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Environment-1

Space network software must •
support 24x7x365 operations with 
a high level of integrity, 
confidentiality, and availability
Current staff consists of 50 FTE to •
sustain and enhance software
Approximately one-third of software •
effort goes into discrepancy work-
off and two-thirds to enhanced 
capabilities

Programmer 30
Tester 5
CM 5
SysAdmin 8
Management 2
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Environment-2

Scope: ground software systems that •
control a satellite fleet and provide 
near earth communication services
Prioritized Responsibilities•

Investigate operational issues•
Resolve urgent operational issues•
Provide enhanced capabilities for •
customers and operations
Resolve routine operational issues•

Agenda

Preliminaries (2)
Environment (5)

Goals (2)
Approach (3)

Applicability (2)
Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)



Environment-3

Capability 
Maturity Model 
Integrated, Six 
Sigma, and 
NASA standards 
and 
requirements 
are applied in 
software 
sustaining 
engineering
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Environment-4

Hours of loss due to software is 7% of •
overall
The 7% slice of overall loss equates to •
27% of the loss internal to the Space 
Network [that which we directly control]
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Environment-5

Overall trend of software loss is down•

Percent internal loss due to software

Improvements in 2006 attributed to •
introduction of formal inspections
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Goals-1
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High availability and proficiency of •
service requirements drive the need to 
reduce system defects

Goal: Eliminate defects existing in the current 
baseline software

High demand for discrepancy •
resolution and new capabilities drive 
the need to produce software more 
quickly

Goal: Eliminate defects earlier in the software 
development lifecycle (reduce rework)



Goals-2

Infuse automated source code •
analysis technology
Provide for a uniform analysis toolset •
across languages and platforms
Apply technology to systems that have •
higher than average contribution to 
service loss
Minimize engineer time required to •
apply technology
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Approach-1

GrammaTech’s CodeSonar product •
provides mature analysis toolset for C 
and C++ (~50% of current code base) 
with new capability to cover Ada 
(~30% of current code base)

Software engineers use CodeSonar •
results as an input to the existing 
source code inspection process
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Approach-2

Collect baseline information from the •
sustaining engineering processes
Apply static analysis tool to a subset of •
the software baseline
Review findings from the tool to •
eliminate false positives and estimate 
future review time to be added to 
inspection process
Assess costs and benefits of larger •
deployment of analysis tools
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Approach-3

Apply study resources to Computer 
Software Components (CSCs) known 
to be more troublesome than others

SW CSCI Hours Lost % Loss DR count % DRs KSLOC %KSLOC
CSCI A 6.126 37% 28 6% 200 2%
CSCI B 0.910 5% 33 7% 64 1%
Others 9.748 58% 398 87% 7865 97%
Total 16.784 100% 459 100% 8129 100%
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Applicability-1

The study is focused on large scale •
software developed using formal 
processes
The systems studied are mission •
critical in nature but some use 
commodity computer systems
Linux, Windows, and VxWorks •
operating systems are represented
The application domain of the software •
is communications and spacecraft 
control systems
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Applicabilty-2

If you have...•
in-house maintained software...•
using a general purpose language... •
with formal development process...•
where failures lead to injury or •
significant financial loss...

...this study has results that are •
directly meaningful to you.
(even if #4 is not true for you, lower cost 
analyzers likely would be of benefit)
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Baseline -1
(What is SLOC anyway?)

SLOC definitions are inconsistent…•
David A. Wheeler’s SLOCCount tool •
and definition is used here:

Non-Comment Source Lines (NCSL) == Physical SLOC•

(Total) SLOC includes comments, blanks, and NCSL•

Physical SLOC is defined as follows: ``a physical source line 
of code (SLOC) is a line ending in a newline or end-of-file 
marker, and which contains at least one non-whitespace non-
comment character.'' Comment delimiters (characters other 
than newlines starting and ending a comment) are considered 
comment characters. Data lines only including whitespace 
(e.g., lines with only tabs and spaces in multiline strings) are 
not included.
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Baseline-2

Productivity of software engineers is 0.16 •
source lines of code (SLOC) per hour to 
perform requirements elicitation, design, 
coding, inspections, unit test, and Level 2 
test
Comparative industry productivity value is  •
0.6 SLOC per hour by the German 
Aerospace Center
Difference can be attributed somewhat to •
evolving a product as opposed to new 
product development but productivity 
improvement is one of the goals
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Baseline-3

In 2008, 204 software change •
requests (CRs) were completed
Each CR produced an average of 209 •
new or modified lines of code
(changes to database values not 
counted as SLOC modifications)
Formal inspections caused the •
removal of 1,255 defects from the 
code; 374 of the defects were 
classified as major (~30%)
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Findings-1

For the 439 KSLOC (310 KNCSL) of •
C/C++ code analyzed in 1,245 files, 
1,011 findings were produced
All of 1,011 findings were reviewed •
with an average review time of ~7 
minutes each
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Findings-2

Requires Research findings were •
classified as True or False Positive 
based on finding category
Vendor Software findings were •
classified as False Positive
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Findings-3

Definition: An Urgent (a.k.a. major) •
defect is one assessed as directly 
impacting availability or proficiency
Note: The large number of findings •
and corresponding review time is not 
expected to be repeated.  Previously 
reviewed findings are filtered and only 
displayed if specifically requested
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Findings-4

Findings were not uniformly distributed 
as a whole or proportionally among 
CSCs

Component K-NCSL Defects / K-NCSL

CSCI B 121 1.8634

CSCI A - CSC B 139 1.1571

CSCI A - CSC C 22 3.7156

CSCI A - CSC D 29 4.1332

NCSL = non-comment source lines
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Findings-5

y-axis is the number of true positive findings; x-axis is finding categories
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Findings-6
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Findings-7

CSCI B CSCI A
CSC B

CSCI A 
CSC C

CSCI A
CSC D

Routine 200 130 78 118

Urgent 25 31 3 0

KSLOC 222 204 29 39

Defects/KSLOC 1.01 0.79 2.80 3.01

Urgent/KSLOC 0.11 0.15 0.10 0.00

Urgent Loss 8.75 10.85 1.05 0.00

Overall density and severity of findings vary significantly across CSCs

Urgent density is *somewhat* uniform

Urgent Loss in this table is a prediction of the loss expected from 
these defects based on the average loss per defect of 0.35
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Conclusions-1

For seven million non-comment, non-•
blank lines of code...

...the initial cost for CodeSonar is •
equivalent to the fully loaded cost of a 
senior software engineer for one year
...annual maintenance cost for •
CodeSonar is equivalent to about nine 
weeks of a senior software engineer’s 
time

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)



Conclusions-2

Using baseline data combined with finding •
results and...
...very conservative cost numbers for staff •
time to do rework and...
...10% phase leakage from implementation •
to test and...
...10% phase leakage from test to •
operations and...
...and considering that one leaked defect •
triggers a non-trivial investigation...
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Conclusions-3

...then the amount saved in rework •
and investigation is slightly more than 
the annual maintenance cost of 
CodeSonar
Changing only the assumption on •
hourly cost to a more nominal rate 
gives us a payback of less than five 
years for the license costs
Being less conservative on other •
assumptions yields greater benefits
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Conclusions-4

Static source code analysis is mature, •
cost-effective technology
Training and tuning of the software to •
the particular environment is important
Beyond cost comparisons, CodeSonar •
provides a good value to the Space 
Network because a single critical error 
latent in operations puts at risk human 
life or once-in-a-lifetime scientific 
discovery
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Conclusion-5

Plan forward:•
Incorporate automated static code •
analysis into sustaining engineering 
process for the Space Network
Include Ada, C, and C++ for the entire •
code base (one uniform tool and 
process)
Fix defects incrementally (by priority) as •
part of normal discrepancy work off 
process rather than as a large special 
project
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Contact Information

Markland J. Benson
Computer Systems Manager
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PO Box 9000, Las Cruces, NM 88004

(575) 527-7034
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Questions?
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