
Technology Infusion of
CodeSonar into the Space
Network Ground Segment

(Technical Briefing)

Markland J. Benson / NASA GSFC
2009 Software Assurance Symposium

Agenda

Agenda

Preliminaries (2)
Environment (5)

Goals (2)
Approach (3)

Applicability (2)
Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Environment-1

Space network software must •
support 24x7x365 operations with
a high level of integrity,
confidentiality, and availability
Current staff consists of 50 FTE to •
sustain and enhance software
Approximately one-third of software •
effort goes into discrepancy work-
off and two-thirds to enhanced
capabilities

Programmer 30
Tester 5
CM 5
SysAdmin 8
Management 2

Agenda

Preliminaries (2)
Environment (5)

Goals (2)
Approach (3)

Applicability (2)
Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Environment-2

Scope: ground software systems that •
control a satellite fleet and provide
near earth communication services
Prioritized Responsibilities•

Investigate operational issues•
Resolve urgent operational issues•
Provide enhanced capabilities for •
customers and operations
Resolve routine operational issues•

Agenda

Preliminaries (2)
Environment (5)

Goals (2)
Approach (3)

Applicability (2)
Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Environment-3

Capability
Maturity Model
Integrated, Six
Sigma, and
NASA standards
and
requirements
are applied in
software
sustaining
engineering

Board Approved
Change

Requirements
Inspection Requirements

Preliminary Design
Inspection

Preliminary
Design

Detailed Design
Inspection

Detailed
Design

Source Code
Inspection Source Code

Programmer Test

Software Test

Operational Test

SCM Test
Baseline

SCM Staging
Baseline

Operational
Baseline

Requirements
Inspection
Checklist

Design
Inspection
Checklist

Source Code
Inspection
Checklist

Software Test
Plan

Operational
Test Plan

Static Analysis
Tool Output

Volume IV Book 1 Local Operating Procedure 1

Agenda

Preliminaries (2)
Environment (5)

Goals (2)
Approach (3)

Applicability (2)
Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Environment-4

Hours of loss due to software is 7% of •
overall
The 7% slice of overall loss equates to •
27% of the loss internal to the Space
Network [that which we directly control]

74%

4%
7%

14%

External Hardware Software Operations

Agenda

Preliminaries (2)
Environment (5)

Goals (2)
Approach (3)

Applicability (2)
Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Environment-5

Overall trend of software loss is down•

Percent internal loss due to software

Improvements in 2006 attributed to •
introduction of formal inspections

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

0%

10%

20%

30%

40%

50%

60%

2003 2004 2005 2006 2007 2008

Software Loss % Linear (Software Loss %)

Goals-1

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

High availability and proficiency of •
service requirements drive the need to
reduce system defects

Goal: Eliminate defects existing in the current
baseline software

High demand for discrepancy •
resolution and new capabilities drive
the need to produce software more
quickly

Goal: Eliminate defects earlier in the software
development lifecycle (reduce rework)

Goals-2

Infuse automated source code •
analysis technology
Provide for a uniform analysis toolset •
across languages and platforms
Apply technology to systems that have •
higher than average contribution to
service loss
Minimize engineer time required to •
apply technology

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Approach-1

GrammaTech’s CodeSonar product •
provides mature analysis toolset for C
and C++ (~50% of current code base)
with new capability to cover Ada
(~30% of current code base)

Software engineers use CodeSonar •
results as an input to the existing
source code inspection process

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)

Applicability (2)
Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Approach-2

Collect baseline information from the •
sustaining engineering processes
Apply static analysis tool to a subset of •
the software baseline
Review findings from the tool to •
eliminate false positives and estimate
future review time to be added to
inspection process
Assess costs and benefits of larger •
deployment of analysis tools

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)

Applicability (2)
Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Approach-3

Apply study resources to Computer
Software Components (CSCs) known
to be more troublesome than others

SW CSCI Hours Lost % Loss DR count % DRs KSLOC %KSLOC
CSCI A 6.126 37% 28 6% 200 2%
CSCI B 0.910 5% 33 7% 64 1%
Others 9.748 58% 398 87% 7865 97%
Total 16.784 100% 459 100% 8129 100%

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)

Applicability (2)
Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Applicability-1

The study is focused on large scale •
software developed using formal
processes
The systems studied are mission •
critical in nature but some use
commodity computer systems
Linux, Windows, and VxWorks •
operating systems are represented
The application domain of the software •
is communications and spacecraft
control systems

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Applicabilty-2

If you have...•
in-house maintained software...•
using a general purpose language... •
with formal development process...•
where failures lead to injury or •
significant financial loss...

...this study has results that are •
directly meaningful to you.
(even if #4 is not true for you, lower cost
analyzers likely would be of benefit)

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Baseline -1
(What is SLOC anyway?)

SLOC definitions are inconsistent…•
David A. Wheeler’s SLOCCount tool •
and definition is used here:

Non-Comment Source Lines (NCSL) == Physical SLOC•

(Total) SLOC includes comments, blanks, and NCSL•

Physical SLOC is defined as follows: ``a physical source line
of code (SLOC) is a line ending in a newline or end-of-file
marker, and which contains at least one non-whitespace non-
comment character.'' Comment delimiters (characters other
than newlines starting and ending a comment) are considered
comment characters. Data lines only including whitespace
(e.g., lines with only tabs and spaces in multiline strings) are
not included.

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Baseline-2

Productivity of software engineers is 0.16 •
source lines of code (SLOC) per hour to
perform requirements elicitation, design,
coding, inspections, unit test, and Level 2
test
Comparative industry productivity value is •
0.6 SLOC per hour by the German
Aerospace Center
Difference can be attributed somewhat to •
evolving a product as opposed to new
product development but productivity
improvement is one of the goals

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Baseline-3

In 2008, 204 software change •
requests (CRs) were completed
Each CR produced an average of 209 •
new or modified lines of code
(changes to database values not
counted as SLOC modifications)
Formal inspections caused the •
removal of 1,255 defects from the
code; 374 of the defects were
classified as major (~30%)

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Findings-1

For the 439 KSLOC (310 KNCSL) of •
C/C++ code analyzed in 1,245 files,
1,011 findings were produced
All of 1,011 findings were reviewed •
with an average review time of ~7
minutes each

0

100

200

300

400

500

600

True
Positive

Requires
Research

False
Positive

Vendor
Software

All Findings

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Findings-2

Requires Research findings were •
classified as True or False Positive
based on finding category
Vendor Software findings were •
classified as False Positive

0

100

200

300

400

500

600

Routine Urgent

True Positive

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Findings-3

Definition: An Urgent (a.k.a. major) •
defect is one assessed as directly
impacting availability or proficiency
Note: The large number of findings •
and corresponding review time is not
expected to be repeated. Previously
reviewed findings are filtered and only
displayed if specifically requested

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Findings-4

Findings were not uniformly distributed
as a whole or proportionally among
CSCs

Component K-NCSL Defects / K-NCSL

CSCI B 121 1.8634

CSCI A - CSC B 139 1.1571

CSCI A - CSC C 22 3.7156

CSCI A - CSC D 29 4.1332

NCSL = non-comment source lines

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Findings-5

y-axis is the number of true positive findings; x-axis is finding categories

0

20

40

60

80

100

120

140

160

180

200

Urgent

Routine

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Findings-6

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000
CSCI B CSCI A - CSC B CSCI A - CSC C CSCI A - CSC D

x-axis are the findings categories; y-axis is findings per KNCSL

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Findings-7

CSCI B CSCI A
CSC B

CSCI A
CSC C

CSCI A
CSC D

Routine 200 130 78 118

Urgent 25 31 3 0

KSLOC 222 204 29 39

Defects/KSLOC 1.01 0.79 2.80 3.01

Urgent/KSLOC 0.11 0.15 0.10 0.00

Urgent Loss 8.75 10.85 1.05 0.00

Overall density and severity of findings vary significantly across CSCs

Urgent density is *somewhat* uniform

Urgent Loss in this table is a prediction of the loss expected from
these defects based on the average loss per defect of 0.35

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Conclusions-1

For seven million non-comment, non-•
blank lines of code...

...the initial cost for CodeSonar is •
equivalent to the fully loaded cost of a
senior software engineer for one year
...annual maintenance cost for •
CodeSonar is equivalent to about nine
weeks of a senior software engineer’s
time

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Conclusions-2

Using baseline data combined with finding •
results and...
...very conservative cost numbers for staff •
time to do rework and...
...10% phase leakage from implementation •
to test and...
...10% phase leakage from test to •
operations and...
...and considering that one leaked defect •
triggers a non-trivial investigation...

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Conclusions-3

...then the amount saved in rework •
and investigation is slightly more than
the annual maintenance cost of
CodeSonar
Changing only the assumption on •
hourly cost to a more nominal rate
gives us a payback of less than five
years for the license costs
Being less conservative on other •
assumptions yields greater benefits

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Conclusions-4

Static source code analysis is mature, •
cost-effective technology
Training and tuning of the software to •
the particular environment is important
Beyond cost comparisons, CodeSonar •
provides a good value to the Space
Network because a single critical error
latent in operations puts at risk human
life or once-in-a-lifetime scientific
discovery

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

Conclusion-5

Plan forward:•
Incorporate automated static code •
analysis into sustaining engineering
process for the Space Network
Include Ada, C, and C++ for the entire •
code base (one uniform tool and
process)
Fix defects incrementally (by priority) as •
part of normal discrepancy work off
process rather than as a large special
project

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

September 21, 2009 SAS_09_Executive_Benson_CodeSonar 30

Contact Information

Markland J. Benson
Computer Systems Manager

White Sands Complex
PO Box 9000, Las Cruces, NM 88004

(575) 527-7034
Markland.J.Benson@nasa.gov

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

September 21, 2009 SAS_09_Executive_Benson_CodeSonar 31

Questions?

Agenda

Preliminaries (2)

Environment (5)
Goals (2)

Approach (3)
Applicability (2)

Baseline (3)
Findings (7)

Conclusions (5)
Wrap-Up (2)

