
NASA Tech Briefs, January 2007 33

Integrated Hardware and Software for No-Loss Computing
Computations on parallel processors can continue, even if one processor fails.
NASA’s Jet Propulsion Laboratory, Pasadena, California

When an algorithm is distributed across
multiple threads executing on many dis-
tinct processors, a loss of one of those
threads or processors can potentially re-
sult in the total loss of all the incremental
results up to that point. When implemen-
tation is massively hardware distributed,
then the probability of a hardware failure
during the course of a long execution is
potentially high. Traditionally, this prob-
lem has been addressed by establishing
checkpoints where the current state of
some or part of the execution is saved.
Then in the event of a failure, this state in-
formation can be used to recompute that
point in the execution and resume the
computation from that point.

A serious problem arises when one
distributes a problem across multiple
threads and physical processors is that
one increases the likelihood of the algo-

rithm failing due to no fault of the scien-
tist but as a result of hardware faults cou-
pled with operating system problems.
With good reason, scientists expect their
computing tools to serve them and not
the other way around.

What is novel here is a unique combi-
nation of hardware and software that re-
formulates an application into mono-
lithic structure that can be monitored in
real-time and dynamically reconfigured
in the event of a failure.

This unique reformulation of hard-
ware and software will provide advanced
aeronautical technologies to meet the
challenges of next-generation systems in
aviation, for civilian and scientific pur-
poses, in our atmosphere and in atmos-
pheres of other worlds. In particular,
with respect to NASA’s manned flight to
Mars, this technology addresses the crit-

ical requirements for improving safety
and increasing reliability of manned
spacecraft.

This work was done by Mark James of Cal-
tech for NASA’s Jet Propulsion Labora-
tory. Further information is contained in a
TSP (see page 1).

In accordance with Public Law 96-517,
the contractor has elected to retain title to this
invention. Inquiries concerning rights for its
commercial use should be addressed to:

Innovative Technology Assets Management
JPL
Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
(818) 354-2240
E-mail: iaoffice@jpl.nasa.gov
Refer to NPO-42554, volume and number

of this NASA Tech Briefs issue, and the
page number.

A compact symbolic formulation en-
ables mapping of an arbitrarily complex
decision tree of a certain type into a
highly computationally efficient multidi-
mensional software object. The type of
decision trees to which this formulation
applies is that known in the art as the
Boolean class of balanced decision trees.
Parallel lateral slices of an object created
by means of this formulation can be exe-
cuted in constant time — considerably
less time than would otherwise be re-
quired. 

Decision trees of various forms are
incorporated into almost all large soft-
ware systems. A decision tree is a way
of hierarchically solving a problem,
proceeding through a set of true/false
responses to a conclusion. By defini-
tion, a decision tree has a treelike
structure, wherein each internal node
denotes a test on an attribute, each
branch from an internal node repre-

sents an outcome of a test, and leaf
nodes represent classes or class distri-
butions that, in turn represent possi-
ble conclusions. The drawback of deci-
sion trees is that execution of them
can be computationally expensive
(and, hence, time-consuming) be-
cause each non-leaf node must be ex-
amined to determine whether to
progress deeper into a tree structure
or to examine an alternative. The
present formulation was conceived as
an efficient means of representing a
decision tree and executing it in as lit-
tle time as possible.

The formulation involves the use of a
set of symbolic algorithms to transform a
decision tree into a multi-dimensional
object, the rank of which equals the
number of lateral non-leaf nodes. The
tree can then be executed in constant
time by means of an order-one table
lookup. The sequence of operations per-

formed by the algorithms is summarized
as follows:
1. Determination of whether the tree

under consideration can be encoded
by means of this formulation.

2. Extraction of decision variables.
3. Symbolic optimization of the decision

tree to minimize its form.
4. Expansion and transformation of all

nested conjunctive-disjunctive paths
to a flattened conjunctive form com-
posed only of equality checks when
possible.
If each reduced conjunctive form con-

tains only equality checks and all of
these forms use the same variables, then
the decision tree can be reduced to an
order-one operation through a table
lookup. The speedup to order one is ac-
complished by distributing each deci-
sion variable over a surface of a multidi-
mensional object by mapping the
equality constant to an index.

Decision-Tree Formulation With Order-1 Lateral Execution
Some decision trees can be transformed into objects executable by simple table lookups.
NASA’s Jet Propulsion Laboratory, Pasadena, California

Information Sciences


