NASA/TM—2009-215656 GT2008-50062

An Object-Oriented Computer Code for Aircraft
Engine Weight Estimation

Michael T. Tong
Glenn Research Center, Cleveland, Ohio

Bret A. Naylor
DB Consulting Group, Cleveland, Ohio

December 2009

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of acronautics and space science. The
NASA Scientific and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and

its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aecronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

» TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

» TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

» CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

» CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

« SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

» TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

» Access the NASA STI program home page at
http://www.sti.nasa.gov

» E-mail your question via the Internet to help@
sti.nasa.gov

» Fax your question to the NASA STI Help Desk
at 443-757-5803

» Telephone the NASA STI Help Desk at
443-757-5802

* Write to:
NASA Center for AeroSpace Information (CAST)
7115 Standard Drive
Hanover, MD 21076-1320

NASA/TM—2009-215656 GT2008-50062

An Object-Oriented Computer Code for Aircraft
Engine Weight Estimation

Michael T. Tong
Glenn Research Center, Cleveland, Ohio

Bret A. Naylor
DB Consulting Group, Cleveland, Ohio

Prepared for the

Gas Turbine Technical Congress and Exposition (Turbo Expo 2008)
sponsored by the American Society of Mechanical Engineers
Berlin, Germany, June 9-13, 2008

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

December 2009

This work was sponsored by the Fundamental Aeronautics Program
at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by technical management.

Available from
NASA Center for Aerospace Information National Technical Information Service
7115 Standard Drive 5285 Port Royal Road
Hanover, MD 210761320 Springfield, VA 22161

Available electronically at http://gltrs.grc.nasa.gov

An Object-Oriented Computer Code for Aircraft Engine Weight Estimation

Michael T. Tong
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Bret A. Naylor
DB Consulting Group
Cleveland, Ohio 44135

Abstract

Reliable engine-weight estimation at the conceptual design
stage is critical to the development of new aircraft engines. It
helps to identify the best engine concept amongst several
candidates. At NASA Glenn Research Center (GRC), the
Weight Analysis of Turbine Engines (WATE) computer code,
originally developed by Boeing Aircraft, has been used to
estimate the engine weight of various conceptual engine
designs. The code, written in FORTRAN, was originally
developed for NASA in 1979. Since then, substantial im-
provements have been made to the code to improve the weight
calculations for most of the engine components. Most recent-
ly, to improve the maintainability and extensibility of WATE,
the FORTRAN code has been converted into an object-
oriented version. The conversion was done within the NASA’s
NPSS (Numerical Propulsion System Simulation) framework.
This enables WATE to interact seamlessly with the thermody-
namic cycle model which provides component flow data such
as airflows, temperatures, and pressures, etc. that are required
for sizing the components and weight calculations. The tighter
integration between the NPSS and WATE would greatly
enhance system-level analysis and optimization capabilities. It
also would facilitate the enhancement of the WATE code for
next-generation aircraft and space propulsion systems. In this
paper, the architecture of the object-oriented WATE code (or
WATE++) is described. Both the FORTRAN and object-
oriented versions of the code are employed to compute the
dimensions and weight of a 300-passenger aircraft engine
(GE90 class). Both versions of the code produce essentially
identical results as should be the case.

Introduction

Engine weight is a key design parameter for any new air-
craft. It affects aircraft range and is a key element in fuel burn.
Weight is also considered an indicator of engine cost. Reliable
engine-weight estimation at the conceptual design stage is
critical to the development of new aircraft engines. It helps to
identify the best engine concept amongst several candidates.

At the NASA Glenn Research Center (GRC), the Weight
Analysis of Turbine Engines (WATE) computer code (Ref. 1),
originally developed by Boeing Aircraft, has been used to
estimate the engine weight of various conceptual engine
designs. The code, written in FORTRAN, was originally

NASA/TM—2009-215656

developed for NASA in 1979. It calculated the weight and
dimension of each major engine component, such as compres-
sor, burner, turbines and frames, primarily using a semi-
empirical method augmented with analytical calculations for
specific component elements. A database of 29 engines was
used to develop empirical relationships used to calculate
component weight and dimensions. This method provided an
accuracy of approximately +10 percent of engine weight for
the database engine designs.

Since 1979, substantial improvements have been made to
the computer code by NASA (Ref. 2), and McDonnell Doug-
las Corporation, to enhance the capability of WATE and to
improve its accuracy. Many of the empirical relationships
have been replaced with analytical weight and dimension
calculations. The primary method used to calculate weight
throughout the code is to calculate material volume and mul-
tiply by material density. An approach is used where the stress
level, maximum temperature and pressure, material, geometry,
stage loading, hub-tip ratio, blade/vane counts, and shaft speed
are used to determine the component weight. Flow properties
such as corrected mass flow, temperatures, pressures, etc. on
each component are obtained from the thermodynamic cycle
analysis. This method accounts for more of the individual
parts that make up an engine component than an empirical
method. A material database, consisting of the material data of
most of the commonly-used aerospace materials, was also
incorporated into WATE. In addition to engine component
weight calculation improvements, a large number of changes
were made to the WATE code to improve the graphical output
of the program. Component graphic representation has been
greatly enhanced to provide a more detailed picture of the
flowpath to assist the user in determining the correctness of
the flowpath. The code was also modified to allow the user to
use controls and limiters when developing the flowpath. This
capability saves the user time in assuring the adjacent compo-
nents will connect correctly. An optimizing capability was
added as well to allow optimization of the flowpath on either
weight or dimensions.

Recently, to improve the maintainability and extensibility
of WATE, GRC analysts converted the FORTRAN code into
an object-oriented version. The conversion was done within
the NASA’s NPSS (Numerical Propulsion System Simulation)
(Ref. 3) framework. This enables WATE to interact
secamlessly with the thermodynamic cycle model which
provides component flow data such as corrected airflows,

temperatures, and pressures, etc., that are required for sizing
the components and weight calculations.

The object-oriented programming is already an established
software development method and its advantages over
procedure-oriented programming like FORTRAN have been
widely recognized (Refs. 4 and 5). The main ideas behind
object-orientation are data abstraction, inheritance, polymor-
phism and dynamic binding. This paper describes the
approach to the conversion of the FORTRAN engine-weight
estimation code into an object-oriented code using NPSS
interpreted language. The engine-weight modeling system and
its object-oriented architecture are described. Validation of the
code is presented.

WATE+ Architecture

The object-oriented WATE (or WATE++) calculates the
weight and dimension of each major engine component,
relative to a reference point, usually the design point. The
WATE++ architecture is intended to be flexible and extensi-
ble. It exploits the capabilities of object-oriented programming
(inheritance, polymorphism, and encapsulation), as well as
modemn object-oriented concepts including framework and
component objects. Inheritance is used to concentrate code
common to multiple component types in abstract component
classes, preventing code duplication and enhancing code
maintainability. For example, the ‘Axial Compressor class’ in
Figure 1 represents an abstract ancestor incorporating all
functionality common to fan, low-pressure compressor, and
high-pressure compressor. Encapsulation enhances code
maintainability and readability by concentrating all data decla-
rations and procedures in a single code unit. Polymorphism is
the ability of parameters to represent different object classes
and is extensively applied in WATE++. It allows the frame-
work to get the correct behavior of each WATE++ element
without knowing what the specific type of each one is. For
example, the WATE++ has an abstract identifier ‘calcGeome-
try’ to calculate the geometry of any component in the model.
During simulation, ‘calcGeometry’ subsequently represents all
WATE+ components and runs their geometry calculations so
that the engine flowpath can be drawn.

There are three primary object types that are used in the
WATE++ calculations: elements, ports, and subelements.

Elements

WATE++ celements perform high level component
calculations. Elements may have many plug locations termed
sockets, into which computational blocks termed subelements
may be attached. The compressor element, for example,
contains a socket into which the subelement that does the disk-
sizing calculation is attached. It also has sockets into which
the user may plug subelements for computing the gearbox and
frame weights.

NASA/TM—2009-215656

Ports

Ports provide data connectivity between elements. In
WATE++, ports are used to transfer geometry information
(such as radius and axial position) between elements. It also
provides mechanical links from one element to another. For
example, a port is used to connect the shaft with the compres-
sor and turbine.

Subelements

Subelements perform specific, detailed computations. They
generally only work when connected to sockets. WATE++
supports multiple types of subelements that can plug into the
element sockets. Each subelement performs detailed computa-
tions that impact the element’s overall calculations. The varia-
ble-area-nozzle subelement, for example, can be plugged into
the nozzle element socket for variable-area nozzle computa-
tion. Sockets on an element need not be filled; default values
will be used if left empty.

Element and Subelement Classes

The abstract class “WATEelement’ encapsulates the com-
mon structural components of a gas turbine engine. These
component classes and their inheritance hierarchy are shown
in Figure 1. In the entire code, the interaction between differ-
ent classes is only through messages.

Interaction With the Thermodynamic Cycle Model

WATE++ is designed to function with the thermodynamic
cycle model within the NPSS framework, as shown in Fig-
ure 2. The thermo design point case of the thermodynamic
cycle model can be used to provide engine cycle data required
for sizing the engine components, or additional off-design
points can be run and the output data will be scanned for
maximum conditions of airflows, pressures, or temperatures
for each component. In order to produce the most accurate
weight estimate, the off-design cases should encompass the
maximum performance level required for each engine compo-
nent. All components that contribute weight must also be
included in the thermodynamic cycle model.

The development of NPSS was a cooperative effort
between NASA and other government agencies, industry, and
universities to integrate propulsion technologies with high-
performance computing and communication technologies into
a complete system for performing detailed full-engine
simulations (Fig. 6). It consists of three main elements: (1) the
engineering application models, (2) the system sofiware for
the simulation environment, and (3) the high-performance
computing platform. To facilitate the timely and cost-effective
capture of complex physical processes, NPSS uses object-
oriented technologies such as C++ objects to encapsulate

individual engine components and Object Request Brokers The ultimate goal of NPSS is to create a “numerical test

(ORB’s) from the Common Object Request Broker cell” that enables engineers to examine various design options
Architecture for object communication and deployment across numerically and minimize the number of costly and time-
heterogeneous computing platforms. consuming real life tests.

|Weight elementl

I

Splitter
Compressor
- Sockets for frame, gearbox,
Axial : .
— disk, pressure-ratio-versus-
compressor .
tip-speed curve
Fan
HPC
LPC
|| Centrifugal
compressor
—l Burner I I Socket for frame |

Turbine

ISockets for frame, disk |

Sockets for thrust reverser,
_@ mixer-ejector, nozzle plug,
variable-geometry nozzle,
- acoustic liner
Shaft Sockets for ball and roller
-1 bearings
Low spool shaft
High spool shaft
Sockets for frame, thrust
—{ buwet]
reverser

Figure 1.—WATE++ component inheritance architecture.

NASA/TM—2009-215656 3

Thermodynamic
input

Design and
off-design points

Thermodynamic
cycle model

Performance
data array

Thermo-
dynamic
data

Figure 2.—NPSS framework.

Material Database

———————————— Cycl
| Nextcycle anglt/:is WATE++ data
i point completed collection
Yes
Y Engine weight/
WATE++ input - WATET » dimension
mol © output
Engine flow- Engine
path display flowpath
routine drawing

TABLE 1.—LIST OF MATERIALS IN WATE++

MATERIAL DATABASE
The material database in WATE++ consists qf materlal' data TieALaY | MARMB09 | Inconal708 | Udimet710
of most of the commonly-used aerospace materials. The list of :
materials is shown in Table 1. The object WATEmaterial TH17 Wi-52 Inconel-718 | Waspaloy
allows the user to enter the material name to specify which Tr6042 IN-100 TD Nickel p—
material property table to use. Material properties will be
automatically set using the material property table unless the Alloy 713C | Hastelloy-X | Haynes-188 | Rene-80
user chooses to qverride the?m. The user can override a givgn Alloy 713LC | Hastelloy-S L-605 Rene-95
property by defmlpg a function or t.'flble vylth the same material Alloy-901 FCorelL B A6 410 sl
name within the given WATEmaterial object.
B-1900 Inconel-601 N-155 4130 steel
WATE+H+ Illpllt and Olltpllt IN-100 Inconel-617 V-67 4340 steel
MAR-M247 | Ihconel-625 | Udimet-500 | 17-4PH steel
' The basic format of a WATE++ input file is text—ba'sed. The MAR-M202 | Inconel-690 | Udimet-700
input procedures can be broken down into three main steps:

(1) creation of objects, (2) assignment of values to variables,
and (3) commands. The input file is read sequentially so
normally an object will be created then values assigned to its
variables and the process repeated with the next object. Once
all the objects have been declared then commands are made to
the code. An example of WATE++ input for an engine fan is
shown in Appendix A.

NASA/TM—2009-215656

A data-viewer object, which uniquely determines which
variables to output as well as its format, has been created to
generate WATE++ output file. An example of WATE++
output is shown in Appendix B.

WATE+H Execution

WATE+ components are contained within WATEassem-
bly. Execution of the WATE++ components happens in two
phases. The first phase is the “COLLECT” phase, where the
WATE+ components query the thermodynamic cycle model
as it runs to determine maximum values of temperatures and
pressures and other parameters that WATE++ will later use to
calculate weights and lengths. At some point, the WATE++
components will be placed in the “CALCULATE?” state. The
WATEassembly can then be executed directly, by calling the
run() function on it, and this will cause all of the WATE++
components to perform their calculations. An engine flowpath
plot can be obtained by instantiating a WATEsvgViewer object
inside the WATEassembly.

Validation of WATE++ Code

The validation of WATE++ has been done by using it to
perform an engine sizing and weight calculation for a
300-passenger aircraft engine (GE90 lass). The results are
compared with those calculated by the FORTRAN WATE in
Table 2. Both versions of the code produce essentially identic-
al results. The flowpath of the engine is shown in Figure 3.

80
70 |
60
50 |
40
30 |
20
10 |

R
iJ,,

20

/-

D 4

\
- \\

-80 60 40 -20 O 40 60 80

\\ “. !fl’l'nntn

l

1]

. | & r[uﬁﬂ*

100

TABLE 2.—A COMPARISON OF ENGINE WEIGHT
AND DIMENSIONS OUTPUT BETWEEN WATE++

AND WATE (FORTRAN)
WATE++ WATE Percent
difference
Bare engine, wt./Ib 16430 16428 0.01
Total engine, wt./lb 18156 18154 0.01
Inlet/nacelle, wt./Ib 1891 1892 0.05
Engine pod, wt./lb 20047 20046 0.04
Length, in. 202.8 203.0 0.10
Pod length, in. 263.1 263.3 0.08
Fan cowl length, in. 207.6 2076 | @ --—
Engine maximum 122.7 1227 | -—-
diameter, in.
Nacelle maximum 150.8 150.9 0.07
diameter, in.
Engine pod c.g. 794 78.6 0.25
location, in.
il I l W
T !l l YT
oy | N
1l | ”-vl,l IT ==
120 140 160 180 200 220 240 260 280

Figure 3.—300-passenger engine flowpath model generated by WATE++.

NASA/TM—2009-215656

Summary

In this paper, the architecture of WATE++, an object-
oriented engine-weight estimation code, has been described.
The code was converted from the structured FORTRAN
version of the code, to improve its maintainability and exten-
sibility. It was accomplished by carefully designing the object
classes and choosing the exact data type to suit the application.
The code has been validated by comparing the results that it
calculated with those calculated by the FORTRAN version.
Both versions of the code give essentially identical results, as
should be the case.

References

1. Onat, E. and Klees, G.W., “A Method to Estimate Weight
and Dimensions of Large and Small Gas Turbine Engines,”
NASA CR-159481, 1979.

NASA/TM—2009-215656

. A Computer Code for Gas Turbine Engine Weight and
Life Estimation. Michael T. Tong, Ian Halliwell, Louis
Ghosn, ASME Journal of Engineering for Gas Turbine and
Power, volume 126, no. 2, April 2004.

. NASA-Industry Cooperative Effort: “Numerical Propul-
sion System Simulation User Guide and Reference,” Soft-
ware Release NPSS 1.5.0, May 7, 2002.

. Booch. G., “Object-Oriented Design with Applications,’
The Benjamin/Cummings Publishing Company, Inc.,
Redwood City, California, 1991.

. Lorenz, M. and Kidd, J.,, “Object-Oriented Software
Metrics,” Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey, 1994,

. Lytle, JK., “The Numerical Propulsion System Simula-
tion: An Overview,” NASA TM—2000-209915, 2000.

>

Appendix A
Wate++ Input File For a Gas Turbine Engine Fan—An Example

//

// FAN

/7

WATEhiBypassFan WATE Fan {
componentRef = "Fan";

numContainedStages = 1;
MNin = 0.630;
MNout= 0.460;
stglMaxPR = 1.7;
hubTipRatioIn = 0.30;

numBlades_in = 22;

calcStatorWt = FALSE;

bladeMaterial.type = "Ti_17";

statorMaterial.type = "Ti_6Al_4v";

real bladeMaterial.rho(real) { return 0.096; }

real statorMaterial.rho(real) { return 0.1; }

real containmentMaterial.rho(real) { return 0.051; }
contRingRadialThickness = 2;

bladeSolidity = 1.5;

bladeVolumeFactor = 0.024;

stglBladeAR = 2.045;

lastStgBladeAR = 2.045;

bladeTaperRatio = 1.40;

maxSpdRatio_in = 1.000;

s_Nmech = 1.;

geometryType = "ConstTipRadius";

radiusChangeStg = 1;
numStatorBlades_in = 54
statorVolumeFactor = 0.
stglStatorAR = 3.754;
lastStgStatorAR = 3.754;

RSlenRatioPreSplit = 0.65;
RSlenRatioPostSplit = 1.85;
RSlenRatioBypass = 0.78;

real caseMaterial.rho(real) { return 0.1; }
real igvMaterial.rho(real) { return 0.1; }

i
14;

ductLenInnerRR = 0.0;

statorSolidity = 0.0;
stglStatorRotorLR =1.0;
lastStgStatorRotorLR = 1.0;

Table TB_PRvsTipSpd(real pratio) {
pratio = {1., 1.18, 1.36, 1.43, 1.503, 1.581, 1.667,
1.775, 1.9}
utip = {600., 885.,1100.,1200., 1300., 1400.,
1500., 1600.,1700.}

WATEdiskMTC S_Disk {
shapel = "OPTIMUM";
material.type = "Ti_17";
shaftRef = "WATE LP Shaft";

WATEframeCustom S_RearFrame {
isFrontFrame = FALSE;
isStator = TRUE;
real material.rho(real) { return 0.16; }
real supportMaterial.rho(real) { return 0.1; }
volumeFactor = 0.05;
aspectRatio_in = 2.90;
supportThickness = 0.1;
gapFrameLengthRatio = 0.35;

numBlades_in = 54;

passThruComp = "WATE Ducté";

connectPoint = "REAR";

rearBearingRef = "WATE_LP_Shaft.bearingl";

WATEtowerShaft S TowerShaft {
HPX = 500;
diamRatio = 0.90;

NASA/TM—2009-215656 7

000°0
000°0

€E¥E"T9
000°0
€E¥E"T9
000°0
0C6°9¢€
0C6°9¢€
8¢s°8¢C
vI8°1C
¢69°61
¥S6°91
6S8° %1
¢c9°81
8€0°9¢C
€967 1€
€E¥E"T9
€E¥E"T9
20¥ ¥LSNMA

000°0
000°0

€07 81
000°0
16L°2¢t
000°0
8%L°%C
8%L°%C
8%L°%C
€0L°91
LSL 9T
YOT°TT
C0B°ET
ITE"6
I%6°6T1
99§°S¢
16L°2¢t
AR A4
ZT¥ ALSNMA

000°0
000°0

000°0
€E¥E"T9
€E¥E"T9
¥L0°S€E
0C6°9¢€
0C6°9¢€
vI8°1C
09L°TC
¥S6°91
6S8° %1
868 %1
8€0°9¢C
8€0°9¢C
€66°CE
16L°2¢t
€E¥E"T9
TO¥ ¥ILSNMA

000°0
000°0

000°0
LS8 T%
16L°2¢t
188" LC
8%L°%C
8%L°%C
€0L°91
LSL 9T
YOT°TT
C0B°ET
€9L°€T
I%6°6T1
I%6°6T1
1se°Le
AR A4
AR A4
II¥ ¥ILSNMa

000°0
000°0

000°0
€E¥E"T9
€E¥E"T9
0C6°9¢€
0C6°9¢€
vI8°1C
09L°TC
¥S6°91
6S8° %1
868 %1
8€0°9¢C
8€0°9¢C
€66°CE
16L°2¢t
€E¥E"T9
000°0
¢0¥ ¥Lsdn

6%C°0¢€
€0S°6

006°0S
SS8°6T
996° 1S
WIT

000°0
000°0

000°0
16L°2¢t
16L°2¢t
8%L°%C
8%L°%C
€0L°91
LSL 9T
YOT°TT
C0B°ET
€9L°€T
I%6°6T1
I%6°6T1
1se°Le
¥§S-Le
¥§S-Le
000°0
¢I¥ ALSdn

[44 37 v0% " €%S

€0S°6 0L0°TEE

006°0S 000°0

SS8°6T 000°0

cI8 19 6LE°LBTT

LT AN A
000°0 000°0
000°0 000°0
000°0 000°0
€E¥E"T9 16L°2¢t
€E¥E"T9 16L°2¢t
0C6°9¢€ 8%L°%C
0C6°9¢€ 8%L°%C
8¢s°8¢C 8%L°%C
vI8°1C €0L°91
¢69°61 LSL 9T
¥S6°91 YOT 1T
6S8° %1 C0B°ET
¢c9°81 ITE"6
8€0°9¢C I%6°6T1
€967 1€ 99§°S¢
€66°CE 1se°Le
€E¥E"T9 ¥§S-Le
€E¥E"T9 €07 81
TOY¥ ¥ILsdn TI¥ AL

S0¥%°6¢€6
296 9%%

ISL°TL6
2C6°¥%0¢€
¥88°98%1
YOLVILS

000°0
000°0

000°0
¢cT LY
75987 €6
S8L°20
gL LB
8L5°08
98 0%
96C°1¢E
¥SL°T1C
¥S9°ET
¥S¥°C1
¥SS° 19
A4
86%°8¢C
86%°%C
86%°%C
Sdn NAT N

€6%°T90C
¢L9°996

8T8°0S0T
L98°€9¢
1S€°2SCT
YOLOYA

€08°8T
L00° 9%

Z¥€"09
T 89€E° €S
€¥0°Ct
4 90S°ST
T 00L°9
T [44 37
T 000°6
T €0S°6
T 00T"8
T 002°T
T 006°0S
00T €T
SS8°6T
000° %
000°0
86%°%C

0E"¥HSE
0L %%LT

LS5°¢220¢
6L°899
19°920%
IM LOL

L6EY 6L
G¢8°0ST
§89°¢cCl
§9S6°L0T
LTT"€9C
§8L°20¢

8°9%00¢
TO°T68T
8°GST8T
9¢LT
8°6C¥9T
9%°9¢¢t

89T
T 9CIT

¥9S1
S991
v6
[X4
LE
4423
1€
YYLT
€29
0T
(444
LZE
899
cT

920%

DY NAT dWOD LM

Jjdwrexy uy—Arewwng yndynQ 3Y3A JUISUH ++3JBAA

q xipuaddy

IdT JLVM'eHLVYM
LdH HIVM eHI¥M

DdH HALVM'eHLVYM
DdT HLVM'eHLYM
ued HIVM"eTLVM

NOTLVDOT DD dOd HNIDNA
YHLANVYIA XV dTTHOYN
YHLANVIA XYW dANIDNA
HIDNAT TMOD NV

HIODNAT dOd HNIDNHA TV.LOL
HIONAT ANIDNH

LHDIAM dOd HNTIDNA TV.LOL
IHDIHEM HTTHDVN/LATINT
LHDIAM ANIDNH TYIOL
LHDIAM SHIVOSSHIDV
LHDTHM HNTIDNH HIVH
LHDIAM INNOW ANIDNH

33eys” dH HLYM" BHLVM
37eys dT HIVM°eELVM

39TUl HLVM' eHLYM
zzZoN dAd HILVM'eHIVM
ST3oNd ALVM' BHLYM
ZZON 910D HIUVM'BHLVM
£€1300N0 HIVM®BHIYM
IdT JLVM'eHLVYM
T13o0d ALVM' BHLVM
ILdH JLVM'eHLVYM
Jouingd HLVM' BHIYM
EPTH HLUM' BHLYM

DdH HALVM'eHLVYM
930oN0 ALVM' eHIVM
DdT HLVM'eHLYM
$30nd HIYM " BELVM
193311dS HIVM' BELYM
ued HIVM®BHIVM

NASA/TM—2009-215656

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
01-12-2009 Technical Memorandum
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

An Object-Oriented Computer Code for Aircraft Engine Weight Estimation

5b. GRANT NUMBER

5¢. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Tong, Michael, T.; Naylor, Bret, A.

5e¢. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 561581.02.08.03.13.03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
National Aeronautics and Space Administration REPORT NUMBER
John H. Glenn Research Center at Lewis Field E-16428-1

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITOR'S
National Aeronautics and Space Administration ACRONYM(S)
Washington, DC 20546-0001 NASA
11. SPONSORING/MONITORING
REPORT NUMBER

NASA/TM-2009-215656; GT2008-50062

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category: 07

Available electronically at http://gltrs.grc.nasa.gov

This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify
the best engine concept amongst several candidates. At NASA Glenn Research Center (GRC), the Weight Analysis of Turbine Engines
(WATE) computer code, originally developed by Boeing Aircraft, has been used to estimate the engine weight of various conceptual engine
designs. The code, written in FORTRAN, was originally developed for NASA in 1979. Since then, substantial improvements have been
made to the code to improve the weight calculations for most of the engine components. Most recently, to improve the maintainability and
extensibility of WATE, the FORTRAN code has been converted into an object-oriented version. The conversion was done within the
NASA’s NPSS (Numerical Propulsion System Simulation) framework. This enables WATE to interact seamlessly with the thermodynamic
cycle model which provides component flow data such as airflows, temperatures, and pressures, etc., that are required for sizing the
components and weight calculations. The tighter integration between the NPSS and WATE would greatly enhance system-level analysis and
optimization capabilities. It also would facilitate the enhancement of the WATE code for next-generation aircraft and space propulsion
systems. In this paper, the architecture of the object-oriented WATE code (or WATE++) is described. Both the FORTRAN and object-
oriented versions of the code are employed to compute the dimensions and weight of a 300-passenger aircraft engine (GE90 class). Both
versions of the code produce essentially identical results as should be the case.

15. SUBJECT TERMS
Aircraft engine; Gas turbine engine; Weight; Object-oriented

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

ABSTRACT OF STI Help Desk (email:help@sti.nasa.gov)
a. REPORT b. ABSTRACT c. THIS PAGES 19b. TELEPHONE NUMBER (inciude area code)
U U {’JAGE 1019} 14 443-757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

