ULTRA-HIGH TEMPERATURE METALLIC SEAL/ENERGIZER DEVELOPMENT FOR AERO PROPULSION AND GAS TURBINE APPLICATIONS

Ken Cornett and Jesse Newman Parker Hannifin North Haven, Connecticut

Amit Datta Advanced Components & Materials Greenwich, Rhode Island

Ultra-High Temperature Metallic Seal Program Development Team

Ken Cornett – Engineering Team Leader Advanced Products Business Unit, Parker Hannifin North Haven, CT

Jesse Newman – Design Engineer Advanced Products Business Unit, Parker Hannifin North Haven, CT

> Dr. Amit Datta – Consultant Advanced Components & Materials Greenwich, RI

Program Overview

- Industry is requiring seals to operate at higher and higher temperatures.
 - · Greater efficiency
 - · Reduced cooling air requirements
 - Reduced emissions
- Traditional static seal designs and materials experience stress relaxation, losing their ability to maintain contact with moving flanges.
- Ultra High Temperature seal development program – Multiphase program with incremental increases in seal operating temperatures

Seal gap is created resulting from stress relaxation at elevated temperatures. The original seal height ho is reduced to he creating a gap when the flange moves away from the compressed condition.

Background of Problem

Material Comparison

Cast Blade Alloys Have Excellent High-Temperature Strength

Alloy	Temperature,° F	Yield Strength,ksi	Elongation,%
Mar-M-247, Single Crystal	1600	110	8.0
CMSX-4 [™] , Single Crystal	1600	114	18.0
Waspaloy [™] , Polycrystalline	1600	60	12.0
René41 [™] , Polycrystalline	1600	84	11.3

[•] Blade alloys also have superior creep and stress rupture strength compared to cold formable superalloys. Hence, blade alloys have higher resistance to stress relaxation.

[•] Manufacturing Challenge - Blade alloys are only available in the cast condition (poly or single crystal)

Single Crystal Spring Evolution – Phase IV

· Prototype I

- · Solid ring machined from a polycrystalline Mar-M-247 casting
- · Basic finger design, not optimized with FEA
- · Opportunities for Design for Manufacturability (DFM) enhancements

Prototype II

- · Independent finger and support ring configuration
 - Improved DFM and lower manufacturing cost
 - · Ability to fine tune spring load and total seal load
- · FEA optimized finger configuration
- · Improved dimensional relaxation characteristics

Stress relaxation testing on Phase IV prototypes showed very positive results compared to polycrystalline Waspaloy and Rene41. Follow-on leakage testing showed a strong correlation between improved stress relaxation and improved leakage results.

Single Crystal Spring Evolution – Phase V

- Prototype I "Wishbone"
 - Linear "V" shape machined from a single-crystal rod of CMSX-4™
 - · Secondary machining operation required to allow parts to interlock
 - · Positive stress relaxation results
 - · Opportunities for design and manufacturability enhancements
- Prototype II "Chevron"
 - Radial "V" shapes cast in both Mar-M-247 and CMSX-4[™] using a prototype SLA mold
 - Cast part thickness held to .020"
 - Optimized profile for reduced stress and simplified assembly (eliminated need for secondary machining operation)

Single-Crystal Mar-M-247 or CMSX-4[™] Spring

Single Crystal Spring Evolution - Phase V

- V-Spring is cast with <0,0,1> crystal orientation approximately along the circumference of the part
- This orientation improves the stress relaxation properties of the part, and maximizes the range of elastic compression

Single Crystal Spring Evolution - Phase V Summary

- DFM has been the primary program goal since 2006
 - Convert the fundamental concept into a commercially / economically viable design while retaining stress relaxation gains
 - Through FEA analysis and DOE an improved design configuration was developed
- Modular manufacturing approach was developed
 - Standard V-Spring configuration nests within a relatively thin, oxidization resistant sheet metal jacket (Haynes® 214®, Haynes® 230®, PM2000, etc.)
 - · Jacket serves as primary pressure barrier and structural support
 - · V-Springs are brazed into position using standard techniques
- Standard V-Spring configuration allows for cost effective linear seals and hoop seals
 - · V-Springs are cast near net shape to keep manufacturing costs low
 - Cast as a single crystal material with [0,0,1] crystal orientation along the part circumference
 - By joining multiple V-Springs, any diameter seal can be cost effectively produced

Conclusions & Future Work

- Single-crystal blade alloys can be cast in thin sections (.020") for use as high-temperature energizers for static metal seals
- Single-crystal CMSX-4[™] V-Springs have significantly better stress relaxation resistance than single-crystal Mar-M-247 and polycrystalline Rene41[™]
- The Ultra-High Temperature seal program has successfully progressed and developed a commercially viable, high temperature static seal solution.

Moving forward

- · Continue long-term stress relaxation testing (up to 200 hrs)
- · Perform comparative leak testing of latest prototypes
- · Perform testing at 1800°F and above

Future activities

- · Finalize details of manufacturing process
- Develop a product-specific, technical performance data sheet
- Identify a launch customer / application and build first production pieces for on-engine testing

Ultra-High Temperature Metallic Seal Program Questions?

Ken Cornett – Engineering Team Leader
Advanced Products Business Unit, Parker Hannifin – North Haven, CT
kwcornett@parker.com
203-985-3177

Jesse Newman – Design Engineer
Advanced Products Business Unit, Parker Hannifin – North Haven, CT
<u>jesse.newman@parker.com</u> 203-985-3120

Greg More – Engineering/Sales Manager
Advanced Products Business Unit, Parker Hannifin – North Haven, CT
dgmore@parker.com 203-985-3141

