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ABSTRACT

Ground-validation (GV) radar-rain products are often utilized for validation of the

Tropical Rainfall Measuring Mission (TRMM) spaced-based rain estimates, and hence,

quantitative evaluation of the GV radar-rain product error characteristics is vital. This

study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in

an effort to provide such error characteristics. The results show that significant

differences of concurrent radar-gauge rain rates exist at various time scales ranging from

5 min to 1 day, despite lower overall long-term bias. However, the differences between

the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to

radar error only. The error variance separation method is adapted to partition the

variance of radar-gauge differences into the gauge area-point error variance and radar

rain estimation error variance. The results provide relatively reliable quantitative

uncertainty evaluation of TRMM GV radar rain estimates at various times scales, and are

helpful to better understand the differences between measured radar and gauge rain rates.

It is envisaged that this study will contribute to better utilization of GV radar rain

products to validate versatile spaced-based rain estimates from TRMM, as well as the

proposed Global Precipitation Measurement, and other satellites.



1. Introduction

The Tropical Rainfall Measuring Mission (TRMM) is a satellite-based program to

estimate global tropical rainfall (Simpson et al. 1996; Kummerow et al. 1998). A wealth

of data has been obtained since the launch of the TRMM satellite in November 1997.

The accuracy of the satellite-based rain products, however, is affected by discrete

temporal sampling and remote spaceborne rain retrieval algorithms. The TRMM ground

validation (GV) program was established to verify the satellite rain products, which can

be carried out by comparing the TRMM products with ground observations from ground

sensors, such as rain gauges, radars and disdrometers. The GV radar-rain products play a

crucial role in this validation effort. TRMM Standard Product (TSP) 2A-53, an

instantaneous GV radar rain-rate map, is often used as a main tool for the validation

analysis (Adler et al. 2000; Habib and Krajewski 2002; Datta et al. 2003; Wolff et al.

2005). However, TSP 2A-53 has its own quality issues which must be quantified before it

can be used to properly validate the satellite rain estimates. The major obstacle in

evaluation of the quality of the 2A-53 is the lack of “ground truth” reference at the radar

pixel scale (2 km x 2 km). The surface rainfall measurements from rain gauges are

customarily approximated as the “ground truth” to assess and calibrate radar-rain

estimates.

The rain gauge is a simple mechanical device that is deployed on the surface to

directly measure rainwater entering the gauge in discrete quantities. For example, Met

One ®, a commonly used tipping-bucket (TB) rain gauge, measures rainwater impinging

on its 30.5-cm-diameter collection orifice and entering into its 0.254 mm bucket.

Subsequently, the TB gauge gives the surface rainfall amounts in a near-point area of
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0.073 m2 with the sampling resolution of 0.254 mm. The radar, in contrast, does not

directly measure surface rainfall amounts, but measures reflectivity factors aloft at its

resolution cell in the order of 1 to 10 km2. The area-averaged surface rainfall is

subsequently estimated via converting raw reflectivity using any number of reflectivity –

rain-rate (Ze- R) relationships. Even if both gauge near-point measurements and radar

area-averaged rainfall estimates are assumed to be accurate, the large resolution

difference of 7-8 orders of magnitude still obviously causes problematic comparisons

between two sensors. Because gauges lack areal representativeness, the gauge rain

measurements cannot be directly treated as the “ground truth” reference for the area-

averaged rainfall. Therefore, the large radar-gauge discrepancies cannot be treated as

radar-rain estimation error (Zawadzki 1973; Harrold et al. 1974; Krajewski 1975; Kitchen

and Blackall 1992; Ciach and Krajewski 1999; Anagnostou and Krajewski 1999; Habib

and Krajewski 2002; Habib et al. 2004).

For the purpose of decomposing radar–gauge difference variance into the radar-

rain estimation error variance and the gauge representativeness error variance, the general

concept of the statistical error variance separation was proposed by Barnston (1991) and

Kitchen and Blackall (1992). Barnston (1991) estimated the bias of radar and gauge area

average rainfall measurements over relatively large domain sizes in the order of 100 km 2 .

Kitchen and Blackall (1992) investigated the gauge representativeness problem in gauge-

radar comparisons at radar pixel scale. Ciach and Krajewski (1999) fully formulated the

concept as the error variance separation method (EVSM). Following the same concept,

Anagnostou and Krajewski (1999) proposed a similar methodology but applied it in the

logarithmic domain. Habib and Krajewski (2002) applied the ESVM formulated by Ciach



and Krajewski (1999) to the uncertainty analysis of TRMM GV radar-rain maps for

central Florida. Fisher (2007) used the ESVM to establish an upper bound of ground data

uncertainty in the error decomposition of regional-scale monthly precipitation estimates

from TRMM satellite. These studies showed that significant random errors existed

between the rainfall estimates from the radars and gauges and that the errors decreased as

the integration time scale increased.

The objective of this study is to evaluate the TRMM 2A-53 radar-rain product

using rain gauge measurements. The ground rainfall data collected from a gauge network

deployed in Kennedy Space Center (KSC) are compared with the concurrent overlapping

radar-rain estimates. We begin with a discussion of the gauge and radar data in section 2.

Section 3 provides comparisons of gauge and radar rain-rate estimates. Application of the

EVSM to quantify the contributions of gauge and radar error variances to the total radar–

gauge difference variance is provided in section 4. Finally a discussion of the results is

given in section 5.

2. Gauge and radar rain products

This study uses the radar rain product 2A-53 and gauge rain product 2A-56 over

KSC area in the period from January 1 to December 31 2008. Figure 1 shows a map of

the KSC gauge network along with the 2 km x 2 km Cartesian grids of the 2A-53 radar-

rain map. The dots denote locations of the individual gauges with their identification

numbers indicated on the right. As can be seen in Fig. 1, the gauges are approximately

evenly distributed across the study area. The distances between the gauges range from

about 2 to 32 km. The KMLB radar, a Weather Surveillance Radar -1988 Doppler
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(WSR-88D), located at 28.1133 0N latitude and 80.65420W longitude in Melbourne,

Florida, is approximately 50 km south of the center of the KSC gauge network. The

gauges are TB type with bucket size of 0.254 mm, and are connected to an automatic data

collection system. There are 31 active TB gauges regularly reporting rain tips at

sampling resolution of 1 sec.

Data from a given TB gauge are subject to a number of possible error sources

such as inadequate calibration before and after deployment, and mechanical and electrical

problems due to the harsh environment of coastal Florida. In addition, gauge data error

sources could result from the sampling mechanism, wind effects, off-level gauge

placement, funnel surface wetting and evaporation, or animal and human interference,

etc. Obtaining reliable measurements of point-rainfall from gauges poses difficult

challenges (Sieck et al 2007). In this study, unreliable gauge tip records are detected and

removed through careful quality control of the gauge data. These quality-controlled tip

records are then interpolated into 1-min rain rates, known as TSP 2A-56, via a cubic

spline-based algorithm described in Wang et al. 2008. Additional quality control is

performed to filter “bad gauges” on a monthly basis by comparing 2A-56 rain rates with

radar reflectivity data over the locations of rain gauges, as described by Amitai 2000.

Only reliable 2A-56 rain rates from KSC gauges that passed these quality control steps

are used in this study to compare with the rain rates from radar- rain product 2A-53.

The radar-rain product evaluated in this study is TSP 2A-53, an instantaneous

radar rain-rate map in Cartesian coordinates with a 2-km horizontal resolution at the 1.5-

km Constant Altitude Plan Position Indicator (CAPPI) level. The radar rain rates are

generated using reflectivity – rain-rate (Ze- R) relations derived from the Window
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Probability Matching Method (WPMM; Rosenfeld et al. 1994). The WPMM statistically

matches quality-controlled reflectivities extracted from radar volume scans to gauge-

estimated rain rates (2A-56), such that the monthly probability distribution of the radar

rain rates above the gauge is equal to that of the gauge rain rates. The derived 2A-53

instantaneous rain-rate maps are available approximately every 5 minutes corresponding

to the volume scan interval of the KMLB radar (Wolff et al. 2005). Rain accumulations at

5-min or larger time scales are obtained by integrating the 2A-53 maps over the time

difference between consecutive radar scans. If the time difference exceeds 12 minutes,

the 2A-53 maps are integrated forward for 5 minutes.

It should be noted that the total of 214 gauges within 150-km range to the KMLB

radar from three separate networks are used in the WPMM. Besides 31 gauges from the

KSC network, 125 gauges are from the South Florida Water Management District

network (SFL) and 58 gauges are from the St. Johns Water Management District network

(STJ). The percentage of the KSC gauges among total gauges used in the 2A-53

generation is 14.5%. Although the KSC gauge data are not independent to the 2A-53 rain

rates, they can be used in partially dependent algorithm and technique sanity checks for

the long-term radar rain estimation. As the uncertainty of radar rain estimates mainly

results from the radar area-averaged and gauge near-point measurements, dependent

gauges can be also used in the uncertainty evaluation of radar rain estimates (Ciach and

Krajewski 1999).

The gaps in the series of radar scans can cause negative bias in radar rain

integration. During data processing, a gap is defined as the time difference between any

two consecutive scans greater than 12 min. This gap definition is chosen because
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consecutive scans quite often occur 11-12 min apart when the KMLB radar operates in

clear-air mode. Table 1 lists monthly KMLB radar gap statistics and missing rain

percentages due to the gaps in 2008. The missing rain percentages are estimated from the

percentages of gauge rainfall during the radar gaps. The monthly total radar gap length

varies from 208 min to 7144 min, with the largest gap percentage (16%) reported in July

when the KMLB radar experienced an antenna problem. There are a total 416 gaps

comprising a total length of 23,292 minutes during the entire period of 2008, which

accounts for 4.42% of the period. The individual gap length ranges from 13 to 1945 min

with the mean of 55.99 min. The gaps falling in rainy periods result in about 3.49%

underestimation in yearly rainfall accumulation. This percentage reduces to 0.74% if

July is excluded from the calculation. About 35.97% of monthly rain accumulation in

July was missed due to the radar data gaps that were often within the rainy periods. The

radar gaps during dry periods do not result in missing rain such as in February and

December as indicated in Table 1. In general, the radar data gap is not a serious problem

in regard to the overall uncertainty of radar rain estimation. Nevertheless, all radar gaps

are excluded in our comparisons of radar and gauge rainfall, as well as the error variance

analysis.

3. Comparisons of radar and gauge rainfall

a. Overall bias

In order to evaluate the overall radar rainfall error, we define the overall bias as

the ratio of the radar-gauge rainfall difference to gauge rainfall:



N

∑ (Ri − Gi)

bias = i= 1
 N
	 (1)

∑ G i
i= 1

where Gi is the cumulative rainfall from a gauge over a period of a month or year, R i is

the cumulative rainfall from a radar 2 km x 2k m grid where a gauge is located in the

same period, and N is the number of quality-controlled gauges in the KSC network. N

varies from month to month. Only grids containing gauges that passed the quality control

are used in the calculation of Eq. (1). Gauge data during radar data gap periods are not

included in the computation of the cumulative rainfall.

N

Figure 2 shows the cumulative rainfall averaged from all gauges (
1

∑ Gi ) and
N i= 1

N

radar grids ( 1 ∑ Ri ) over the gauges during the 1-year period of 2008. An average KSC
N i= 1

gauge measured 1560.0 mm of rainfall while the KMLB radar estimated 1474.4 mm of

rainfall over the same domain in 2008. The radar overall bias relative to gauges, as

defined in (1), is -5.48%. The correlation coefficient between the daily rainfall from the

radar and gauge is 0.97. Table 2 lists monthly KMLB radar and KSC gauge rainfall, as

well as the radar rainfall bias relative to gauge rainfall. The monthly gauge rainfall ranges

from 15.5 mm in December to 678.4 mm in August. The radar rainfall displays similar

features. Note that gauge data during the radar gaps are excluded from the computation of

the rain accumulation. Consequently, both radar and gauge yearly rain accumulations in

Table 2 and Fig. 2 are underestimated by about 3.49% because of the radar gaps as

suggested in Table 1. It should be mentioned that the KSC gauges were used in the

WPMM, and therefore, the overall bias could be larger if independent gauges were
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available for this analysis. Nevertheless, the overall quantitative agreement between the

KSC gauge and KMLB radar rain rates is good, considering the much larger bias of the

radar rain maps due to radar calibration, estimation of the low-altitude vertical profile of

reflectivity, and the Ze- R relationship (Houze et al. 2004; Wang and Wolff 2009). This

confirms that the overall long-term bias is an insignificant source of uncertainties in the

radar rain maps (Kitchen and Blackall 1992). The overall long-term bias of radar-rain

products can be easily removed by adjusting the radar rain total to the gauge rain total.

This needs to be done prior to the EVSM application.

b. Scatter comparisons

Detailed comparisons between the gauge and radar rain rates can be performed

based on pairs of concurrent radar-gauge observations via scatter plots. Since TSP 2A-53

radar rain maps are instantaneous estimates sampled at about 5-min interval, we integrate

radar rain maps to 6 time scales: 5, 10, 15, 30, 60 min and 1 day, respectively. Similarly,

gauge rain rates are also accumulated to these scales. Scatter plots in Fig. 3 are

constructed using pairs of rain rates from all gauges and their corresponding radar grids at

6 time scales over the period of 2008. The data pairs are plotted only when both radar

and gauge reported rainfall so that data gaps and large amounts of non-rainy periods are

excluded from the comparisons. Both radar and gauge rain rates are plotted in the same

logarithmic scale for all time scales for easy comparisons. The vertical binning of gauge

rain rates can be seen in Fig. 3. This is due to the fact that the TB gauge always records

rain amount in increments of 0.254 mm (Wang et al. 2008). The radar rain rates appear to
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be binned as evident by the horizontal lines, which is due to the precision of 0.1 mm h -1

in the 2A-53.

At shorter time scales of 5-30 min, significant scatter exists at both high and low

rain rates, and the difference between radar and gauge rates can be beyond ±100 mm h- 1 .

The discrepancy is mainly due to different temporal and spatial samplings of the two

sensors. The KMLB radar scans at about 5-min interval over a much larger area; as a

result, it may miss or average out rain peaks. A gauge samples rainfall in a near-point

area relative to the radar pixel. Given the large spatial-temporal variability of subtropical

rainfall, the gauge may record an amount of rainfall significantly different from the pixel-

averaged radar rainfall. The scatter decreases as the time scale increases from 5 min to 1

day. At the 60-min and 1-day scales, the scatter is relatively smaller in comparison with

5-15 min scales. Correspondingly, the correlation coefficient between the gauge and

radar rain rates increases from 0.60 at 5-min scale to 0.93 at 1-day scale.

c. Frequency distribution comparisons

The scatter plots in Fig. 3 provide direct comparisons of GV radar and gauge rain

rates, which are admittedly rather noisy. An alternative method of comparison is to

analyze the frequency distributions of the differences (R-G) of the radar-gauge rain rates

at various time scales (Fig. 4). Each distribution in Fig. 4 is constructed using all rainy

radar-gauge data pairs covering the 1-year study period and is binned at 0.5 mm h -1

intervals. All of these distributions appear relatively symmetrical with respect to their

modes and have shapes of approximate Gaussian distribution with means ranging from -

1.4 to -0.1 mm h-1 and standard deviations from 12.9 to 0.5 mm h -1 . Note that the much
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larger frequency scale is used in plotting the bottom right panel, and ranges of rain-rate

differences are plotted from -40 to 40 mm h-1 for clear exhibition of general distributions.

The radar-gauge rain-rate differences at 5-min scale are distributed with the widest range

from -196.4 to 156.7 mm h-1 . The differences at 1-day scale are distributed at a narrower

range than those at other scales. The range decreases with the increasing time scale from

5 min to 1 day, as indicated by the standard deviation in each panel. The coefficient of

variation, defined as the ratio of the standard deviation to the mean, changes from -9.2 to

-5.0, indicating significant difference between concurrent radar and gauge rain rates,

especially at short time scales. This feature is consistent with the scatter plots in Fig. 3.

Although the mode of each frequency distribution is approximately zero, extreme

differences do exist especially at 5- and 10-min time scales, a predictable result of the

different temporal and spatial samplings of the radar and gauges as discussed earlier.

d. Gauge and radar zero-rainfall percentages

A rain gauge measures rainfall falling into its near-point circular orifice at discrete

time intervals whereas the radar estimates rainfall at a much larger spatial resolution

during its scans. Rain often occurs with intermittences in space and time. A few non-

rainy areas may be embedded in a larger rainy area of a radar grid size; rain stoppages

may exist in a heavy rain event. Hence, it is frequently observed that radar reports rain

activity whereas gauges record zero rainfall. The opposite situation sometimes happens in

short-lived or fast-moved storms due to discrete radar volume scans. The horizontal rain

advection and vertical echo variation from radar observation height to the surface can

also result in the radar missing rain. Figures 5a, b show the percentage of gauge zero-
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rainfall occurrences conditional on radar rainfall existence in the 2 km x 2km radar grid

over the gauge, and the percentage of radar zero-rainfall occurrences when the gauge

inside the radar grid recorded nonzero rainfall. A general feature of Figs. 5a, b is that

both percentages of conditional gauge and radar zero-rainfall occurrences are lower at

larger time scales. At the radar scan frequency or the time scale of 5-min, there is about

44% chance that a single gauge does not record rainfall falling into a 2 km x 2 km area.

This percentage of conditional gauge zero-rainfall occurrence drops slowly from 44% to

36% when the time scale increases from 5-min to 1-day, whereas the percentage of

conditional radar zero-rainfall occurrences drops much faster.

Similar studies about the probability of conditional zero-rainfall occurrences can

be found in Habib and Krajewski (2002) and Villarini et al. (2008) where both analyses

were based on gauges only, and the probability was defined as the percentage of zero-rain

occurrences at one gauge conditional on rain existence at any other gauges within a given

area. Compared to our analysis, Habib and Krajewski (2002) reported a relatively

conservative result whereas Villarini et al. (2008) observed a higher probability. The

differences are mainly due to different gauge densities, grid sizes and rainfall regimes in

these three studies.

Analogous to the percentage of conditional zero-rain occurrences, the percentage

of gauge missing-rainfall amount can be approximated as the ratio of radar rainfall

conditional on gauge zero-rainfall in the radar grid over the gauge to the total radar

rainfall, and the percentage of radar missing-rainfall amount can be defined as the ratio of

gauge-rainfall conditional on radar zero-rainfall to the total gauge rainfall. The

percentage of gauge missing-rainfall is about 30% at 5-min scale, and drops to about 25%
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at 1-day scale (Fig. 5c). In comparison with the gauge missing-rainfall, the radar missing-

rainfall is in much smaller percentages (Fig. 5d). In general, these percentages in Figs.

5a-d indicate the importance and difficulty of radar rainfall evaluation using gauge

rainfall measurements.

4. Error variance separation method

a. Decomposition of radar-gauge difference variance

From the analysis in section 3, significant differences of concurrent radar-gauge

rain rates exist mainly because the KMLB radar and KSC gauges sample extremely

variable rainfall at different spatial and temporal resolutions. Given the huge resolution

difference of 7-8 orders of magnitude in area, poor direct comparisons of radar and gauge

rain rates can be expected. Thus it is fundamentally difficult to directly use gauge point-

measurements as the “ground truth” for the radar area-averaged rainfall estimates. Many

researchers have realized that the gauge-radar difference cannot be treated as radar-

rainfall estimation error (e.g., Zawadzki 1973; Krajewski 1987; Kitchen and Blackall

1992; Habib and Krajewski 2002). A systematic statistical approach was developed by

Ciach and Krajewski (1999) to filter out the uncertainty of gauge measurements that

resulted from lack of area representativeness. The basic idea of the EVSM is to separate

the radar-gauge difference variance into two terms: gauge representativeness error

variance and radar rainfall estimation error variance.

In a given integration time interval, similar to Ciach and Krajewski (1999) and

Habib and Krajewski (2002), the variance of radar-gauge rain difference can be described

as follows:
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var(Rr − Rg ) = var[(Rr − Rt ) − (Rg − Rt)]	

(2)
= var(Rr − Rt ) − 2 cov[(Rr − Rt ), (Rg − Rt )] + var(Rg − R t ).

Here Rr is the 2A-53 rain rate over a given radar grid; Rg is the 2A-56 rain rate from a

gauge located in the radar grid; and Rt is the unknown true area-averaged rain rate over

the same grid. For an integration time interval T and a radar grid domain A, Rt is defined

as

Rt = T ∫o[[ A ∫∫ R(x, y, t)dxdy ]dt,	 (3)
A

where R(x, y, t) is the unknown true instantaneous rain rate at a given time t and a given

point with Cartesian coordinates (x, y) in the continuous radar grid domain A. The terms

var(Rr-Rt) and var(Rg -Rt) in Eq. (2) are the variance of radar-rain estimation error and

variance of gauge representativeness error, with respect to the true area-averaged rain rate

Rt . If the radar and gauge errors are assumed to be uncorrelated (Ciach and Krajewski

1999), the covariance term cov(Rr-Rt, Rg-Rt) becomes 0, and Eq. (2) can be simplified as

var(Rr − Rg ) = var(Rr − Rt ) + var(Rg − R t ).	 (4)

Equation (4) means that the radar-gauge differences are attributed by not only radar

estimation error but also gauge representativeness error. By reforming (4), the variance

of radar-rain estimation error can be written as

var(Rr − Rt ) = var(R r − Rg ) − var(Rg − R t ).	 (5)

Based on Eq. (5), we can assess the variance of radar-rain estimation error by subtracting

the variance of gauge representativeness error from the variance of radar-gauge

differences. The variance of radar-gauge differences in (5) can be easily computed from n

pairs of gauge and radar rain rates using following formula:
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1n
var(Rr − Rg ) = — ∑ [Rr (i) − Rg (i)]2.(6)

n i= 1

Equation (6) is derived after the radar long-term bias is removed, which can be carried

out by adjusting radar-rain integration to the gauge rain accumulation over the entire data

period. After removing the radar long-term bias and assuming that the long-term gauge

accumulation is free of any errors, the true area-averaged mean rain rate m is the same as

the gauge or radar mean rain rate:

	

1 n	 1 n	 1 n

	

m = _∑ Rr (i) =
n
∑Rg (i) =

n
∑R t (i).	 (7)

i= 1 i= 1 i= 1

The second term var(Rg-Rt) at right hand side of Eq.(5), often referred to as the area-

point variance, needs to be carefully addressed.

Assuming second order homogeneity of rainfall within the domain A, and

following Ciach and Krajewski (1999), the area-point variance can be expressed in terms

of the correlation function:

var(Rg − R t ) = σ g
2 {1 − 2

A ∫∫ r(x ,y, xg ,yg )dxdy + 1
A 2 ∫∫ [ ∫∫ r(x ,y)dxdy ]dxdy } ,(8)

	

A	 A A

where σg is the variance of gauge rain rates, r is the spatial correlation function, x and y

are the same as in Eq. (3), xg and yg denotes the gauge location in the radar grid.

According to (8), estimation of the area-point variance requires a detailed rainfall

correction structure at small scales.

b. Correlation structure

This section provides the analysis of small-scale correlation structure for the

purpose of estimating the area-point variance using Eq. (8). The correlation coefficient is

calculated for each pair of time series of gauge rain rates at a given time scale using
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standard Pearson product-moment formula. Figure 6 displays the scatter of correlation

coefficients versus distances among gauges at accumulation time scales ranging from 1

min through 1 day. Each point represents a correlation coefficient for a pair of gauges

separated by a certain distance. As expected, Fig. 6 displays a clear feature that the

overall correlation level increases with the time scale, and decreases with the gauge

separation distance.

Although the correlation coefficient is commonly used to characterize the

complicated rainfall spatial structure, accuracy and reliability associated with its

estimation are not completely resolved (Stedinger 1981; Shimizu 1993; Lai et al. 1999;

Ciach and Krajewski 2006). The correlation using traditional Pearson formula can be

overestimated in some cases for which rain rates follow non-normal distributions

(Kowalski 1972). Stedinger (1981) showed that unbiased correlations could be estimated

using logarithm-transformed data. Shimizu (1993) and Habib et al. (2001 a) further

studied this issue, and proposed similar transformation-based procedures to better

estimate the correlations. However, Ciach and Krajewski (2006) and Villarini et al.

(2008) investigated the distribution of rain rates, and found that the transformation-based

procedure proposed by Habib et al. (2001 a) was not suitable for their studies. We

performed the logarithmical transformation to the radar and gauge data, and then

estimated the correlation coefficient using transformed data. The result shows the

correlation slightly increases after the transformation. In comparison with the

transformation-based estimation, we believe the traditional Pearson formula does not

overestimate the true correlation in this study. Therefore, we directly use the traditional

Pearson formula in the correlation analysis.
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The following two-parameter exponential model with the so-called “nugget”

effect is chosen to approximate the spatial correlation function r over separation distance

d between two gauges:

r(d) = r0 exp (− d ) .	 (9)
0

In Eq. (9), parameter r0 is the immediate correlation jump or nugget according to the

geostatistical literature (Cressie 1993), and (1-r0) is called the local decorrelation that

represents the field correlation drop at small distances. The decorrelation can be caused

by the small-scale variability of rainfall or random errors. Parameter d0 is the correlation

distance that characterizes the correlation decay. The nugget effect model is often applied

in statistical correlation to analyze small-scale variability (Ciach and Krajewski 1999,

2006; Habib and Krajewski 2002; Krajewski et al. 2003).

Different procedures can be considered to estimate parameters r0 and d0. Ciach

and Krajewski (1999) adopted a simple best-fit to the correlation structure that is

presented by Krajewski and Duffy (1988) in a simulation study. A much larger

correlation distance d0 relative to the radar grid size was obtained, thus the exponential

part in Eq. (9) was close to 1 and the correlation structure was dominated by the

correlation jump r0 . Based on the assumption of the second order homogeneity, r0 was

estimated using the method of moments. However, this procedure over-simplified the

correlation function because of lack of dense gauges in their study; as a result, the area-

point variance was overestimated.

Another procedure often applied in the least squares curve-fitting problem, such

as estimating parameters r0 and d0 in Eq. (9), is the Levenberg-Marquaedt algorithm

(LMA; Press et al. 1988). The LMA is an iterative technique that optimizes the
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parameters so that the sum of the squares of the residual errors becomes minimal. Habib

and Krajewski (2002) used the LMA to obtain function parameters with reasonable

results. In some cases, however, the LMA is very sensitive to initial guess of the

parameters, and converges only if the initial guess is already somewhat close to the final

solution. In our case, the LMA fails to converge in fitting Eq. (9) although numerous

initial guesses were tried.

The procedure applied in this study is the linear least squares method. The curve-

fitting problem in Eq. (9) can be linearized if we take a logarithm of both sides of Eq. (9).

Thus, the parameters r0 and d0 in Eq. (9) can be estimated by the linear least squares

method from all 465 pairs of r and d among 31 KSC gauges for each time scale. The

fitted function is presented in the inserted text in each panel of Fig. 6. A general feature

of the correlation function shown in Fig. 6 is that the correlation and correlation distance

increase with the integration time scale. At 1-day scale, the parameter d0 reaches a rather

large value of 65.69 km, thus the exponential part in Eq. (9) is close to 1, and the

correlation structure is close to linear. The parameter r0 represents correlation coefficient

at zero-separation distance. The value of r0 is less than 1 in all panels of Fig. 6, which

could be attributed to the small-scale rainfall variability and gauge measurement errors.

When the integration time scale increases to 30 min or longer, where gauge-sampling

errors are negligible (Wang et al 2008; Habib et al. 2001b), r0 reaches a value of 0.924-

0.997, which represents the natural variability at very small scales. At the separation

distance of 2 km, the correlation coefficient estimated from Eq. (9) is 0.588, 0.648, 0.700,

0.811, 0.899 and 0.950 for the time scales of 5, 10, 15, 30, 60 min and 1 day,

respectively. This coefficient decreases to 0.083, 0.095, 0.109, 0.131, 0.213 and 0.620 as
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the separation distance increases to 30 km. The rapid drop of the correlation level at

relatively short distance is consistent with the fact that the short-lived and localized

rainfall systems often occur in the KSC area.

c. EVSM implementation

The estimation of parameters r0 and d0 in Eq. (9) is crucial in deriving the

correlation structure at small scales. The area-point variance in Eq. (8) can be estimated

by using the derived correlation structure. In order to do so, the gauge separation distance

in (9) needs to be expressed as

d= (x1 − x2 ) 2 +(y 1 − y2)2	 (10)

in the Cartesian coordinate system, where (x1, y1) and (x2, y2) are two gauge positions.

The distance between any two given points can be similarly expressed. Applying this

expression into (9) and then substituting (9) into (8), (8) can be analytically integrated,

and thus var(Rg -Rt) can be computed. Clearly, the area-point variance var( Rg-Rt) is only

dependent on the relative gauge location inside the radar grid.

As discussed earlier, the variance of radar-gauge difference var( Rr-Rg) can be

estimated using (6). Once var(Rr-Rg) and var(Rg-Rt) are obtained, the radar error variance

var(Rr-Rt) can be easily determined as the difference between these two variances

according to (5). Thus, the entire EVSM implementation is completed.

d. EVSM results

Figure 7 displays the results of various statistics used in the error separation
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analysis in the form of boxplots at time scales from 5-min to 1-day. The boxplot presents

a quick sketch of the distribution of the underlying data at 31 gauges. The inter-quartile

range extending from the lower quartile (25th) to the upper quartile (75th) is plotted as

the black box, and the median is denoted as white bar inside the box in Fig. 7. The

vertical line (“whisker”) extends from both ends of the box to the maximum and

minimum. Figures 7a-c represent the normalized standard errors of radar, gauge rain

rates and radar-gauge rain-rate differences with respect to the true rain rates. These

normalized standard errors are defined as the square roots of the variances from Eqs. (5),

(8) and (6), divided by the gauge mean rain rate, respectively. The normalization makes

the standard errors with different magnitudes dimensionless, and thus comparisons

among different time scales meaningful. Standard deviations of gauge and radar rain rates

are also normalized by the same gauge mean. Normalized standard deviations of radar

(Fig. 7d) and gauge (Fig. 7e) rain rates do not greatly fluctuate with time scales.

However, all 3 normalized standard errors regularly drop with the time scale, and the

gauge error (Fig.7b) filters out faster than the radar error (Fig. 7a) via time averaging.

The standard error of radar-gauge rain rate differences (Fig. 7c) is significantly greater

than the radar error (Fig. 7a). While the standard error of radar-gauge rainfall differences

(Fig. 7c) decreases with the time scale, the correlation coefficient (Fig. 7f) between radar

and gauge rain rates increases. At 1-day scale, the median correlation coefficient reaches

about 0.93. The correlation at this level seems high enough so that the difference between

radar and gauge rain rates should be fairly small. However, Fig. 7c shows that the

normalized standard error of radar-gauge rain-rate differences is still as high as 71% at

the 1-day scale. This demonstrates that the high correlation does not guarantee the minor
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difference between two random variables such as rain rates from the radar and gauge, and

only considering the correlation can be misleading sometimes.

One observation that can be extracted from Fig.7a is that the median error of radar

rain rate estimation is about 100% at 5-min scale and it drops to about 75% at the scales

of 15-60 min. Even at 1-day scale, the error stays at level of about 60%. This exhibits

that large improvements of the radar-rain product are still possible, which could be done

by rigorous data quality control, algorithm refinement and utilization of other concurrent

observations such as rain measurements from disdrometers, vertical profilers, etc.

In order to better understand the error variances separated by the EVSM, we

present Fig. 8 in the form of ratios of error variances. Figures 8a depicts the ratio of radar

error variance (Eq. (5)) with respect to the overall radar-gauge difference variance (Eq.

(6)) as function of the time scale. The ratio of the gauge error variance (Eq. (8)) to radar-

gauge difference variance (Eq. (6)) is displayed in Fig. 8b. Figure 8c is for the ratio of

the radar to gauge error variance. The upper whiskers are truncated at 60-min and 1-day

scales in Fig. 8c. The extreme whiskers are due to small error variances at several gauges,

and are not considered to be representative. At short time scales of 5-30 min, the gauge

representativeness error, expressed as the median variance ratio, contributes about 40-

50% to the radar-gauge differences (Fig.8 b). When the time scale increases beyond 60

min, the gauge error (Fig. 7b) decreases much faster than the radar errors (Fig. 7a) so that

the radar error reaches 3 times as large as the gauge error (Fig. 8c). Notice that the ratio

in Fig. 8b remains at approximately same level of 25% from 60-min to 1-day scales,

which suggests that the area-point error still contributes an important part of the radar-

gauge differences. This may imply that the time averaging cannot effectively remove
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small-scale rain field variability.

A variety of previous relevant studies have been carried out to quantify the

contribution of the gauge representativeness error to the total radar-gauge differences.

Kitchen and Blackall (1992) estimated that gauge representativeness error were about 50-

80% for instantaneous and hourly rainfall at the grid size of 3km x3 km. Anagnostou and

Krajewski (1999) showed that the gauge rainfall uncertainty contributed up to 60% of the

variance observed in radar-gauge differences for hourly rainfall at 2-4 km grid resolution.

However, those two analyses were conducted after logarithmic transformations of ratios

of radar-gauge pairs, and then the uncertainty levels equivalent to results without

logarithmic transformation were approximately estimated. Thus, caution must be taken in

when comparing their results with the results of this study.

Ciach and Krajewski (1999) reported the ratio of gauge error variance to the

radar-gauge difference variance was in the order of 55-70% at 5-30 min scales. This ratio

is relatively larger than our result (40-50%). As discussed in section 4b, their ratio was

overestimated, which resulted from the over-simplified correlation function because of

the lack of gauge measurements at the scale of radar grid in their study. When the time

scale increases to 1-day, the ratio of gauge error variance remains about 25% for both

studies. At this scale, the correlation distance d0 in Eq. (9) is as large as 65.7 km (Fig. 6),

thus the correlation structure is dominated by the correlation jump r0. The approximation

in Ciach and Krajewski (1999) could be applicable at 1-day scale in our study, and both

results are consequently consistent.
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5. Concluding remarks

TRMM GV radar rain rates are spatiotemporally matched and inter-compared

with the quality-controlled gauge rain rates over the KSC area for the period of 2008. It

is found that the overall bias of radar rain estimates relative to gauge measurements over

the 1-year period is about -5.48%. However, significant differences of concurrent radar-

gauge rain rates exist at various time scales from 5 min to 1 day, which is mainly due to

different spatial and temporal samplings between radar and gauge observations. The

KMLB radar instantaneously samples rainfall at scan intervals of about 5 minutes with

range resolutions of 0.25 km and variable vertical resolutions. The KSC gauges measure

amounts of accumulative rainwater falling into their near-point orifices in increments of

0.254 mm. Rain rate can often change by a factor of 10 over distances of 2 km or during

time intervals of several minutes (Joss and Waldvogel 1990). Therefore, the gauge

measurements cannot be representative of true rain rates in the entire area beneath the

radar-sampled volume. Similarly, instantaneous radar observations in any given sampling

volume may not be representative of rain intensities during the intervals between volume-

scans. Additionally, rain gauges may suffer systematic, mechanical and electrical

problems (Wang et al. 2008), whereas the radar can be subjected to hardware calibration

and stability issues, nonuniform beam-filling and attenuation effects (Wang and Wolff

2009). Moreover, algorithm-caused rain estimation biases could be introduced by the

cubic spline method employed in the gauge rain interpolation and the Ze- R relationships

used in the radar rain estimation. All these factors contribute to differences in the

comparisons of radar-gauge rain rates.
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After the overall bias is removed, the radar-gauge difference variance is separated

into the gauge area-point error variance and radar-rain estimation error variance. The

area-point error in rain gauge rainfall, expressed as median variance ratio, contributes

about 40-50% of the variance in radar-gauge differences at 5-30 min scales, and remains

about 25% at 1-day scale. The adequately dense arrangement of rain gauges under the

entire radar umbrella would be expected to improve gauge area representativeness. There

is also plenty of room for improvement of the radar-rain estimation by rigorous data

quality control, algorithm refinement and utilization of other concurrent information such

as rain measurements from disdrometers, vertical profilers, etc.

This study is conducted for providing the uncertainty evaluation of radar rain-rate

estimates as a TRMM GV effort. The results are helpful to better utilize GV radar-rain

products to validate versatile spaced-based rain estimates from TRMM, as well as the

proposed Global Precipitation Measurement, and other satellites.
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List of Figures

FIG. 1. Aerial map of KSC gauge network along with 2 km x 2 km Cartesian grids of TSP

2A-53 radar-rain map. The dots denote locations of the individual gauges with their

identification numbers indicated on the right. The grids not containing gauges are not

used in the analysis. The KMLB radar is about 50 km south of the center of the KSC

gauge network.

FIG. 2. Cumulative rainfall averaged from all gauges and radar grids over the gauges,

respectively, during the 1-year period of 2008.

FIG. 3. Scatter plots of radar and gauge rain rates for time scales of 5-, 10-, 15-, 30-, 60-

min and 1-day. Both radar and gauge rain rates are plotted in the same logarithmic scale

for all time scales. The correlation coefficient is shown at the top left of each panel.

FIG. 4. Frequency distributions of radar-gauge rain-rate differences for time scales of 5-,

10-, 15-, 30-, 60-min and 1-day. Each distribution is constructed using all rainy radar-

gauge data pairs covering the 1-year period of 2008 and is binned at 0.5 mm h -1 intervals.

The mean and standard deviation of radar-gauge rain-rate differences are shown in each

panel.

FIG. 5. (a) Percentage of gauge zero-rainfall occurrences conditional on radar rainfall

existence in the 2 km X 2 km radar grid over the gauge. (b) Percentage of radar zero-
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rainfall occurrences in the 2 km X 2 km radar grid conditional on rainfall existence at the

gauge inside the radar grid. (c) Percentage of gauge missing-rainfall. (d) Percentage of

radar missing-rainfall.

FIG. 6. Scatter plots of spatial correlation coefficients as function of gauge separation

distances estimated from pairs of gauge rain accumulations at time scales of 5-, 10-, 15-,

30-, 60-min and 1-day. The exponential fits for the estimated coefficients are also

presented (solid line).

FIG. 7. Boxplots of various statistics used in the error separation analysis for 31 gauges at

5, 10, 15, 30, 60-min and 1-day scales. The inter-quartile range extending from the lower

quartile (25th) to the upper quartile (75th) is plotted as the black box, and the median is

denoted as white bar inside the box. The vertical line represents whiskers extend from

both ends of the box to the maximum and minimum. (a) Normalized standard errors of

radar rain rates. (b) Normalized standard errors of gauge rain rates. (c) Normalized

standard errors of radar-gauge rain-rate differences. (d) Normalized standard deviations

of radar rain rates. (e) Normalized standard deviations of gauge rain rates. (f) Correlation

coefficients between radar and gauge rain rates. The normalized standard error or

deviation is defined as the square root of the variance divided by the gauge mean rain

rate.

FIG. 8. Boxplots of error variance ratios for 31 gauges at 5, 10, 15, 30, 60-min and 1-day

scales. (a) The ratio of radar error variance to radar-gauge difference variance. (b) The
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ratio of gauge error variance to radar-gauge difference variance. (c) The ratio of radar

error variance to gauge error variance.
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TABLE 1. Monthly KMLB radar gap statistics and missing rain percentages due to the

gaps in 2008. The missing rain percentages are estimated from the percentages of gauge

rainfall during the radar gaps.

Month Number of gaps
Gap length

(min)
Gap percentage

(%)
Missing rain

(%)
Jan 13 794 1.78 0.11
Feb 8 208 0.50 0.00
Mar 164 3504 7.85 1.51
Apr 138 3289 7.61 0.36
May 13 1401 3.14 0.05
Jun 6 509 1.18 1.12
Jul 27 7144 16.00 35.97

Aug 12 537 1.20 1.24
Sep 9 3683 8.53 0.76
Oct 11 1030 2.31 0.02
Nov 6 788 1.82 0.31
Dec 9 405 0.91 0.00
Total 416 23292 4.42 3.49
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TABLE 2. Monthly KMLB radar and KSC gauge rainfall, and the radar rainfall bias

relative to gauge rainfall in 2008.

Month Radar (mm) Gauge (mm) Bias (%)
Jan 108.2 135.9 -20.33
Feb 52.7 48.5 8.78
Mar 30.9 31.0 -0.51
Apr 69.9 72.7 -3.92
May 20.3 29.4 -30.92
Jun 98.3 134.6 -26.97
Jul 58.0 58.9 -1.60

Aug 589.7 678.4 -13.07
Sep 204.2 162.7 25.45
Oct 175.8 138.0 27.47
Nov 53.2 54.3 -2.10
Dec 13.2 15.5 -14.64
Total 1474.4 1560.0 -5.48
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FIG. 1. Aerial map of KSC gauge network along with 2 km x 2 km Cartesian grids of TSP
2A-53 radar-rain map. The dots denote locations of the individual gauges with their
identification numbers indicated on the right. The grids not containing gauges are not
used in the analysis. The KMLB radar is about 50 km south of the center of the KSC
gauge network.
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FIG. 2. Cumulative rainfall averaged from all gauges and radar grids over the gauges,
respectively, during the 1-year period of 2008.
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FIG. 3. Scatter plots of radar and gauge rain rates for time scales of 5-, 10-, 15-, 30-, 60-
min and 1-day. Both radar and gauge rain rates are plotted in the same logarithmic scale
for all time scales. The correlation coefficient is shown at the top left of each panel.
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FIG. 4. Frequency distributions of radar-gauge rain-rate differences for time scales of 5-,
10-, 15-, 30-, 60-min and 1-day. Each distribution is constructed using all rainy radar-
gauge data pairs covering the 1-year period of 2008 and is binned at 0.5 mm h -1 intervals.
The mean and standard deviation of radar-gauge rain-rate differences are shown in each
panel.
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FIG. 5. (a) Percentage of gauge zero-rainfall occurrences conditional on radar rainfall
existence in the 2 km x 2 km radar grid over the gauge. (b) Percentage of radar zero-
rainfall occurrences in the 2 km x 2 km radar grid conditional on rainfall existence at the
gauge inside the radar grid. (c) Percentage of gauge missing-rainfall. (d) Percentage of
radar missing-rainfall.
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FIG. 6. Scatter plots of spatial correlation coefficients as function of gauge separation
distances estimated from pairs of gauge rain accumulations at time scales of 5-, 10-, 15-,
30-, 60-min and 1-day. The exponential fits for the estimated coefficients are also
presented (solid line).
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FIG. 7. Boxplots of various statistics used in the error separation analysis for 31 gauges at
5, 10, 15, 30, 60-min and 1-day scales. The interquartile range extending from the lower
quartile (25th) to the upper quartile (75th) is plotted as the black box, and the median is
denoted as white bar inside the box. The vertical line represents whiskers extend from
both ends of the box to the maximum and minimum. (a) Normalized standard errors of
radar rain rates. (b) Normalized standard errors of gauge rain rates. (c) Normalized
standard errors of radar-gauge rain-rate differences. (d) Normalized standard deviations
of radar rain rates. (e) Normalized standard deviations of gauge rain rates. (f) Correlation
coefficients between radar and gauge rain rates. The normalized standard error or
deviation is defined as the square root of the variance divided by the gauge mean rain
rate.
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FIG. 8. Boxplots of error variance ratios for 31 gauges at 5, 10, 15, 30, 60-min and 1-day
scales. (a) The ratio of radar error variance to radar-gauge difference variance. (b) The
ratio of gauge error variance to radar-gauge difference variance. (c) The ratio of radar
error variance to gauge error variance.
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Popular Summary

The Tropical Rainfall Measuring Mission (TRMM) is a satellite-based program to

estimate global tropical rainfall. A wealth of data has been obtained since the launch of

the TRMM satellite in November 1997. The accuracy of the satellite-based rain products,

however, is affected by discrete temporal sampling and remote spaceborne rain retrieval

algorithms. The TRMM ground validation (GV) program was established to verify the

satellite rain products, which can be carried out by comparing the TRMM products with

ground observations from ground sensors, such as rain gauges, radars and disdrometers.

The GV radar-rain products play a crucial role in this validation effort. TRMM Standard

Product 2A-53, an instantaneous GV radar rain-rate map, is often used as a main tool for

the validation analysis. However, the radar rain-rate map has its own quality issues that

must be quantified before it can be used to properly validate the satellite rain estimates.

The major obstacle in evaluation of the quality of the radar rain-rate map is the lack of

“ground truth” reference at the radar pixel scale (2 km x 2 km). The surface rainfall

measurements from rain gauges are customarily approximated as the “ground truth” to



assess and calibrate radar-rain estimates. The gauge gives the surface rainfall amounts in

a near-point area as rainwater impinges on its 30.5-cm (or so) diameter collection orifice.

The radar, in contrast, does not directly measure surface rainfall amounts, but measures

reflectivity factors aloft at its resolution cell in the order of 1 to 10 km 2. The area-

averaged surface rainfall is subsequently estimated via converting raw reflectivity using

any number of reflectivity – rain-rate (Ze- R) relationships. Even if both gauge near-point

measurements and radar area-averaged rainfall estimates are assumed to be accurate, the

large resolution difference of 7-8 orders of magnitude still obviously causes problematic

comparisons between two sensors. Because gauges lack areal representativeness, the

gauge rain measurements cannot be directly treated as the “ground truth” reference for

the area-averaged rainfall. Therefore, the large radar-gauge discrepancies cannot be

treated as radar-rain estimation error.

This study uses quality-controlled gauge data to compare with TRMM GV radar

rain rates in an effort to provide quantitative evaluation of the GV radar-rain product

error characteristics. The error variance separation method is adapted to partition the

radar–gauge difference variance into the radar-rain estimation error variance and the

gauge representativeness error variance. The results provide relatively reliable

quantitative uncertainty evaluation of TRMM GV radar rain estimates at various times

scales ranging from 5 min to 1 day, and are helpful to better understand the differences

between measured radar and gauge rain rates. It is envisaged that this study will

contribute to better utilization of GV radar rain products to validate versatile spaced-

based rain estimates from TRMM, as well as the proposed Global Precipitation

Measurement, and other satellites.


