A stainless-steel mandrel for slumping glass x-ray mirrors

Mikhail V. Gubarev1, Stephen L. O’Dell1, William D. Jones1, Thomas J. Kester1, Charles W. Griffith2, William W. Zhang2, Timo T. Saha2, Kai-Wing Chan2

1 NASA Marshall Space Flight Center (MSFC), Huntsville, AL 35812
2 NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771

ABSTRACT

We have fabricated a precision full-cylinder stainless-steel mandrel at Marshall Space Flight Center. The mandrel is figured for a 30-cm-diameter primary (paraboloid) mirror of an 840-cm focal-length Wolter-1 telescope. We have developed this mandrel for experiments in slumping—thermal forming at about 600°C—of glass mirror segments at Goddard Space Flight Center, in support of NASA’s participation in the International X-ray Observatory (IXO). Precision turning of stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels. We report on the fabrication, metrology, and performance of this first mandrel; then we discuss plans and goals for stainless-steel mandrel technology.

INTERNATIONAL X-RAY OBSERVATORY

The International X-ray Observatory (IXO), next-generation astronomical X-ray Mission, requires extremely large collecting area (3 square meters of effective area at 1 keV and 1 square meter at 6 keV) combined with good angular resolution (5 arc-sec half power diameter) in order to achieve unprecedented sensitivities for the study of the high-z Universe and for high-precision spectroscopy of bright X-ray sources. Slumping glass technology is one of the fabrication techniques considered for producing the x-ray mirror segments for a single large x-ray mirror assembly. This mirror fabrication approach requires massive number of the forming mandrels. Stainless-steel mandrels may offer a low-cost alternative to conventional figuring of fused-silica or other glassy forming mandrels.

Stainless Steel Mandrel

Goal:
Find commercially available material applicable for manufacturing of the forming mandrels to significantly reduce cost of the glass replication process

Mandrel description
- 8400 mm focal length
- 155.080 mm intersection plane radius
- 304.8 mm overall length (12.000 inches)
- 200 mm optical length (50 mm zone at each end for polishing overstroke)
Performance prediction requirement – 15 arc seconds (HPD)

Material: 304L Stainless Steel
- 18-20% Cr, 8-12% Ni
- 0.03% C, 1% Mn, 1% Si, 0.045% P, 0.03% S, 0.1% other

Mandrel Fabrication

- Rough machining – Heat Treatment – Precise machining – Initial Precision turning
- Axial Figure Metrology – Final Precision Turning – Polishing – Final Metrology
- Design of the support structures for machining, turning and polishing - Precision fit.
- Thickness of the mandrel was set to 1 cm based on thermal considerations.

Surface Passivation

- Surface of SS coupon degraded during thermal cycling
- A surface passivation study has been performed. Two techniques have been tested: the electro-chemical passivation and nitric acid passivation.

Results:
Nitric acid passivated stainless steel coupon (left photo) – the surface roughness degraded from 46 to 168 A after the heat treatment;
Electrochemically passivated stainless steel coupon (right photo) – the surface roughness degraded from 23 to 1068 A after the heat treatment.

Future Plans

- Thermally cycle the mandrel. Perform full metrology on the heat treated mandrel to characterize possible changes in mandrels figure, circularity and surface roughness;
- Resume fabrication process study with coupons in order to define an ideal stainless steel for mandrel production;
- Produce hyperbolic mandrel to match the primary mandrel.