carried out as though F5 were an ordinary two-dimensional Euclidean space.

It is well known that a solution to Eq. (1.1) represents non-dissipative data propagation along its
characteristic lines defined by dz/d¢t = a. Moreover, Eq. (1.1) is invariant under space-time inversion (STI),
i.e., it transforms back to itself if x and ¢ are replaced by —z and —t, respectively. (In physics, STI invariance
generally is referred to as PT invariance where P denotes a mirror-image or spatial-reflection operation while
T denotes a time-reversal operation). Thus a solution to Eq. (1.1) possesses the following properties: (i) it
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is completely determined by the data specified at an initial time level; (ii) its value at a space-time point
has a finite domain of dependence (a point) at the initial time level; and (iii) the space-time inversion image
of a solution to Eq. (1.1) is also a solution and vice versa. As such, in the initial CESE development, the
focus is on the construction of an ideal core solver of Eq. (1.1) that enforces the conservation law Eq. (1.2)
and also possesses all other properties of Eq. (1.1), i.e., it is a two-level, explicit, non-dissipative, and STI
invariant solver. An in-depth account of this development and the resulting “a” scheme is given in [71]. As
it turns out, the 2nd-order accurate a scheme (i) has a space-time stencil formed by one mesh point at the
upper time level and two mesh points at the lower time level; and (ii) it is neutrally stable if ©? < 1 where
v = aat/az. Also, at each space-time mesh point (j,n), the a scheme is associated with two independent
mesh variables u} and (u;)} (the numerical analogues of u and du/0t, respectively) and two equations.
Until recently, with one exception (a three-level and 3rd-order accurate scheme reported on p. 80 of
[1]), all CESE solvers of Eq. (1.1) are two-level and 2nd-order accurate extensions of the a scheme. To
initiate a systematic development of CESE schemes with high order accuracy, two new high order accurate,
conservation-law enforcing, and neutrally stable CESE solvers of Eq. (1.1) has been developed recently.
Both solvers are explicit and involving two time levels. The space-time stencil of one of them is formed by
one point at the upper time level and three points at the lower time level. Because it is associated with
three independent mesh variables u}, (us)} and (ug)} (the numerical analogues of u, du/dx, and 8%u/dx?,
respectively) and three equations per mesh point, the scheme is referred to as the a(3) scheme in [72]. On the
other hand, the space-time stencil of the second scheme to be described here is formed by one point at the
upper time level and only two points at the lower time level. Because it is associated with four independent
mesh variables u?, (uz)7, (Uzs)}, and (Uzgz)7 (the numerical analogues of u, du/dz, 8?u/dx?, and 8*u/dz3,
respectively) and four equations per mesh point, hereafter the new scheme is referred to as the a(4) scheme.

2. The a(4) scheme

To proceed, consider the set {; of space-time staggered mesh points (j,n) (dots in Fig. 2(a)), where

Q ef {G,n)|4,n=0,£1,+2,43,..., and (j + n) is an odd integer} (2.1)

Each (j,n) € @, is associated with a solution element, i.e., SE(j,n) (see Fig. 2(b)). Let points H, G, L,
and M (marked by small open circles in Figs. 2(b)-2(f)) be the midpoints of the line segments AF, AC,
AI, and AK, respectively. Then, by definition, SE(j,n) is the interior of the space-time region bounded by
a dashed curve depicted in Fig. 2(b). It includes a horizontal line segment ED, a vertical line segment B.J,
two inclining line segments HL and GM, and their immediate neighborhood.

At this juncture, the reader is warned that the notation used here may differ from that used in previous
CESE papers [1-70]. In particular, (i) the mesh indices j and n are only allowed to be whole integers here;
and (ii) the spatial and temporal intervals that are denoted by az/2 and at/2, respectively, in [1-70] are
denoted by az and at, respectively, here. These changes are introduced so that the a(4) scheme can be
compared with the a(3) scheme on the same footing. Note that the a(3) scheme, like most established
schemes, is constructed over a set of mesh points which are not staggered in space-time.

Let (z,t) € SE(j,n). Then Egs. (1.1) and (1.2) will be simulated numerically assuming that u(z,t) and
l_i(a:, t), respectively, are approximated by

W (@15 5,m) S Ul + ()@ — 25) + () — 1) + 2 ()@ — 35)? + ()@ — )t~ £7)

2
1 n n\2 1 n 1 n 2 )
+ 5@} (¢~ + 5 (U} (0 — 2 + 5 (uzar)} @ = 2)*(E — 17) (22
+ 5 U)o = )= ) + Glun)} ¢ — 17

and .
R*(@,635,m) & (au* (@, 835, n), u*(®,t;4,n)) (23)
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Note that: (i) u?, (uz)?, (ue)}, (Uzz)?, (Uat)Ts (Ue)} (Uzzz)? (Uaat)Fs (Uztt)], and (us)? are constants
in SE(4,n), and the numerical analogues of the values of u, Ou/dz, Ou/8t, 0%u/0x?, 8u/Oxdt, H%u/dt?,
BBu/0z3, 83u/8x%0t, 83u/0zdt?, and H%u/8t3 at the mesh point (j,n), respectively; (i) (z;,t") are the
coordinates of the mesh point (j,n) where z; = jaz and t" = nat; (iii) u*(z,t;j, n) represents a 3rd-order
Taylor’s approximation of u; and (iv) Eq. (2.3) is the numerical analogy of the definition & = (au, u).

For any (j,n) € Q4, let u = u*(z,t;j,n) satisfy Eq. (1.1) for all (z,t) € SE(j,n). Then one has

('U/t)_? = _a(uz)?a (uzt)? = _a(uzz)?a ('Uftt)_;'L =d’ ('Uf:c:c)_;b,

n n n n n n (-7’ n) € Ql (24)
(uzzt)j = _a(uzzz)ja (uztt)j = a2(uzzz)ja (uttt)j = _a3(uzzz)j

Substituting Eq. (2.4) into Eq. (2.2), one has
* » n n n 1 n n 2
u*(2,8;5,m) = uf + (o) [(& — z5) —a(t —1")] + 5 (uze)] [(z — ;) —a (t —1")]
1

+ & (usea)} (2= 27) —a (e = ")’

(j, n) e (25)

ie., uf, (uz)7, (Uzz)], and (uzzs)] are the only independent mesh variables associated with (j, n).
With the above preliminaries, next we describe the basic form of the a(4) scheme.

2.1. The basic form of the a(4) scheme

Let E3 be divided into non-overlapping space-time triangular regions (see Fig. 2(a)) referred to as
conservation elements (CEs). As depicted in Figs. 2(c)-2(f), (i) each (j,n) € Q; is assigned with four CEs,
i.e.,, CE(j,n;£), £ =1,2,3,4; (ii) each CE represents a right triangle with the end points of its hypotenuse
€ O but not the third vertex; and (iii) the space-time E; can be filled by CE(j,n;£), £ = 1,2,3,4; and
(4,n) € Q. The a(4) scheme will be constructed by assuming that the flux of R* conserves over CEs, i.e.,

]{ h*-d3=0, £=1,2,3,4; (j,n) e (2.6)
S(CE(im:f))

Using the special case £ = 1 as an example, how Eq. (2.6) can be turned into a set of relations linking
the mesh variables at two diagonally opposite neighboring mesh points will be explained step-by-step in the
following remarks:

(a) By definition, on S(CE(j,n;1)) (i.e., the boundary of CE(j,n; 1)), the line segments AD and AG belong
to SE(j,n) while CD and CG belong to SE(j + 1,n — 1). Note that, strictly speaking, points D and G
do not belong to either SE(j,n) or SE(j + 1,n — 1). This fact, however, does not pose a problem for
flux evaluation over S(CE(j, n; 1)) because the values of h* at isolated points do not contribute to the
flux of * over a finite line segment.

(b) The straight line passing through points A and C can be defined by

At At
t=t"— E(m—xj) or t=t""1— E(m—xﬂl) 2.7

(c) For CE(4,n;1), the outward unit normal vectors @ on AD, CD, and AC are

¢
i (0,1), 7% (1,0), and 7igddf—— _(8bAT) (2.8)
(at)? + (ax)?

respectively.

(d) Obviously, (i) the length of the line segment joining any two neighboring points (z,t") and (z + dz,t")
on AD is do = |dz|; and (ii) the length of the line segment joining any two neighboring points (z;1,t)
and (z;+1,t+dt) on CD is do = |dt|.
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On the other hand, because |dt/dz| = at/az for any two neighboring points (z,t) and (z + dz,t + dt)
on AC, the length of the line segment joining these two points is

do V(d6)? + (dz)? = 1/(at)? + (az)? - (|dz|/az) (2.9)

(e) With the aid of (i) Eq. (2.3), (ii) the preliminaries given in the above items (c¢) and (d), and (iii) the
relation d3 = do 7, one concludes that, for CE(j, n; 1),

. u*|dz| on AD
R ds={ au|di| on CD (2.10)
—(1+v)u*|dz| on AC

def .
Here v = aat/az is the Courant number.
(f) With the aid of Eq. (2.10) and the comments made in the above items (a) and (b), one can see that,
for the case £ =1, Eq. (2.6) &

Tj+1 "
/ w*(z,t"; 4, n)dz + / auv*(zjy1,t5+1,n—1)dt
x

. -1
2] L

(1-|—1/)/mj+1/2 *( " At(m—x-)"n)dx (4,n) e (2.11)
. u\z, AL ¥ 3 Js J.n 1 .

3

2541 . At
—(1+y)/ u*(m,t"_ —E(a:—xj+1);j+1,n—1)dm=0

where (i) the symbol “” is used as a shorthand for the statement “if and only if”, and (ii) z;11/2 def
z; + (Aa: / 2).
(g) Let

n def AT n n def (AT 2 n n def (AT 8 n .
@ 2y, ey O, and (e} € Oy, Gmenn @12)

Then, with the aid of Eq. (2.12), the expression obtained by substituting Eq. (2.5) into (2.11) can be
cast into the following form:

n

v+3 P 4+dv+T v+ +2w+5
(1—V)[u+ 5 Uz + 6 Uﬁ-l-( )X 24 )ui'i'i']

’ Gim) € Q1 (2.13)

n—1

_ (1—1/)[u— 31/—|—1u_ 7V2+4V+1u___ (31/+1)(51/2+21/—|—1)u___]

To simplify notation, in the above and hereafter we adopt a convention that can be explained using an
expression on the left side of Eq. (2.13) as an example, i.e.,

v+3 V+4v+7 v+3)@2+2w45 n
v+3 v+dav+7 (v +3)(¥? +2v +5) "
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Similarly, for the cases £ = 2,3,4, Eq. (2.6) implies that

Jv+1 T 4+4v+1 v+1)(5v2+2v+1 n
2 6 24 '
) ) (4,n) ey (2.14)
_ (1—1/)[u— 1/+3u_+ v +4V—|—7u__ _(v+3)(v +2V+5)u___]"_1
9 T 6 IT 24 TTT i
-3 v —4v+7 v—3)¥?—-2v+5 n
(1+V)[u+ 5 Uz 6 zz ( X 24 )’U/i'ii']
J
v— vt — 4y v— vt —2u n—
=(1+v) [U -5 ust 6 Uzz — 24 uia‘ca‘c]j_l
and
3v—1 T —dv+1 3v—1)(50° — 2w +1 n
(1+v)[u+ g Uzt 6 Uﬁ-l—( X 94 )ui'a_ci'] ‘
. 24 -3 —2w45) . (4,n) ey (2.16)
v— v° —4v + v— ve —2v+ n—
=(1+v) [U Ty Uz + 6 Uzz — 24 Ua‘ca‘ca‘c] i1
respectively.
At this juncture, note that:
(a) Because
bu_saou Pu_(safetu | ou_(@Bes s
ot 2 8z’ 0672 4 Oz’ o3 8 Ou8 "~ az/2

the normalized parameters (ua—c);‘, (uﬁ);‘, and (uﬁa—c);‘ can be interpreted as the numerical analogues

of the values at (j,n) of the first, second, and third derivatives of u with respect to the normalized
coordinate Z.

Note that: (i) the vector B* at any horizontal or vertical interface separating two neighboring CEs is
evaluated using the information from a single SE; (ii) the vector k* at one half of any inclining interface
separating two neighboring CEs is evaluated using the information from a single SE while that at another
half is evaluated using the information from another SE; and (iii) the unit outward normal vector on the
surface element pointing outward from one of two neighboring CEs sharing the same element is exactly
the negative of that pointing outward from another CE. Thus one concludes that the flux leaving one
of the two neighboring CEs through the interface they share is the negative of that leaving another
CE through the same interface. Due to this interface flux cancelation and the fact that the CEs are
nonoverlapping and can fill the space-time Es, the local conservation relations Eq. (2.6) lead to a global
conservation relation, i.e., the total flux of R* leaving the boundary of any space-time region that is the
union of any combination of CEs vanishes.

Let1—v#0and 1+v#0,ie.,
v #£1 (2.17)

Then Egs. (2.13)-(2.16) can be simplified by eliminating (i) the common factors (1 — v) on the both sides of
each of Egs. (2.13) and (2.14); and (ii) the common factors (1 + v) on the both sides of each of Egs. (2.15)

and

(2.16). By adding the simplified forms of Eqs. (2.13) and (2.14) together and then subtracting one of

them from another, one has

2(1 2 1 1 2 n
[U+(1+V)Ui+ ( +;+V) zz A+ +v7) a‘ca‘ca‘c]
. . ! (G,n) € (2.18)
n—1
= [u—(l-l-V)ui-l- 2 tvtv )Uzz— 1+n)d+v )ui'i'i']
3 3 j+1

NASA/TM—2009-215658 6



and

+7u2+ 10V+7u

T2+ 100+ 7 n—1
12 + 7“&%]

n
:E:E:E] = [Ui—(l'l'V)Uﬁ 12

2

, (hm) e (219)
Note that Eq. (2.19) has been further simplified by eliminating the common factors (1 — v) which appear
on the both sides of the original subtraction result. Similarly, the simplified forms of Eqgs. (2.15) and (2.16)
imply that

[u— (1 - v)us + 2(1—;4—1/ )uw_ 1-v)(1+v )uﬁi]j
, , L Gmenm (2.20)
= [u-l- (1-v)uz + 201 - ;+V )'U':Ei' + a _V):(),l +v )Ua‘ca‘ca‘c]j_l

and

n w2 —10v+ 7u

W2 —10w+7  qnl

n
:E:E:E] = [Ua‘c +(1-v)uzz 12

[uﬂ—g—(l—u)um—c ;

j—1
Note that Eqgs. (2.18) and (2.19) are stricter than Egs. (2.13) and (2.14) in the sense that the former imply
the latter for any v but the latter imply the former only if an extra condition (i.e., 1 — v # 0 for this case) is
imposed. Similarly, Eqgs. (2.20) and (2.21) are stricter than Eqgs. (2.15) and (2.16). Hereafter, by definition,
the system of equations formed by Eqgs. (2.18)—(2.21) is referred to as the basic form of the a(4) scheme. In
the following, we derive the forward marching form.

2.2. The forward marching form of the a(4) scheme

To simply notation, temporally the expressions on the right sides of Egs. (2.18)—(2.21) will be denoted
by s1, 2, 83, and s4, respectively. Then, by adding Eqs. (2.18) and (2.20) together and then subtracting
one of them from another, one has

2(1 + v? v(l+v2 "ol ,
|:’U, =+ Viuz =+ %’U@i =+ %’U/iii] = 5(31 + 33), (_7, n) S Ql (222)
J
and 2 n
2v 14+v 1 .
[Ui + ?Uﬁ + 3 Uiin‘c] = 5(31 — 83), (4,n) € (2.23)
J

In turn, by subtracting Eq. (2.23) from both Egs. (2.19) and (2.21), one has

v+3 Jv+1 " 1 .
( 3 ) [Ua‘ca‘c + 1 Ua‘ca‘ca‘c] =82 — 5(81 — 83), (4,n) € N (2.24)
J
and "
v—3 Jv—-1 1 .
( 3 ) [Ua‘ca‘c + Tuiii’] = 84— 5(81 — 83), (4,n) € N (2.25)
J

Let v—3#0and v+3 #0, ie.,
P #9 (2.26)

Then Egs. (2.24) and (2.25) <

(j, n) e (227)
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and
3Bv—1)s2 , 3(3v+1)sa 15v(s1— s3)

) — j Q 2.28
(uza);] 2(v + 3) 2(v — 3) 2—9 () € (2.28)
Next, by substituting Egs. (2.27) and (2.28) into Eq. (2.23), one has
— — 2 _ —
(us)? = v+ —2)s2 (¥—1)(r+2)s4 n 3(3v2 — 7)(s1 — s3) (.n) € (2.29)

v+3 v—3 212 —9) ’
Finally, by substituting Eqgs. (2.27)—(2.29) into Eq. (2.22), one arrives at

(Bv—1)ss (Brv+1)ss 1 v(v? — 29) 1 v(v? — 29) .
p= - ~|1- Sy 2 0 (2
4 v+3 =3 Ta|lT g |at|Mt e | GmeEt (230)

Hereafter, in Egs. (2.27)—(2.30) and all other equations derived from them, Eq. (2.26) will be assumed
implicitly.
To proceed, let

q0j,n) & ( ((;‘J))J’; ) (,m) € (2.31)
(uzaa)?
5, (Z; and 5. ¥ (Zi) (2.32)
(3 O LA
cw¥ (g 1T OO L) @39
(1-pE?-29)/0?-0}/2  Gr—D/w+3)
O N LA s A ) B
18/(v% - 9) 6/(v+3)
and (1+p0?=29)/02—9)}/2 —@v+1)/—3)
R 7 ) B
_18/(v* - 9) Z6/(v - 3)
Then: (i) by the definition of s1, s, s3, and s, one has
5. =CL @ +1,n—1) and 5 =C_()§Gi-1,n—-1), (n)e (2.37)
and (i) Egs. (2.27)—(2.30) can be cast into the form
l,n) = Dy (W) 5y + D_(v) 7., (G,m) € (2.38)
By substituting Eqgs. (2.37) into (2.38), Eqs. (2.27)~(2.30) can be cast into the matrix form
q6,m) = Q@) qG +1,n— 1)+ Q@) qG - L,n—1), Gom) € (239)
e Q) D,()0,() and Q)% D ()C_w) (2.40)
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Hereafter the system of equations formed by Egs. (2.27)—(2.30) or its equivalent Eq. (2.39) is referred to as
the forward marching form of the a(4) scheme. According to the above derivation, the forward marching
form is a result of the basic form and the assumption Eq. (2.26). Also note that here Eq. (2.40) is cast into
a form different from the forward marching form of the a scheme (e.g., Eq. (3.48) in [71]), i.e., the symbols
Q+(v) and Q_(v) used in the a scheme are replaced in the a(4) scheme by Q_(v) and Q4 (v), respectively.

As a preliminary to a later development, next we will take a side tour and introduce the concept of
invariance under space-time inversion.

2.3. Invariance under space-time inversion

Let u = u(z,t) be a solution to Eq. (1.1) in the domain —oo < z,t < 400, Le.,

du(z,t) du(z,t)
= — 241
En +a p 0, 00 < x,t < 400 (2.41)
Let def def
' Z -z and t' = —t (2.42)
and et
i(z,t) = u(—z,—1) (2.43)
Then (i) Eq. (2.41) &
du(x’, 1) dulz',t') _ '
5 +a S = 0, —oo <z, t < 400 (2.44)
and (if)
0 0 0 0
Thus one concludes that Eq. (2.41) &
di(x,t) di(z,t)
En +a p =0, o0 < z,t < 400 (2.46)

In other words, if u = u(z,t) is a solution to Eq. (1.1), so must be v = 4(z,t) and vice versa. Because the
one-to-one mapping
(z,t) & (—z,-1), —o0 < z,t < 00 (2.47)

represents a space-time inversion (STI) operation, hereafter (i) a pair of functions such as » and 4 will be
referred to as the STI images of each other; and (ii) a partial differential equation (PDE) such as Eq. (1.1)
is said to be STI invariant if the STI image of a solution is also a solution and vice versa.

Next let

k+£ k+ez
(k,€) def 0" u(z, 1) £ (k,0) def 07z, 1) _ ki f=0.1.92
w (1) R, and 4% (z,1) T oo <z, t<too; k,£=0,1, ,(2 ©

Then, with the aid of the chain rule, Egs. (2.42), (2.43), and (2.48) imply that
ak-i—lu(_x,_t) (1 k+£ak+£u(m/,t/)

A(ka‘e) t = = {— - N ' 7
W (1) dr*at St i v N z,t < +oo; k,£=0,1,2,...  (2.49)
= (~H k(e ) = (—1)Hulb (—z, —1)

ie.,

(k) (—gp. — i i
« (k,£) _ Ju®(—z,—t) if (k+£)is even
@ (@, 1) { —u®O (—g, —t) if (k+£) is odd (2:50)
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According to Eq. (2.48), u(®% = y and 4(®% = 4. Thus Eq. (2.43) is a special case of Eq. (2.49) with
k=¢=0.

In the following, the concept of STI invariance will be introduced for the a(4) scheme. As a preliminary,
note that: (i) (j,n) € O & (=5, —n) € Qy; (i)

(4, n) < (=4, —n) (2.51)

is the numerical analogue of the STI mapping Eq. (2.47); and (iii) u}, (uz)}, (&)}, (Uzz)}, (Uat)F, (wee)}
(Ugzz)? 2 (Ugzt)? % (ugee)? %, and (uttt) are the numerical analogues of the values of u, du/dz, Ou/8t, 8%u/dx?,
0?u/0zdt, 9?u/ot?, BPu/dx®, 83u/8x28t, 0%u/0x0t?, and 83u/0t® at the mesh point (j,n), respectively.
Thus, motivated by Eq. (2.50), the one-to-one mapping
U;L « u:?; (uz)n = —(ug)” ;'L; (ut) (ut) e (um) o (Ugz)” ;L
n

(’u’l't) (ufb’t) i 'U/tt)J ('U/tt):_?; ('U/z:c:c)J ('U/z:c:c) (_7, ’IL) e (252)
(Uzat)] < _(uz’z’t)_j; (ugte)] & —(uzet)"7;  (uwe)] < _(’Ufttt)_?

is taken as the numerical analogue of the one-to-one mapping

u® (z,t) « a*0 (2, 1), —o < z,t< 4005 k,£=0,1,2,3 (2.53)
For the independent mesh variables, by using Eq. (2.12), it is seen that the mapping Eq. (2.52) reduces
to
n u_y
) —(ua)T
Z)j z/)—j 1 0 2.54
(uzz)? < (Uﬁ):? Gim) € (2:54)
(uﬁf)? _(uii_):?
With the aid of Eq. (2.31), Eq. (2.54) can be expressed as
qdg,n) & Ug(—j,—n), (4,n) € N (2.55)
where
1 0 0 O
def [0 -1 0 O
U= 0 0 1 0 (2.56)
0 0 0 -1
The matrix U is unitary. In fact it is a real matrix with
U=U"1 (2.57)

Hereafter (i) M ! denotes the inverse of any nonsingular square matrix M; (ii) for each (j,n), Ug(—j, —n) is
referred to as the STI image of §(j,n); and (iii) the set formed by Ug(—j, —n), (j,n) € £ is also referred to
as the image of the set formed by (4, n), (4,n) € Q1. According to Eq. (2.57), (4, n) = UUG(—(—35), —(—n)).
Thus §(4,n) is the STI image of Ug(—j, —n) as an individual (§,n) or as the set defined over ;. In the
following, we will show that the system of equations defined by each of Eqs. (2.18)—(2.21) is STI invariant,
i.e., the system maps onto an equivalent system under the mapping Eq. (2.54).

As an example, consider the system defined by Eq. (2.18). Under the mapping Eq. (2.54), Eq. (2.18)
maps onto

2 2 _n
[u_ (1 + v)us + 2(1+1;+u )uﬁ B (1+V):(),1+1/ )um] .
. ] ! (,n) € N (2.58)
2(1 1 1 ~(n-1)
= [ut (4 v)us + +v+vy) Mu]
3 —G+1)
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At this juncture, note that, in addition to changing the sign of each uz and uzzz, mapping Eq. (2.54)
requires that the upper and lower indices j, n, j + 1, and n — 1 in Eq. (2.18) be replaced by their negatives,
respectively. This is different from simply replacing the symbols j and n everywhere with —j and —n,
respectively. Moreover, to simplify argument, hereafter system B is referred to as the STI image of system
A if A maps onto B under the mapping Eq. (2.54), e.g., the system Eq. (2.58) is the STI image of Eq. (2.18).
Let

FE -1 and ¥ n+1,  (Gn)em (2.59)
Then, by using the fact that (j* + n*) + (j + n) = 0 and therefore (j*,n*) € Q1 & (4,n) € O, Eq. (2.58)
can be cast into the form

2(1 2 1 1 2 n*
[u+(1+y)ui+ ( +;+y )uﬁ+( +u)§ + v )UW]
. . (7*,n*) € Oy (2.60)

§e+1
By comparing Eqgs. (2.18) and (2.60), one can see that the system Eq. (2.18) is identical to its STI image
Eq. (2.58) (which is identical to Eq. (2.60)). Thus, under the mapping Eq. (2.54), Eq. (2.18) maps onto
itself, i.e., the system Eq. (2.18) is STI invariant. QED.

The STI invariance of each of Eqgs. (2.19)—(2.21) can be established in a similar manner. As such, the
basic form of the a(4) scheme (which is formed by all component equations in Egs. (2.18)-(2.21)) is STI
invariant.

Let (4, n) = Go(4,n), (§,n) € 1, be a solution to the basic form. Then, by substituting §(j,n) = §,(j,n)
into the basic form, one obtains a system of identities involving @,(j,n), (j,n) € Qy. Due to the STI
invariance of the basic form, the above system of identities is equivalent to that obtained by substituting
d(j,n) = Ugo(—j,—n) into the basic form. As such q(j,n) = §,(j,n), (j,n) € Q1, represent a solution
to the basic form < §(j,n) = Ugy(—3, —n), (j,n) € 4, represent another solution to the basic form. In
other words, the STI image of a solution to the basic form is also a solution and vice versa. Obviously this
conclusion is also valid for other STI invariant forms of the a(4) scheme.

Next, we will establish the STI invariance of the forward marching form. As a preliminary, discussion
of some basic concepts is in order. Note that for any set of variables x,,ys, £ = 1,2, the conditions

ity =22—y2 and Zy—y1 =2+ (2.61)

<
1 =129 and Y1 = —ys (2.62)

Thus, the image of Eq. (2.61) under any one-to-one mapping
(mla yf) < (xéa yé)a L= 1a 2 (263)

ie.,
iyl =x5—yy and z;—y; =545 (2.64)

& the image of Eq. (2.62) under the same mapping, i.e.,

zy=x4 and Y] =—v} (2.65)
where the variables zj, and yj, £ = 1,2, may or may not be related to z¢,ys, £ = 1,2. Moreover, in case
that these two sets of variables are related, the condition Eq. (2.61) (or its equivalent Eq. (2.62)) may or

may not be equivalent to the condition Eq. (2.64) (or its equivalent Eq. (2.65)). If the mapping Eq. (2.63)
is such that Eq. (2.61) < the image under this mapping (i.e., Eq. (2.64)), then Eq. (2.62) (the equivalent of
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Eq. (2.61)) & Eq. (2.65) (the equivalent of Eq. (2.64)). Eq. (2.63) with 2} = 2z, and y, = y¢, £ = 1,2, is an
example of such mapping while Eq. (2.63) with 2}, = y¢ and y; = z¢, £ = 1,2, is not.

The STI invariance of the forward marching form will be proved assuming Eq. (2.26) (the form is
undefined if Eq. (2.26) is not valid). Note that: (i) the basic form of the a(4) scheme < its forward marching
form for any choice of q{(j,n), (j,n) € Q1; and (ii) the STI images of the basic and forward marching forms,
respectively, are obtained from the basic and forward marching forms through the mapping Eq. (2.55), i.e.,
through replacing (4, n) in the basic form and the forward marching form with Ug(—j, —n), (j,n) € . From
the above observations and the illustration given in the last paragraph, one concludes that the STI image of
the basic form < that of the forward marching form. Because the basic form is STT invariant, i.e., the STI
image of the basic form < the basic form itself, Now we arrive at the conclusion that the forward marching
form < the basic form < the STI image of the basic form < the STI image of the forward marching form.
Thus the forward marching form < its STI image, i.e., the forward marching form is STI invariant. QED.

2.4. The backward marching form of the a(4) scheme

According to Eq. (2.55), the STI invariance of the forward marching form implies that Eq. (2.39) < its
STT image, i.e.,

Uq(—j,—m) =Q+(WVUG(—j —1,-n+ 1)+ Q_()Uq(—j+1,—n+1), (4,n) ey (2.66)

By multiplying Eq. (2.66) from left using the matrix U and using Eq. (2.57), one concludes that Eq. (2.66)
<~

~

q‘(_j, _n) = Q—(V)q‘(_J - 1, -n+ 1) + Q+(V)Q(—j + 1, -n+ 1)’ (]a n) € Ql (2'67)

where
def

Q- FVQU and Q:() ¥ UQ-()U (268)
By using Egs. (2.33)—(2.36), (2.40), and (2.56), Eq. (2.68) implies that

Q-()=D,()Ci(v) and Qi(v)=D_(»)C_(v) (2.69)
where
A e 111/2311/1/2 14+v)(14+0v2)/3
¢ Ee ( + @/ )_((1++ y;r ) —E7v2 +) (101/ + 7))//12) (2.70)
¢ %0 - (3 SRR i P e ) IR
T i Gy YT
A def v?— V2 — —(v+ v — v+
Di(v) S UD+(v) = Z15u/ (w2 - 9) —(3/2)(3v = 1)/(v +3) (2.72)
—-18/(v% - 9) —6/(v+3)
N e s oy
~ def V2 — V2 — v — v+ v—
D-(v) =UD-(v) = 150/(v% — 9) (3/2)3v + 1)/ (v — 3) (2.73)
18/(v? — 9) 6/(v — 3)

Next, by replacing the “dummy” indices —j and —n everywhere in Eq. (2.67) with j and n, respectively,
and using the fact that (—j,—n) € Q1 & (j,n) € Q4, one can see that the system Eq. (2.67) is identical to
the system

qi,n) = Q+(G +1,n +1) + Q-(»)q(j — 1,n +1), (G,n) € (2.74)

Because the mesh variables at (j,n) can be determined in terms of those at ( —1,n+1) and (j +1,n+1)
using Eq. (2.74), hereafter Eq. (2.74) (which is equivalent to the forward marching forms of the a(4) scheme)
will be referred to as the backward marching form of the a(4) scheme.
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Eq. (2.74) was derived using the STI invariance of the forward marching form of the a(4) scheme.
Alternatively, it can also be derived from the basic form. Note that: (i) by replacing the “dummy” indices
j and n everywhere in Eq. (2.18) with j — 1 and n + 1 and using the fact that (j,n) e % < (j+1,n—1) €
O & (j—1,n+1) € Q1, one can see that the system Eq. (2.18) is identical to the system

2 2 n
[u—(1+v)us + 2(1+';7+V)u _ wu] .
. . ! (j,n) € M (2.75)
n+1
_ [U+(1+V)Ui+ 2(1+1;+V )uﬁ+ (1+V);1+V )uﬁi] )
i

(ii) by replacing the indices j and n everywhere in Eq. (2.19) with j — 1 and n + 1 and using the fact that
(n)eMe (+ln—-1) ey & (j—1,n+1) € Q, one can see that the system Eq. (2.19) is identical
to the system

n w2+ 10v + 7u

241 n+l
1 +77V + Oy+7ua‘ca‘ca‘c] ) (4,n) € . (2.76)

n
[Ui—(l'l'V)Uﬁ i'i'i'] = [Ui+(1+V)Ua‘ca‘c 19
i
(iii) by replacing the indices j and n everywhere in Eq. (2.20) with j + 1 and n + 1 and using the fact that
(n)ehe (-1Ln-1) e & (f+1,n+1) € Q, one can see that the system Eq. (2.20) is identical

to the system

2(1— 2 1-v)(1 2 n
] . ! (j,n) € M (2.77)
_ 21 —-v+v?) 1-v)(1+v?) n+l
= [u— (1—-v)uz + 3 Uzz 3 uzm]Hl

and (iv) by replacing the indices j and n everywhere in Eq. (2.21) with j + 1 and n + 1 and using the fact
that (jn) e © (H—1,n—1) € U & (j+1,n+1) € Q1, one can see that the system Eq. (2.21) is
identical to the system

W2 —10v+7
LAl S

7?2 — 100+ 7
12 T v

n+1 .
12 zzz] ) (]an) €M (278)

n
ui’i’i’] = [Ui—(l—V)Uﬁ

[um—c +(1—v)uzz
j

i+
As such Egs. (2.75)—(2.78) are equivalent to Eqs. (2.18)—(2.21), respectively.

For each (j,n) € 1, Eqgs. (2.18)—(2.21) form a linear system of four equations for the four mesh variables
u?, (uz)7, (uzz)}, and (uzzz)7. Egs. (2.75)—(2.78) form another system. Moreover, one can see that, under
the mesh variable mapping

qig,n) «UqG,n), di+1,n—-1)oUqi—1,n+1) and JGi-1,n—-1)gi+1,n+1) (2.79)

Eqgs. (2.75)—(2.78), respectively, are the images of Eqs. (2.18)—(2.21) and vice versa. By using the concept
introduced earlier in a discussion involving Eqgs. (2.61)—(2.65), one concludes that the solution to Eqgs. (2.75)—
(2.78) must be the image of Eq. (2.39) (i.e., the solution to Egs. (2.18)—(2.21)) under the mapping Eq. (2.79).
In other words, the solution to Egs. (2.75)—(2.78) is

Uqg,n) = Q+(UTGT —1,n+1)+Q_(»)Uqij+1,n+1), (4,n) ey (2.80)

By multiplying Eq. (2.80) from left using the matrix U and using Eqgs. (2.57) and (2.68), one has Eq. (2.74).
QED.
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As a preliminary for the developments in Sec. 3, in the following, important algebraic relations involving
Q+(v), Q_(v), Q+(v), and Q_(v) will be extracted from the STI invariance of the a(4) scheme.
2.5. Algebraic relations associated with STI invariance

Let (jo,m0) € 1 be any given fixed mesh point. Then (j, + 2,n,) € Q; and (j, — 2,n,) € Q. Let
3o, 10)s @Uo + 2,m0), and §(j, — 2,n,), respectively, be the arbitrary initial data specified at these mesh
points. Let v2 # 9. Then §(j, + 1,n, + 1) can be uniquely determined in terms of §(j,, no) and §(jo + 2, 7o)
by imposing the basic form Egs. (2.18)-(2.21) with (j,n) = (j, + 1,7, + 1), In fact, by using the equivalent
forward marching form Eq. (2.39), one has

qUo +1,m0 + 1) = Q1+ (¥) o + 2,10) + Q—(¥) §(Jo, 10) (2.81)
Similarly, by imposing the basic form Egs. (2.18)-(2.21) with (j,n) = (j, — 1,1, + 1), one has
qUo — 1,n0 + 1) = Q+(¥) §(Jo, no) + Q- (V) qjo — 2, n0) (2.82)

Among the conditions imposed above, (i) Eqgs. (2.18) and (2.19) with (j,n) = (jo — 1,1, + 1) repre-
sent two conditions linking §(j, — 1,n, + 1) and §(j,, no); and (ii) Egs. (2.20) and (2.21) with (j,n) =
(jo + 1,m, + 1) represent two conditions linking ¢(j, + 1,7, + 1) and §(j,, 7). Thus the four mesh variables
in q(jo, no) can be determined in terms of §{j, + 1,n, + 1) and §(j, — 1,1, + 1) by using the four conditions
specified in the above items (i) and (ii). In fact, by using the equivalent backward marching form Eq. (2.74),
one has ) )

G0, 10) = Q+(V) 7o + 1,16+ 1) + Q_(v) §(Jo — 1,16 + 1) (2.83)

By substituting Eqgs. (2.81) and (2.82) into (2.83), one concludes that

[Q+(MQ-() + Q-()Q+ (¥) — 1] 7o, o)

A . , , . (2.84)

+ Q+(¥)Q+(¥) §Uo + 2,n0) + Q- (¥)Q-(¥) §ljo — 2,m0) =0
where I is the 4 x 4 identity matrix and 0 is the 4 x 1 null column matrix. Because Eq. (2.84) must be valid
for any choice of q(jo + 2,10), @Jo — 2,10), and §(js, n6), the coeflicient matrices in front of these column
matrices must vanish identically. Thus we have

Q)R-+ Q-)Q+(w) =1 (2.85)
0+ ()Q+(v) = 0 (2.86)

and
Q-()Q-(v) =0 (2.87)

where 0 is the 4 x 4 null matrix. As an example, one can prove Eq. (2.85) by substituting into Eqgs. (2.84)
each of the following sets of the initial data: (i) §(j, + 2,7,) = §(J, — 2,1,) = 0 and ¢(j,, n,) = (1,0,0,0)%,
(i1) 0o + 2,10) = qlio — 2,10) = 0 and qljo, 1) = (0,1,0,0)¢, (ifi) qljo + 2,m0) = qljo — 2,n0) = O and
q(Josm0) = (0,0,1,0)%, and (iv) §(Jo + 2,70) = §(Jo — 2,10) = 0 and §(jo, no) = (0,0,0,1)*. Here ¢* denote
the transpose of a 1 x 4 matrix ¢.

Similarly, by substituting the backward marching relations

o+ 1,n,—1) = Q+(V) q(Jo +2,m0) + Q—(V) G(Jo, Mo) (2.88)
and R R
7o — Lm0 — 1) = Q4. (¥) (Yo, o) + Q- (v) qjo — 2, m0) (2.89)
into the forward marching relation
G0, 10) = Q+(V) 7o+ 1,16 — 1)+ Q_(v) §(Jo — 1,1 — 1) (2.90)
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one has

[Q+(Q-() + Q-()Q+ (¥) — 1] 7o, m0)
+Q+()Q+ () 4o +2,10) + Q-(1)Q—(¥) o —2,m0) = 0

Because Eq. (2.91) must be valid for any choice of §{jo + 2,70), §(jo — 2,70), and §(jo,ns), one concludes
that

(2.91)

QL0 () + Q)0 =T (292)
Q+(1)Q+(v)=0 (2.93)
and
QW@ () =0 (299)
By using Eqgs. (2.57) and (2.68), it can be shown that: (i) Eq. (2.85) & Eq. (2.92) &

Q_(UQ_() + @+ (UQ, (1) = U (295)

(ii) Eq. (2.86) © Eq. (2.94) &
Q_MUQ.() =0 (296)

and (iii) Eq. (2.87) < Eq. (2.93) &
Q+()UQ—_(v)=0 (2.97)

2.6. The dual a(4) scheme

In the above, the a(4) schemes is defined using only the mesh points € Q3. Independently, it can also
be defined using only the mesh points € Qy where

0, ¢ {G,n)|j,n=10,%£1,4£2,43,..., and (j + n) is an even integer} (2.98)

For the current 1D case where a structured mesh is used, the a(4) scheme defined over Q; is completely
decoupled from that defined over 2. Thus, there is no practical reason to carry out computations using the
two decoupled schemes simultaneously.

However, to simplify numerical comparisons between the a(4) scheme and the a(3) scheme which is only
defined over the mesh point set

Q¥ QU ={¢n)jn=0+1,42,..} (2.99)

the numerical results to be presented in Sec. 4 are generated using the “dual” a(4) scheme, i.e., the scheme
formed from the two decoupled a(4) schemes and defined over 2. By the definition of STI invariance, one
can see that each form of the dual a(4) scheme is also STI invariant.

3. von Neumann analysis

Let G(v, 8) be a 4 x 4 nonsingular complex matrix function of v and the phase angle 8 such that
qG,n) = €90 [G(v,0)]"b,  (j,n) € Q1; —00 < B < +o0; i =/—1 (3.1)

is a solution to Eq. (2.39) for all possible complex constant 4 x 1 column matrices b. (Note: because
n|

e -n/! n _
[G(v,0)]" & {[G(V, 0)] 1} for an integer n < 0, [G(v, 6)]™ is not defined if n < 0 unless [G(v,8)] ™" exists,
i.e., G(v,6) is nonsingular.) By substituting Eq. (3.1) into Eq. (2.39), one has

[G(1,0) — e¥Q (v) — e Q_()] [G(#,6)]"b=0, n=0,%1,%2,... (3.2)
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Because (i) [G(v,8)]° = I, and (ii) b can be any complex constant 4 x 1 column matrix, Eq. (3.2) implies
that
G,6) = €9Q. () + ¢ °Q_(v) (33)

By definition, G(v, 8) is the amplification matrix of the forward marching form of the a(4) scheme.
By using Eqgs. (2.95)—(2.97), one can show easily that

Ule?Q-(v) +e Q. ()]U [€°Q.(v) + e 7#Q_(v)]

. . . , (3.4)
— [9Q4 () + e 9Q_ U [9Q_(@) +e 0@ ()|U =T
Thus G(v, §) defined in Eq. (3.3) is nonsingular and its inverse is
(G, 0)] ' =U [e°Q_(v) + e #Q, ()] U (3.5)

Indeed, with the aid of Eq. (2.68), Eq. (3.5) is what one obtains after substituting Eq. (3.1) into the backward
marching form Eq. (2.74). Moreover, by using Egs. (2.57), (3.3), and (3.5) along with the fact that @ (v)
and Q_(v) are real matrices, one arrives at the important conclusion

[G(v,0)] " = UG, )U (3.6)
Hereafter M denotes the complex conjugate of any matrix M.

For each (v,8), the four eigenvalues G(v, ) will be denoted as o4(v,0), £ =1,2,3,4, and referred to as
the amplification factors of the a(4) scheme. By using Eq. (3.6), next it will be shown that

{Ul (11/, 5 (11/, 5 (11/, 5 7 (11/, 9)} = {01(0.0), 22,8, 35(0,8), 34(,0) } (3.7)

Hereafter Z denotes the complex conjugate of any complex number z.
As a preliminary, first we introduce the following matrix theorems:

Theorem 1. Let A be a nonsingular N x N matrix with the eigenvalues A, £ =1,2,..., N. Then (i)
A #0,£=1,2,...,N; and (ii) the eigenvalues of A~! are 1/X¢, £=1,2,...,N.
__Theorem 2. Let A be a N X N matrix with the eigenvalues g, £=1,2,...,N. Then the eigenvalues
of A, the complex conjugate of A, are Ay, £=1,2,..., N.
Theorem 3. Let A and B be two similar N x N matrices, i.e., there exists a nonsingular N x N matrix
S so that B = S"1AS. Then A and B have the same eigenvalues, counting multiplicity.

The proof of Theorems 1 and 2 is given in Appendix A of [72] while that of Theorem 3 is given on p. 45 of
[74].

To prove Eq. (3.7), consider any (v,6) with v2 # 9. Then because the eigenvalues of the nonsingular
matrix G(v,0) are o¢(v,8), £ = 1,2,3,4, Theorem 1 implies that: (i) o¢(¢,6) # 0, £ = 1,2,3,4; and (ii)
the eigenvalues of [G(r,8)]”" are 1/04(v,6), £ = 1,2,3,4. Next, by using Theorems 2 and 3, and the fact
that (U~1)~1 = U, one can see that the eigenvalues of the matrix on the right side of Eq. (3.6) are o¢(v, §),
£=1,2,3,4. Thus Eq. (3.7) now is an immediate result of Eq. (3.6). QED.

An immediate result of Eq. (3.7) is

1 . 1 . 1 . 1
0'1(1/,9) 0'2(1/,9) 0'3(1/,9) 0'4(1/,9)

=01 (V, 9) . 0'2(1/, 9) . 0'3(1/, 9) . 0'4(1/, 9)

ie.,

o1 (v, 0)| - lo2(v,6)| - o3 (v, 0)] - |oa(v,0)] = 1 (3-8)
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For any given v, stability of the a(4) scheme requires that

loe(v,0)| < 1, £=1,2,3,4 (3.9
Thus Eq. (3.8) implies that, for any given v, the a(4) scheme must be neutrally stable, i.e.,

loe(v,8)| = 1, £=1,2,3,4 (3.10)

if it is stable. As such, Eq. (3.6) does not imply neutral stability of the a(4) scheme. However, it does imply
that the scheme can only be neutrally stable (i.e., non-dissipative) if it is stable. Here we have reached this
conclusion without using the explicit form of o,(v,0), £ =1,2,3,4.

4. Numerical results

To assess the accuracy of the a(4) scheme, consider the model problem with the PDE

ou Ou
—+—=0 4.1
o oz (4.1)
and the exact solution det
u = ue(z,t) = sin[2n(z — t)] (4.2)
We have
a=2=T=1 (4.3)

where A = wavelength and T = period. Let (i)

def Oue(z,1) def O%ue(z, t) def OPuc(z, )

Uge(Z,t) = o Ugze(T,t) = FI R and  Uggze(z,t) = 5 (4.4)
and (ii) the spatial domain of unit length be divided into K uniform intervals. Thus
ar=1/K, at=wvazr and t=nat (4.5)
where n = number of time steps, and ¢ = total marching time.
It has been shown numerically that the a(4) scheme is stable if
lv| <1/3 (4.6)
On the other hand, (i) the a scheme is stable if
lv| <1 (4.7)
and (ii) a(3) scheme is stable if
lv| <1/2 (4.8)

In Tables 1-4, the numerical errors of several computations using the a(4), a(3), and a schemes are
presented in terms of the parameters

E(K,n,v) & Z (@5, ") (49)
7=0
By (K, n,v) % | 2 KZI[ B (g, )] (4.10)
_7=0
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1

Eao(K,n,v) & 7 D (Use) = Usge(@;, )] (4.11)

=0

and

def 1 K-1

E:L':L':L'(K, n, V) =e s [(uzzz)n - uzzze(mja tn)]2 (412)
K 7
=0

The numerical errors of several simulations with v = 0.1 and ¢t = 9.876 are given in Table 1. For the
a scheme, as the values of K and n become larger, the values of £ and E, are both reduced by a factor
of about 4 as both K and n double their values, i.e., the scheme is clearly 2nd order in accuracy for both
u? and (uz)7. For the a(3) scheme, the values of E, E;, and Ey, are reduced by factors of about 16, 16,
and 4, respectively as both K and n double their values. Thus, for this case, the a(3) scheme is 4th order
in accuracy for both u} and (u;)} while only 2nd order in accuracy for (uzz)7. On the other hand, for the
a(4) scheme, the values of E, E;, E;;, and E ,; generally are not reduced by constant factors as both K
and n double their values. However, by comparing their values before and after both K and n increase by a
factor of 8, one can show that, for the a(4) scheme, the estimated orders of accuracy for u}, (uz)}, (Uzz)7,
and (ugqs)7 are 4.61, 1.83, 1.61, and —0.177, respectively.

In Table 2, the cases considered have v = 0.1 and ¢ = 10.00 = 107". For these cases where ¢ is an integer
multiple of the period T, it is seen that (i) the a scheme is again 2nd order in accuracy for both u} and
(uz)7; and (ii) the a(3) scheme is 4th order in accuracy for u}, (uz)7, and (uzz)?. On the other hand, for
the a(4) scheme, the estimated orders of accuracy for u?, (uz)7, (uzz)}, and (uzzz)} are 4.30, 2.17, 2.25 and
0.164, respectively.

In Table 3, the cases considered have v = 1/3 and ¢ = 9.6. According to Eq. (4.6), v = 1/3 is right at
the stability boundary of the a(4) scheme. For these cases, it is seen that, aside from round-off errors, the
numerical values of u} and (uzs)} generated using the a(4) scheme are all identical to their exact solution
values, respectively. However, one observes that the round-off error for u} grows linearly with n while that
for (uzz)7 shows signs of nonlinear growth.

In Table 4, the cases considered have v = 1/3 and ¢ = 10.00 = 10T, For these cases where (i) the value
of v is right at the stability boundary of the a(4) scheme and (ii) ¢ is an integer multiple of T', aside from
round-off errors, the numerical values of u?, (uz)?, (¥zz)}, and (uzzz)} generated using the a(4) scheme
are all identical to their exact solution values, respectively. However, because of strong growth of round-off
errors, these highly accurate results become unsustainable as n increases.

5. Conclusions and discussions

A thorough and rigorous discussion of a new high order neutrally stable CESE solver of Eq. (1.1) has
been presented. Because this two-level explicit scheme is associated with four independent mesh variables
and four equations per mesh point, it is referred to as the a(4) scheme. As in the case of other similar CESE
neutrally stable solvers, the a(4) scheme enforces conservation laws locally and globally, and it has the basic,
forward marching, and backward marching forms. Assuming v? # 9, these forms are equivalent and satisfy
the STI invariant property defined in Sec. 2.

Based on the concept of STI invariance, a set of algebraic relations (Eqgs. (2.95)—(2.95)) involving the
coefficient matrices @4 (v) and Q_(v) is developed in Sec. 2. As it turns out, these relations can be used to
construct a simple proof for the fact that the a(4) scheme is neutrally stable (i.e., non-dissipative) when it
is stable. Numerically, it has been established that the scheme is stable if the Courant number |v| < 1/3.

It is shown in Sec. 4 that the a(4) scheme can be more accurate than the 4th-order non-dissipative a(3)
scheme, at least for the primary mesh variable u?. However, the a(4) scheme has the disadvantage that its
stability bound is lower than that of the a(3) scheme which is neutrally stable when |v| < 1/2.

The CESE development has been driven by a basic idea that each practical scheme be built from a non-
dissipative core scheme so that the numerical dissipation can be controlled effectively. As such, development
of the a(4) and a(3) schemes provides a foundation for the development of other more practical high order
CESE schemes.
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TABLE 1.—NUMERICAL RESULTS OF THE a(4), a(3), AND a SCHEMES

vy=0.1 t=9.876
K=251n=2469 | K=50,n=4938 | K=100,n=9,876 | K=200,n=19,752
a(®) 0.506x 107 0.741x10°° 0.200x10°° 0.348x10°°
E  a(3) 0.131x107 0.143x107* 0.883x10°° 0.549x 1077
a 0.452 0.115 0.287x107! 0.716x 1072
a(4) 0.595x1072 0.203x1072 0.531x107° 0.132x10°°
E, a(3) 0.445x 107! 0.977x107 0.611x107* 0.382x107°
a 2.90 0.732 0.182 0.454x 10!
£ a(4) 0.191 0.104x10! 0.115x107! 0.674x107°
* a(3) 0.225 0.169 0.406x10! 0.100x10!
E.e a(4) 437 59.9 63.2 63.2
TABLE 2—NUMERICAL RESULTS OF THE a(4), a(3), AND a SCHEMES
vy=0.1 t=10.00
K=25,1n=2500 | K=50,n=5,000 | K=100,~=10,000 | K=200,n=20,000
a(4) 0.410x107* 0.152x107° 0.170x10°° 0.539x 107
E a(3) 0.228x10°° 0.110x107 0.628x107° 0.384x 10~
a 0.469 0.118 0.292x107! 0.727x 1072
a(4) 0.832x1072 0.161x1072 0.383x10°° 0.918x107*
E, a(3) 0.154x107! 0.992x107° 0.623x107* 0.390x107°
a 2.89 0.728 0.182 0.455x107!
£ a(4) 0.146 0.242x107! 0.978x1072 0.137x1072
= a(3) 0.473 0.316x107! 0.199x1072 0.124x10°°
E.e a(4) 61.3 477 452 43.6
TABLE 3—NUMERICAL RESULTS OF THE a(4), a(3), AND a SCHEMES
v=1/3 1=9.6
K=25n=720 | K=50,n=1440 | K=100,2=2,880 | K=200,n=>5,760
a(4) 0.569x107%2 0.104x 10712 0211x10712 0.417x1072
E  a(3) 0.190x107 0.103x107* 0.616x10°° 0.380x1077
a 0.408 0.101 0.251x10! 0.626x1072
a(4) 0.844x 1072 0.238x1072 0.612x107° 0.154x107°
E, a(3) 0.947x1072 0.596x107° 0.373x107* 0.233x107°
a 248 0.624 0.155 0.388x 10!
© a(4) 0.151x1071° 0.577x1071° 0.375x10°° 0.200x10°°
* a(3) 0.672 0.129 0.294x10™ 0.716x 1072
E.e a(4) 56.9 64.3 66.1 66.6
TABLE 4—NUMERICAL RESULTS OF THE a(4), a(3), AND a SCHEMES
v=1/3 t=10.00
K=25,n=750 | K=50,n=1,500 | K=100,7=3,000 | K=200,n=6,000
a(4) 0.595x1071° 0.109x 10712 0.219x10712 0.435x 10712
E  a(3) 0.134x107 0.590x10°° 0.330x10°° 0.200x1077
a 0.424 0.106 0.262x107! 0.653x1072
a(4) 0.750x 10712 0.205x107!! 0.410x10°° 0.198x1072
E, a(3) 0.992x1072 0.627x107° 0.393x107* 0.246x107°
a 2,616 0.655 0.163 0.408x 10!
£ a(4) 0.164x107"° 0.592x1071° 0.380x10°° 0.203x1072
= a(3) 0.320 0.203x107! 0.127x1072 0.794x 107
E,.. a(4) 0.470x10°° 0.456x1077 0.443x107* 0.857x10°°
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Figure 1.—A surface element on the boundary
S(V) of an arbitrary space-time volume V.
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2(a).—The space-time mesh.

(j+1,n+1)

(+1,n-1)
2(b).—SE(j,n).
@i,n) b Ai,n) E (Ln)A (Ln}\
‘ i G H
G H
C(j+1,n—1) B C(j+1,n—1) F%1n-1) F¥ B
2(c).—CE(j,n;1). 2(d).—CE(j,n;2). 2(e).—CE(j,n;3). 2(f).—CE(j,n;4).

Figure 2.—The SEs and CEs.
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