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Unmanned aerial vehicle systems are currently in limited use for public service
missions worldwide. Development of civil unmanned technology in the United
States currently lags behind military unmanned technology development in part
because of unresolved regulatory and technological issues. Civil unmanned aerial
vehicle systems have potential to augment disaster relief and emergency response
efforts. Optimal design of aerial systems for such applications will lead to
unmanned vehicles which provide maximum potentiality for relief and emergency
response while accounting for public safety concerns and regulatory requirements.
A case study is presented that demonstrates application of a civil unmanned system
to a disaster relief mission with the intent on saving lives. The concept utilizes
unmanned aircraft to obtain advanced warning and damage assessments for
tornados and severe thunderstorms. Overview of a tornado watch mission
architecture as well as commentary on risk, cost, need for, and design tradeoffs for
unmanned aerial systems are provided.

I. Introduction
Modern disaster relief and emergency response (DRER) services in the United States are provided

by networks of law enforcement, fire protection, military, and other special service personnel. The concept
of implementing unmanned aerial vehicle (UAV) systems to assist DRER efforts has been previously
proposed 1 . This paper will expand upon these ideas into the use of civil-sector UAV systems to aid DRER
efforts. Emphasis will be placed on analysis of technology requirements and system characteristics. A
case study on a notional application of UAV systems in “tornado alley” -- storm and tornado tracking,
warning, and relief response -- will be presented as a demonstration of analysis techniques.

A. Civil UAV Status
Unmanned aerial vehicles (UAV) are currently used in a variety of civil applications. The military

market currently dominates the unmanned systems sector largely due to significantly fewer operational
constraints. Strict airspace restrictions, underdeveloped technology, and lack of funding and support are
the primary barriers to the growth of the civil UAV market in the United States. Limited examples of
market barrier breakthroughs and growth exist, however as a whole the civil UAV community has been
slow to capitalize on these early promising endeavors.

B. Civil UAV Missions
Civil uses for UAV systems can be categorized into four general categories 21 : Land Management,

Earth Science, Homeland Security, and Commercial. Land management systems are related to the
observation and exploration of land for the purpose of tracking, monitoring, mapping, surveying, or other
related tasks. Such missions include forest fire tracking, crop monitoring and spraying, and wildlife herd
tracking. Earth science includes all systems designed to gather and interpret data intended for scientific
research. Weather tracking, remote aerial surveying, and habitat monitoring are examples of earth science
missions. Homeland security systems assist law enforcement, monitor borders, and provide emergency
response services. Commercial systems are those used by corporations or for private ventures. This is a
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broad category and examples of missions range from aerial video and photography to pipeline and
transmission line monitoring to wireless communications.

It could be argued that a fifth category exists which encompasses public service missions.
Disaster relief and emergency response missions, which are in actuality split between other categories,
would fall into this public service category. Public service systems would include those that interface with
public civil services, such as highway patrol, traffic routing, and utilities monitoring.

C. Operational Civil UAV Platforms
Several operational civil UAV platforms currently exist. Many have been adapted to civil use

though originally designed for military use (e.g. Predator). Other platforms were initially designed for
specific civil uses and have later been converted to more general use (e.g. RMAX). Platforms compatible
with unmanned aerial DRER missions currently exist, however new or modified/enhanced platforms will
likely need to be developed. Below are descriptions of several UAV platforms currently operated by
NASA for civil missions.

Aerosonde is a currently operational civil UAV platform originally designed in Australia for
meteorological reconnaissance and environmental monitoring. NASA Goddard Space Flight Center
operates Aerosondes for earth science missions.

Altair is a currently operational civil UAV platform designed by General Atomics. It was
designed as a high altitude more reliable version of the Predator B. It is currently operated by General
Atomics and NASA Dryden Flight Research Center.

Ikhana is a currently operational civil UAV platform designed by General Atomics. It was
designed as a civil variant of the Predator B. NASA currently operates the Ikahana at Dryden Flight
Research Center for civil missions.

Yamaha RMAX helicopter is a currently operational civil UAV platform which is widely used
around the world. It was originally designed for agricultural and surveillance purposes, though it has been
used for many other purposes. A NASA/U.S. Army AFDD collaborative currently uses an RMAX
helicopter for autonomous DRER-type surveillance22 .

II. Disaster Relief and Emergency Response Mission
Disaster relief and emergency response (DRER) efforts are inclusive of all actions by first

responders and subsequent aid efforts during and immediately following a catastrophic event which
threatens human life. The primary purpose of DRER efforts is to save human lives. Secondary purposes of
DRER efforts are to preserve and maintain the environment, protect property, keep the peace, and uphold
governmental authority.

Modern manned DRER systems include ground vehicles, conventional aircraft, and rotorcraft 5,6 .
UAV systems have the potential to improve the effectiveness of DRER efforts by enhancing first responder
capabilities23 and providing advanced predictive capabilities and early warning. A wide variety of system
types of all sizes with varying capabilities already exist with even more under development.

Disasters or emergencies for which DRER UAV systems could be implemented include: severe
storms, tornados, hurricanes, wild fires, tsunamis, floods, earthquakes, avalanches, civil disturbances, oil or
chemical spills, and urban disasters.

III. Systems Analysis Applied to Unmanned DRER Systems
The optimal design of unmanned systems for DRER applications is dependent not only on easily

quantifiable vehicle and mission requirements but also more abstract constraints such as public perception,
appropriate levels of vehicle autonomy, and collective system-of-systems interfaces and design. A
generalized systems analysis approach will therefore be conceptually outlined for application to this
problem with the purpose of finding an optimal system design trade space given a set of requirements and
other factors and considerations 7 .

Robotic solutions to large-scale problems generally fall between architecture solutions that have
either many small simple systems and a few large complex systems. Finding the optimal design space is a
task that involves weighing many factors and carefully analyzing the overall utility of the architecture.
Additionally, civil DRER missions are highly interdisciplinary and therefore the degree of reliance on
other, perhaps non-aerospace, industries and technologies must be analyzed. In this regards the systems
analysis of DRER missions and applications might pose new analytical challenges.
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Many design tradeoffs exist in the realm of unmanned aerospace systems. When these systems are
applied to DRER missions, technologies, motivators, and other factors not usually concerning aerospace
systems come into play. For example, DRER UAV systems may require a substantial investment in
database and communications technology whereas more conventional UAV systems might only require
simple radio/satellite links. A further example is the trade-off for smaller versus larger vehicles to
minimize collateral damage in the event of failure. Conflict this versus the ability to accommodate large
payloads providing advanced capabilities. These tradeoffs do not alter the methodology by which one
would approach the problem. However, the key is to correctly identify and assess all trades, especially
interdisciplinary trades which may have not previously been associated with aerospace systems.

IV. Case Study – Tornado Alley
The application of a DRER UAV system to a severe storm, or especially the manifestation of a

tornado event, similar to those common throughout the “tornado alley” region of the U.S., will now be
discussed. Tornados are violent columns of rotating air, in contact with both the ground and the source
storm cells, that pose a significant threat to humans and property 14,15,16,18

.
 They can range in size from a

few feet in diameter to over a mile across and are capable of producing extensive damage as result of the
high winds that accompany them. Tornados are produced by strong thunderstorms, called supercells.
Supercells are capable of producing damage due to heavy rain, large hail stones, and high winds, even
when they do not result in tornado formation. Figure 1 depicts schematic views of a typical supercell
thunderstorm. Methods currently exist to detect tornados using modern weather radar 17 though
coordination with spotters in the field is usually required to achieve more than moderate success and avoid
false alarms.

Tornado watch, monitoring, and first response has been selected as a scenario in which UAV
assets will likely be beneficial and spawn the development of new technologies. High altitude long
endurance (HALE) storm monitoring platforms are currently operational in earth science roles, however,
the role of the ‘tornado sentinel’ mission described here is significantly different. This case study will
serve to demonstrate a general set of guidelines concerning the technology development, manufacture,
stationing, deployment, and active use of DRER UAV systems. A number of notional technologies will
also be proposed which would benefit this application but for which no current widely available practical
examples exist.

The primary purpose of utilizing autonomous assets to aid DRER efforts in tornado situations is to
save human lives by providing enhanced advanced warning and improving first response.
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Figure 1: Schematic side and top views of a typical supercell thunderstorm 18 .

A. Essential Technology
The tornado watch mission would require certain technologies be implemented and could benefit

from implementation of new technology. These technologies fall into one of three categories: onboard
hardware, onboard software, and ground systems.

i. Hardware Technology



Onboard hardware technology includes all technologies that involve development and
manufacture of new flight hardware for installation onboard the vehicle system itself and also includes
technologies related to the design of the flight vehicle itself. A natural area of concentration for an
unmanned aerial system is sensors, specifically those for vision 19. Advanced synthetic vision systems
would provide ground operators a clearer picture of developing scenarios and offer a greater depth of vision
than even a storm spotter on the ground may be able to achieve. Incorporation of night vision and infra-red
spectrum technologies would aid night operations. Onboard radar would increase spatial awareness and
improve collision avoidance as well as being a vital asset to the meteorological sensing abilities of the
vehicle, as tornado-generating weather patterns can be identified using Doppler radar with a high degree of
accuracy. Current micro-radar systems such as MiniSAR are small enough to fly on UAVs weighing only
a few hundred pounds, but advances in the near future could put radar systems on smaller aircraft.
Improved vision systems are a vital technology because many software technologies will rely on high
quality imaging.

Weather monitoring sensors are the primary focus of many earth science aircraft. High quality
weather data sensing instruments are important to minimize errors in atmospheric measurements such as
temperature, pressure, and humidity. Research into methods for measuring wind velocity from aircraft
would contribute to weather monitoring capabilities. The contribution of wind velocity measurements
would be more vital when the aircraft is flying near of in severe storms, however this is a region where
traditional methods will not yield accurate readings and therefore new technology would be needed. Cloud
monitoring is a fundamental aspect of storm and tornado spotting. Sensors capable of distinguishing cloud
type would therefore be highly desirable. Given the nature of the composition of clouds (water vapor) such
a system might likely be composed of special vision sensing hardware feeding data to image processing
software.

Tornados and the storms that generate them are severe weather systems. Flight of manned aircraft
near these systems is generally avoided. A tornado watch aircraft designed to fly in such storms, therefore,
must be structurally robust and have suitable performance margins and control authority allowing it to
maneuver in turbulent, high-wind, high-precipitation, icing-favorable environments. Robust structures,
anti-ice, and de-ice systems are essential. High visibility airframe design is another technology concerning
the physical aircraft structure. Though it is intended for tornado-watch aircraft to spend a majority of their
time aloft in areas most all other aircraft will avoid (near storms), a high visibility vehicle will be easier for
other aircraft to spot and avoid during transition phases, test flights, or other clear weather operations.

High visibility airframes could also be considered a component of risk mitigation hardware.
Minimizing risk to the public is important to gaining public acceptance as well as adhering to the system’s
own purpose (to save lives). Technologies such as parachute systems, inflatable ‘reserve’ wings, and
miniature redundant systems could all serve as safety systems in the event of aircraft failures. It can be
noted that redundant systems may very well be impractical on small scale UAVs, which is the reason for
the desire to miniaturize any redundant backup systems. Smaller backup systems would allow the
inclusion of redundancies on smaller size aircraft. The importance of such hardware failsafe systems may
be magnified by the severity of the environment in which they are intended to fly. Vehicle health
monitoring sensors would be beneficial hardware technology by way of increasing awareness of potential
onboard problems during and between flights and therefore reducing the frequency of failures.

ii. Software Technology
Software technology includes any system or ability that is implemented via computer or other

means of processing. The core software ability technology that will drive the tornado watch mission is
weather identification, tracking, and forecasting. Data streams from the vehicle’s sensors could be fed to
onboard software systems or ground based computers to update weather predictions and movement models
in real time. Aerial assets with real time weather monitoring systems would provide a better map of severe
storm impact areas and assist in issuing severe weather warnings or otherwise alerting the public of
potential danger.

Weather prediction capabilities are pre-event and proactive in nature. However, after a tornado or
other severe weather strikes, there are notional software technologies that would assist first response
personnel. An aerial vehicle could overfly a damaged area and assign it a ‘destruction rating,’ classifying
the degree to which buildings, roads, etc. have been impacted. An associated probability-of-survival for
any building collapses could also be determined to assist emergency personnel in concentrating their efforts
where they would be most beneficial. To further assist responding vehicles, aerial assets could determine if
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any roads are blocked or damaged and route emergency vehicles around any trouble spots. This would be
much like modern driving GPS units with ‘alternate route’ and ‘traffic alert’ capabilities but tailored
specifically to this scenario and monitored in real time by an on station aerial vehicle.

The meteorological and first responder assistance technologies combine software with the
environmental and vision sensors of the aircraft to implement new actions or augment existing capabilities.
Other software technologies, however, will imitate the behaviors of manned aircraft to allow for easier
integration of new unmanned systems into existing regulated airspace. Technology that would allow an
unmanned vehicle to ‘talk to’ air traffic control would allow it to fly in controlled airspace. Though the
notional tornado watch vehicle would not typically fly near other aircraft, the ability to do so would
minimize risk to the public in the event it does. An unmanned vehicle equipped with a transponder and in
contact with air traffic control could also be designed to respond to orders given by air traffic control. This
would provide a measure of safety in a scenarios where UAV-tracked severe weather systems pass near
highly populated areas or major airports. Such technology would enable the UAV to avoid all other traffic,
minimizing the UAV’s impact on current air traffic systems.

iii. Ground Technology
Ground technologies include technology used by humans on the ground to interface with and

utilize data from aerial assets. There is overlap between ground technologies and software technologies.
This is primarily because any software technology can be implemented either with onboard computers or
ground based computers. Ground based technologies, therefore, can include those weather prediction and
air traffic management technologies described earlier.

The core ground technology required is an expanded and enhanced communications and database
network. This expanded network serves to both relay information to first responders as well as interface
with and supplement public emergency broadcast systems. Data sent to first responders can included
automated messages generated by the UAV (as results of software technologies) or raw video streams.
Some of this information could be made directly available to the public, but this must be done carefully to
avoid initiating panic or infringing on public privacy. An enhanced emergency broadcast system would
reach the public with more directive warnings and information than currently exist today. Systems would
need to be developed to handle the general public, rural areas, transient areas (freeway, rail, etc.), and large
crowds (sporting events, etc.). The emergency alerts would give information tailored to the situation, and
would be distributed across many mediums. For example, in the event of a tornado, the system would
distribute recommendations as to how to quickly find a safe location to the transient public, so drivers on a
highway with no immediate access to storm shelters can take action to get to a safe location. Examples of
transmission mediums include portable GPS receivers, radio, satellite radio/communications, cell phones,
internet portals, television, public sirens/warning stations, and individual special warning receivers.
Special receivers could be developed and made available to the public that are designed to receive
emergency alerts. Such receivers would be especially useful in rural areas where other communication
mediums do not exist or are limited.

B. Mission Interface
Autonomous vehicles may fly much of their missions independently, however, they still interface

with ground controllers and require operational support. The operational interface and control of a tornado
watch vehicle could come from any number of sources. The many disciplines and industries involved in
the prediction, monitoring, and response to tornados all must be taken into consideration when developing
an interface network for such a vehicle system.

i. Controlling Agency
The management of a tornado watch vehicle system could be the responsibility of any one of

several groups. The National Oceanic and Atmospheric Administration (NOAA) is a likely candidate since
they currently manage the issuance of weather watches and warnings in addition to weather prediction
across the nation. Both the National Weather Service (NWS) and the NOAA’s Aviation Weather Center
are branches of the NOAA which currently deal with much of the prediction side of severe weather in the
U.S. today. Other likely candidates are law enforcement and emergency response agencies, the national
guard and military, or private companies who operate and maintain unmanned vehicle systems. The issue
of control will largely depend on where the funding and leadership exists to operate such a system. If
advanced communications technology is built into a tornado watch vehicle system, the data from the



system could be easily and seamlessly be distributed to anywhere it is needed, regardless of who actually
controls the intricacies of the vehicle operations.

A note concerning potential control by military entities is that military control may have a benefit
to technological advancement. Though this mission is designed to be a civil mission, military involvement
may allow for more rapid advancement of technology through the use of military UAV systems since
military UAV systems currently fly more routinely and with fewer restrictions than civil UAV systems.

ii. Degree of Control
The degree of control of an autonomous vehicle can vary from remotely piloted to completely

autonomous2,3 . This level of autonomy is derived from mission requirements, and will influence the level
of autonomous data processing power necessary onboard a given vehicle system 8,9 . Once level of
autonomy has been determined, there are many other considerations as to how an unmanned tornado watch
vehicle will be controlled. It will be noted that the larger, more complex, or more robust a system is, the
more expensive and time intensive it will be to manufacture, operate, and maintain. Since great benefit
may be obtained from certain increases in complexity, however, decisions would ideally be made based on
full cost-benefit analysis of a given system. A notional base for the mission control system for a tornado
watch vehicle would be to use weather prediction input for vehicle routing while watching systems or
loitering on station, use storm-centered coordinates for maneuvering around developing tornados, and use
earth coordinates for flight over first response zones in the wake of a tornado or storm.

Individual vehicle control is only one aspect of the overall mission control scheme. Vehicle
deployment strategy is another. Single vehicle operation by independent weather stations may be useful,
however multiple vehicles can offer wider coverage areas and redundancy. Multiple vehicles may be flown
independently near the same storm, or in a flock operating together 13. Multiple vehicles based at the same
location, or nearby locations may also be used to maintain vehicles on station in the air at all times.
Vehicles on station, or staged at strategic points on the ground, would provide faster response times. Such
strategies would require vehicles to be stationed at many points throughout the regions where tornados are
common. This again goes back to the issue of what agency or group will command the system. If, for
example, the national weather service were to command the system, a vehicle asset might be placed at each
weather station. Subsequent deployment strategies for a given vehicle distribution system would then be
dependant on the desired use, such as pre-event monitoring and intensive weather prediction, or post-event
monitoring and more concentration on first responder aid.

Examples of pre-event monitoring include general storm surveillance or advanced warning. Storm
surveillance would entail flying patterns ahead of moving fronts and recording weather data useful for
predicting areas of heavy rain, hail, and high winds. Advanced tornado warning flight tracks would place
vehicles inside the storms with the intent on forecasting and detecting tornados specifically. Vehicles in
such flight tracks would generally avoid the high risk (high velocity and conditionally rotating air columns)
flight zone near the center of the storm. Post-event monitoring would include all damage assessment and
first-responder support roles. Figure 2 provides an overview of notional flight patterns.
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Figure 2: Notional flight paths for various tornado watch mission aspects.

iii. Effect on Existing Systems

Storm Track

illance
Track

6



Many systems will be involved or affected to some extent when implementing a new system such
as an autonomous tornado watch vehicle system. Autonomous vehicles will be interfacing with ground
control stations as well as air traffic control and navigation satellites. Data from the vehicles will be sent to
ground units from both weather prediction and emergency response disciplines. Data processing systems
will also interface with weather satellites and other weather stations. The general public and any system
required to implement an advanced emergency broadcast system will also be involved. Additionally
systems relating to the operation and maintenance of the unmanned vehicles themselves will be involved.

C. Need
The need for civil UAV assets stems from the need for the government to appear prepared and

responsible in the public view. Public safety is a primary concern of the government and the public’s
ability to ‘weather’ severe storms would be improved by advanced weather warning and response systems.
Increased public awareness of the usefulness of unmanned civil assets would benefit the industry by
making the public more accepting of both the concept of aerobots and increased focus on research into
experimental unmanned technologies. This increased awareness and acceptance will be an important step
towards modifying regulations regarding unmanned vehicles to allow for more routine unmanned flight
operations.

D. Risk
There is inherent risk to humans when unmanned aerial systems are flown in close proximity to

inhabited areas4,12,20 . High levels of decision-making reliability should be implemented into vehicle
autonomy to increase safety by decreasing risk of collision. Several risk mitigation strategies could be
implemented to protect against potential system or hardware failures. Vehicle design and size can be
tailored to minimize energy transfer in the event of a collision. Smaller vehicles would result in less kinetic
energy transfer upon impact and therefore less risk to the public. It is worth noting that as technology
advances, vehicle components can be made smaller, therefore allowing for vehicles with a constant sensing
capability to be made smaller.

Strategies for risk mitigation already discussed include parachutes, inflatable wings, and redundant
systems. Another strategy is to implement vehicle control systems that utilize certain maneuvers to avoid
collisions. Maneuvers could include steep turns and climbs or descents, but could also include maneuvers
that are not valid in manned aircraft such as intentionally entering into deep stall with the idea that the
UAV system has a degree of expendability which can be exploited to avoid collisions and maintain public
safety.

E. Cost
Cost is a key parameter in determining the feasibility of such a civil UAV system. To be accepted

into the civil market the individual aerial assets would have to be expendable or maintainable at low cost.
Since it is likely that a high degree of robust technology would go into such an asset the cost per vehicle
may be greater than what is deemed expendable. To date no comprehensive UAV cost models have been
developed, though studies have been done to characterize the market 10,11 . Unfortunately the total cost per
flight hour for modern civil unmanned aerial systems currently exceeds that of manned aircraft. There is
hope that this will change, however, as new technology develops and applications become more
widespread. Even as overall worldwide demand increases the civil UAV market remains a niche market
which will be marked by high operational costs in comparison to manned aircraft. The deciding factor will
become whether or not the benefits gained from implementation of life-saving UAV systems are worth the
price.

F. Design Tradeoff Examples
The design space of a tornado watch vehicle has many opposing variables which result in design

tradeoffs. Here several sample tradeoffs will be discussed.
Complex systems all have non-zero fail rates in the long term. Failure rate increases as

complexity increases. Higher complexity can lead to greater sensing and data gathering ability. This
increase in utility and its positive public perception, however, is offset by the negative public perception of
more common failures.

Tornados are products of powerful storm systems. Manned aircraft avoid such weather systems
because they are too turbulent and dangerous to fly in or near. Unmanned aircraft must be designed and
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manufactured to be very resilient to fly in such weather systems. In general, as aircraft resiliency and
toughness against flight in harsh weather conditions is improved, aerodynamic performance and efficiency
is sacrificed. Flight proximity to a tornado, and therefore data gathering capability, will be governed by
flight resiliency. There will be practical limits as to a chosen design point, for example, enough flight
performance must be maintained for the vehicle to be able to achieve flight speeds high enough to maintain
positive groundspeed even against strong headwinds near a storm, however, at the same time enough flight
resiliency must be maintained to prevent loss of control in the highly turbulent wind shear conditions near a
storm.

The degree of resiliency of the vehicle could also be contrasted against the degree of expendability
of the vehicle. It may be practical to manufacture several ‘expendable’ vehicles as opposed to fewer, more
complex, assets. In such a case, a vehicle with lower resiliency to weather may be able to fly closer to a
storm if it is considered expendable.

Response time is of primary concern in the operation of a first-responder aid system. Though
severe thunderstorms have life cycles that generally span on the order of hours, tornados can develop,
strike, and dissipate on the order of ten minutes. Response time is dependent on vehicle station location
and proximity, vehicle readiness, and time to arrive on station. Deployment strategy also has influence, as
these variables will change in definition if the vehicle is kept in continuous loiter as opposed to stationed on
the ground or some point between continuous aloft and ground based (such as ground based but put on
station in loiter under certain weather forecast conditions). The goal of the response time tradeoff is to
achieve the smallest possible response time while constrained by total cost, where cost is directly
proportional to the number of vehicles used as well as the complexity of the vehicles. Figure 3 presents
some sample relationships between design variables which could potentially be used in defining a design
space for a tornado watch vehicle system. Note in Figure 3 that storm formation time refers to the
development rate of the storm system and time to arrive on station -- related to cruise speed, climb rate, and
station location -- is the time it would take a vehicle asset to get from its stationed position to the necessary
flight pattern at the storm. Essentially, time to arrive on station determines which type of storms (slow
developing or fast developing) a vehicle can successfully respond to.

Distance from storm center

Time to

Decreasing	
arrive on\	 vehicle weight	
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Airframe
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Figure 3: Sample design variable dependency trends.
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V. Conclusion
Civil-sector UAV systems have the ability to benefit the public by bolstering DRER efforts in the

U.S. advocacy for civil UAV systems and their flight privileges will expand public awareness of the
benefits and true nature of the risk of unmanned vehicle operations. A better educated public will be more
willing and able to support and fund development of new technologies and implementation of new
concepts. Advances in systems technology will enable the advancement and expansion of the UAV market
worldwide.
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