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Extended Abstract: 
 
Problem Statement 

The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors 

within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A 

health management (HM) system is required to provide an on-ground operation crew with an integrated 

awareness of the condition of every element of interest by determining anomalies, examining their 

causes, and making predictive statements. However, the complexity associated with relevant systems, 

and the large amount of data typically necessary for proper interpretation and analysis, presents 

difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As 

such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as 

a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and 

efficient and embedded processing at multiple levels. The end result is the ability to successfully 

incorporate a comprehensive HM platform despite the complexity of the systems under consideration. 

Method of Solution 

The method of solution hinges on the use of several critical components that are necessary for enabling 

the required health management functionality. They include: (a) Optimized Neuro-Genetic Fast 

Estimator (ONGFE) software for diagnostics and prognostics optimization using pseudogenetic (PG) 

algorithms; (b) a distributed architecture of Advanced Embedded Smart Sensors (AESS) capable of 

intelligent functions; (c) non-intrusive energy harvesting vibration sensors; and (d) a user-friendly Man 

Machine Interface (MMI) for efficient monitoring and maintenance.   
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The ONGFE improves neural network (NN) performance by providing: (1) a kernel of fast training 

algorithms; (2) an interface for conducting training, testing, and real-time FDI&P; and (3) neural 

network optimization.  The ONGFE operates by using processed data and features fed into a kernel with 

fast and optimized learning algorithms. The resulting NN can then be used for failure detection and 

identification (FDI). In addition, a population can undergo further optimization using novel algorithms. 

In this way, two optimization levels are addressed. The ONGFE is then applied for several functions in 

the HM system, including: (1) system FDI; (2) data-validation and sensor FDI; and (3) auto-calibration. 

Due to the throughput and bandwidth computational requirements for rocket engine health monitoring, a 

distributed and hierarchical system architecture is employed. In this architecture, it is necessary to use a 

processing scheme in which intelligence is embedded at multiple levels, including the sensors. Initial 

work has validated an approach with multiple AESS modules; each equipped with one or more 

transducers (sensor suites) to condition, process, and wirelessly transmit data to a health monitoring 

node (HMN) or application server man machine interface (AS-MMI). Expansion of the arrangement 

then consists of using the AESS as a wireless transducer interface module (WTIM), and then sending 

data to a remote network capable application processor (NCAP in the HMN) for further processing, and 

in turn, to the health management unit (HMaU) and AS-MMI.  

The lowest level of the architecture is 

noteworthy due to the embedded intelligence 

of the AESS modules. These smart sensors 

are equipped with intelligent algorithms that 

conduct data validation and self-healing. 

The structure of the AESS is designed for 

adherence to the IEEE 1451 

standards  [1] [2]. The AESS consists of the 

blocks shown in Figure 1. A novel addition 

to the sensor suite is the use of customized 

piezoelectric sensors with a desirable form 

factor and power-harvesting capabilities for 

performing high-quality health monitoring. 

Both the frequency response and capability to provide features correlated with system behavior are 

validation criteria for these sensors.  

Figure 1: Block Diagram of the AESS 
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The functions embedded within the AESS modules utilize the ONGFE for sensor validation, self-

monitoring, and self-calibration. With these capabilities, the AESS modules are able to detect whether or  

not the data they are receiving is mostly noise, 

corrupted, or indeed valid. These abilities are 

enabled through the ONGFE Neuro-SCST scheme 

shown in Figure 2. Mapping is provided by an auto-

associative process such that a given output can be 

associated with an input. This mapping includes 

scenarios in which a certain output must be provided 

even if the input signal is corrupted and deviates 

from what is normally expected. A statistical test 

detects when there is a change in the sensor measurement sequence statistics. The closer the sensor 

inputs are to the predicted value from the ANN, the higher the confidence value assigned to that sensor. 

A threshold value is then assigned to determine and isolate any failed sensors.  

Figure 2: ONGFE Neuro-SCST  

The highest level of the distributed architecture is the AS-MMI. This level houses the MMI software 

which has been specifically catered to meet the needs for rocket engine HM by providing a visual 

environment in which the user has access and control over the maintenance and health monitoring 

information. Such software provides information regarding the sensor status, readings, health 

management, commands, and Transducer Electronic Data Sheets (TEDS). However, in addition to this 

complete control, the ONGFE is integrated for real-time on-line health monitoring. The ONGFE 

performs at enhanced speeds with several optimizations in the algorithm, thus successfully 

circumventing the problem of training with large sets of data.  
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Obtained Results  

The results in this paper verify the success of the ONGFE for performing health monitoring with 

multiple functions. For conducting FDI, the ONGFE has 

demonstrated: (a) the ability to be embedded at multiple levels; 

(b) fast training as is necessary for on-line real-time FDI of 

complex systems; and (c) optimized learning. In demonstrating 

the success of the advanced algorithms for conducting FDI&P, 

a testbed as shown in Figure 3 was constructed with multiple 

off-nominal bypass lines which, based on the position of 

valves, simulate the presence and degree of various faults. 

Studied failures included: (1) damaged pump and reduced flow rate capabilities; (2) pump seal leakage; 

(3) decreased heating capabilities; (4) stuck valve; (5) reduction of inlet pressure to pump; (6) reduction 

in heat exchanger efficiency and (7) leakage between heat exchanger plates.  

 
 

Figure 3: Testbed for System 
Validation 

In order to provide the user with complete access, control, 

and real-time diagnostic and prognostic information, a user-

friendly man machine interface has been developed as 

shown in Figure 4. The correct prediction and isolation of 

failures is readily apparent in Figure 5, which shows the 

MMI software indicating anomalous system operation as 

opposed to normal operation. Furthermore, features are 

provided for a Condition Based Maintenance (CBM+) type 

system  [3] by including IEEE 1451 Universal Unique 

Identification Data (UUID), an FDI&P database, and a configuration management database.  

 

Figure 4: Main Screen of MMI Software 
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Figure 5: Results of Optimized Neural Network FDI 

The demonstration of sensor data validation 

and self-healing is accomplished by the 

ONGFE’s kernel of fast training algorithms 

as well as the second optimization level with 

PG algorithms. In Figure 6, one of the sensors 

is experiencing both considerable noise and 

bias. This data is then the input to the neural 

network which uses the ONGFE and an auto-associative process to produce corrected estimates as 

shown on the right. In this way, not only is the failing sensor identified, but a self-healing procedure is 

conducted. The results of this application verified that the embedded 

NN offers fast computational speed in working on-line and constantly 

providing information regarding each sensor. Finally, the versatility of 

the framework is demonstrated in an auto-calibration application in 

which the ONGFE’s function approximation capabilities are utilized. 

Figure 7 shows an example of the auto-calibration in which resistance 

values from an RTD are mapped to the appropriate temperature values.  

Figure 6: Left:  Inputs; Right: Validated Outputs 

Figure 7: ONGFE Self-
Calibration 

Another important result discussed in this paper is the use of the 

piezoelectric sensors for conducting FDI of damaged structures. For failure analysis, the identification of 

resonance frequencies and the correlation between time domain nominal behavior and anomalies can be 

utilized. As a failure propagates, the evolution of frequencies can be tracked to provide relevant 

prognostics information. Figure 8 shows that these sensors provide enough information for detecting and 

analyzing damage, and by using the main features and frequencies, the ONGFE performs FDI&P.  
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Figure 8: Failure Characterization and FDI&P using the ONGFE 

Significance of the Contribution 

The optimized learning procedures comprise a major innovation in this paper as they offer significant 

improvements for diagnostics and prognostics in terms of processing speed, decreased false alarms, and 

improved detection time. As evident from Figure 9, optimization using the ONGFE (solid blue line) 

results in lower errors than other approaches. Innovations that highlight the significance of the 

contribution include: 

• Improved neural network performance for FDI and 

prognostics 

Figure 9: PG Algorithm for 
Prognostics Optimization 

• ONGFE flexibility to include a wide array of learning 

algorithms  

• On-line learning for adapting to a dynamically changing 

system  

• ONGFE applicability to a wide array of tasks such as 

system FDI, data-validation, and auto-calibration 

• A distributed architecture with processing at multiple levels 

• Sensors capable of intelligent functions 

• Non-intrusive self-powered vibration sensors 

• Embedded aids for performing maintenance actions, planning, and control of the maintenance cycle 

 

 
6



 
7

References: 
 
[1] IEEE Std 1451.0 TM-2007. IEEE Standard for a Smart Transducer Interface for Sensors and 

Actuators - Common Functions, Communication Protocols, and Transducer Electronic Data Sheet 
(TEDS) Formats. November 2007. 

 
[2] IEEE Std 1451.5 TM-2007, IEEE Standard for a Smart Transducer Interface for Sensors and 

Actuators - Wireless Communication Protocols and Transducer Electronic Data Sheet (TEDS). 
October 2007. 

 
[3] K. Navarra, R. Lawton, N. Hearrell, "An Enterprise Strategy for Implementing Conditioned-Based 

Maintenance Plus (CBM+) Research in the USAF", in Proc. of the IEEE Aerospace Conference, pp. 
1-7, March 2007.  

 


