
NASA Tech Briefs, November 2009 33

Information Sciences

A method of automated computa-
tional fluid dynamics (CFD) has been in-
vented for the generation of perform-
ance tables for an object subject to fluid
flow. The method is applicable to the
generation of tables that summarize the
effects of two-dimensional flows about

airfoils and that are in a format known
in the art as “C81.” (A C81 airfoil per-
formance table is a text file that lists co-
efficients of lift, drag, and pitching mo-
ment of an airfoil as functions of angle
of attack for a range of Mach numbers.)
The method makes it possible to effi-

ciently generate and tabulate data from
simulations of flows for parameter values
spanning all operational ranges of actual
or potential interest. In so doing, the
method also enables filling of gaps and
resolution of inconsistencies in C81 ta-
bles generated previously from incom-

Automated CFD for Generation of Airfoil Performance Tables 
Data for all flow conditions of interest are generated efficiently. 
Ames Research Center, Moffett Field, California

This Flow Chart represents the sequences of operations in automated CFD according to the method described in the text.

START

Yes

Yes Yes

No No

Yes

Yes

No

No

No

STOP

Read
Pre-Input

File

Steady-State
Calculations
Completed?

Increment
Run Count

Increment
Run Count

Write Results
Summary Into

Output File

Analyze Force
and Moment

Histories

Analyze
Force and 
Moment 
Histories

Concatenate
Files

Concatenate
Files

Generate
Flow-Solver
Input File

Adjust
Physical Time
Step or CFLMAX

Adjust
Physical Time
Step or CFLMAX

Reduce
Pseudo-

Time Step

STEADY-STATE CALCULATION BLOCK

TIME-ACCURATE CALCULATION BLOCK

Generate
Flow-Solver
Input File

Run
Flow

Solver

Run
Flow

Solver

Satisfactory
Steady-State Result

Obtained
?

Time-
Accurate Calculations

Completed
?

Negative
Density or Pressure

?

Negative
Density or
Pressure?

cdancy
Highlight



34 NASA Tech Briefs, November 2009

plete experimental data or from theoret-
ical calculations that involved question-
able assumptions.

The method can be implemented by
use of any of a variety of digital proces-
sors comprising hardware and software
subsystems capable of simulating flows.
The hardware subsystem could be, for
example, a microprocessor, a main-
frame computer, a digital signal proces-
sor, or a portable computer. The soft-
ware subsystem can include any of a
number of flow solvers — that is, com-
puter programs that solve the govern-
ing equations of flow. One such pro-
gram that is particularly suitable for
use in this method is ARC2D, which
utilizes finite-difference techniques to
numerically solve the Reynolds-aver-
aged Navier-Stokes equations of two-di-
mensional compressible flow.

At the beginning of a process using
this method, the processor receives a de-
scription of the airfoil and a pre-input
file, which contains parameters represen-
tative of the ranges of flow conditions in
which the airfoil is to be tested via com-
putational simulations. The processor
can perform steady-state and/or time-ac-
curate calculations for simulating flows.
Steady-state calculations are typically ap-
plicable to such conventional flow condi-
tions as small angles of attack with fully
attached flows for which the solutions
are independent of time. Time-accurate
calculations model the temporal behav-
iors of time-varying flows.

The upper part of the figure illus-
trates steady-state calculations accord-
ing to this method. After reading the
pre-input file, the processor determines
whether the steady-state calculations
specified by that file have been com-
pleted. If the calculations have not
been completed, the processor gener-
ates a flow-solver input file, then the
processor executes the flow solver using
this input file. If the output of the flow
solver includes a negative density or
pressure, which is physically impossible,
then the pseudo-time step used in the
flow solver is reduced and the flow
solver is run again using the same in-
puts. This sub-process is repeated, if
necessary, until neither the pressure
nor the density in the output of the flow
solver is negative, at which point the
output of the flow solver is concate-
nated into an output file. Next, the
processor analyzes the residual history
of forces and pitching moments and in-
crements the run count. The processor
then returns to the step in which it de-
termines whether the steady-state calcu-
lations have been completed. If the cal-
culations are found to have been
completed, the processor determines
whether satisfactory results were ob-
tained. If satisfactory results were not
obtained, the processor switches to
time-accurate mode.

The lower part of the figure depicts
time-accurate calculations according to
this method. First, the processor deter-

mines whether the time-accurate calcu-
lations have been completed. If not, the
processor adjusts the physical time step
or the maximum allowable value,
CFLMAX, of the Courant-Friedrichs-Levy
number. [The Courant-Friedrichs-Levy
number (CFL) is the product of a time
step and a speed characteristic of the
flow.] Next, the processor generates a
flow-solver input file using the adjusted
physical time step or adjusted CFLMAX.
If negative density or pressure is found
in the output of the flow solver, then the
physical time step or CFLMAX is further
adjusted, a corresponding new flow-
solver input file is generated, and the
flow solver is run again. This subprocess
is repeated, if necessary, until neither
the pressure nor the density is negative.
Next, the processor analyzes the force
and moment histories and increments
the run count. The processor then re-
turns to the step in which it determines
whether the time-accurate or the steady-
state calculations have been completed.
If the time-accurate calculations are
found to have been completed, or if the
steady-state calculations have been com-
pleted with satisfactory results, then the
processor writes the results into an out-
put file. 

This work was done by Roger Strawn of the
U.S. Army and E. A. Mayda and C. P. van
Dam of the University of California for Ames
Research Center. Further information is con-
tained in a TSP (see page 1).
ARC-15649-1 

Progressive Classification Using Support Vector Machines
An approximate classification is generated rapidly, then iteratively refined over time.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An algorithm for progressive classifi-
cation of data, analogous to progressive
rendering of images, makes it possible
to compromise between speed and ac-
curacy. This algorithm uses support vec-
tor machines (SVMs) to classify data.
An SVM is a machine learning algo-
rithm that builds a mathematical model
of the desired classification concept by
identifying the critical data points,
called support vectors. Coarse approxi-
mations to the concept require only a
few support vectors, while precise,
highly accurate models require far
more support vectors. Once the model
has been constructed, the SVM can be
applied to new observations. The cost
of classifying a new observation is pro-

portional to the number of support vec-
tors in the model. When computational
resources are limited, an SVM of the ap-
propriate complexity can be produced.
However, if the constraints are not
known when the model is constructed,
or if they can change over time, a
method for adaptively responding to
the current resource constraints is re-
quired. This capability is particularly
relevant for spacecraft (or any other
real-time systems) that perform on-
board data analysis. 

The new algorithm enables the fast,
interactive application of an SVM clas-
sifier to a new set of data. The classifi-
cation process achieved by this algo-
rithm is characterized as progressive

because a coarse approximation to the
true classification is generated rapidly
and thereafter iteratively refined. The
algorithm uses two SVMs: (1) a fast, ap-
proximate one and (2) slow, highly ac-
curate one. New data are initially clas-
sified by the fast SVM, producing a
baseline approximate classification.
For each classified data point, the algo-
rithm calculates a confidence index
that indicates the likelihood that it was
classified correctly in the first pass.
Next, the data points are sorted by
their confidence indices and progres-
sively reclassified by the slower, more
accurate SVM, starting with the items
most likely to be incorrectly classified.
The user can halt this reclassification


