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Abstract

Reliable engine-weight estimation at the conceptual design
stage is critical to the development of new aircraft engines. It
helps to identify the best engine concept amongst several
candidates. At NASA Glenn Research Center (GRC), the
Weight Analysis of Turbine Engines (WATE) computer code,
originally developed by Boeing Aircraft, has been used to
estimate the engine weight of various conceptual engine
designs. The code, written in FORTRAN, was originally
developed for NASA in 1979. Since then, substantial im-
provements have been made to the code to improve the weight
calculations for most of the engine components. Most recent-
ly, to improve the maintainability and extensibility of WATE,
the FORTRAN code has been converted into an object-
oriented version. The conversion was done within the NASA’s
NPSS (Numerical Propulsion System Simulation) framework.
This enables WATE to interact seamlessly with the thermody-
namic cycle model which provides component flow data such
as airflows, temperatures, and pressures, etc. that are required
for sizing the components and weight calculations. The tighter
integration between the NPSS and WATE would greatly
enhance system-level analysis and optimization capabilities. It
also would facilitate the enhancement of the WATE code for
next-generation aircraft and space propulsion systems. In this
paper, the architecture of the object-oriented WATE code (or
WATE++) is described. Both the FORTRAN and object-
oriented versions of the code are employed to compute the
dimensions and weight of a 300-passenger aircraft engine
(GE90 class). Both versions of the code produce essentially
identical results as should be the case.

Introduction

Engine weight is a key design parameter for any new air-
craft. It affects aircraft range and is a key element in fuel burn.
Weight is also considered an indicator of engine cost. Reliable
engine-weight estimation at the conceptual design stage is
critical to the development of new aircraft engines. It helps to
identify the best engine concept amongst several candidates.

At the NASA Glenn Research Center (GRC), the Weight
Analysis of Turbine Engines (WATE) computer code (Ref. 1),
originally developed by Boeing Aircraft, has been used to
estimate the engine weight of various conceptual engine
designs. The code, written in FORTRAN, was originally
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developed for NASA in 1979. It calculated the weight and
dimension of each major engine component, such as compres-
sor, burner, turbines and frames, primarily using a semi-
empirical method augmented with analytical calculations for
specific component elements. A database of 29 engines was
used to develop empirical relationships used to calculate
component weight and dimensions. This method provided an
accuracy of approximately +10 percent of engine weight for
the database engine designs.

Since 1979, substantial improvements have been made to
the computer code by NASA (Ref. 2), and McDonnell Doug-
las Corporation, to enhance the capability of WATE and to
improve its accuracy. Many of the empirical relationships
have been replaced with analytical weight and dimension
calculations. The primary method used to calculate weight
throughout the code is to calculate material volume and mul-
tiply by material density. An approach is used where the stress
level, maximum temperature and pressure, material, geometry,
stage loading, hub-tip ratio, blade/vane counts, and shaft speed
are used to determine the component weight. Flow properties
such as corrected mass flow, temperatures, pressures, etc. on
each component are obtained from the thermodynamic cycle
analysis. This method accounts for more of the individual
parts that make up an engine component than an empirical
method. A material database, consisting of the material data of
most of the commonly-used aerospace materials, was also
incorporated into WATE. In addition to engine component
weight calculation improvements, a large number of changes
were made to the WATE code to improve the graphical output
of the program. Component graphic representation has been
greatly enhanced to provide a more detailed picture of the
flowpath to assist the user in determining the correctness of
the flowpath. The code was also modified to allow the user to
use controls and limiters when developing the flowpath. This
capability saves the user time in assuring the adjacent compo-
nents will connect correctly. An optimizing capability was
added as well to allow optimization of the flowpath on either
weight or dimensions.

Recently, to improve the maintainability and extensibility
of WATE, GRC analysts converted the FORTRAN code into
an object-oriented version. The conversion was done within
the NASA’s NPSS (Numerical Propulsion System Simulation)
(Ref. 3) framework. This enables WATE to interact
secamlessly with the thermodynamic cycle model which
provides component flow data such as corrected airflows,



temperatures, and pressures, etc., that are required for sizing
the components and weight calculations.

The object-oriented programming is already an established
software development method and its advantages over
procedure-oriented programming like FORTRAN have been
widely recognized (Refs. 4 and 5). The main ideas behind
object-orientation are data abstraction, inheritance, polymor-
phism and dynamic binding. This paper describes the
approach to the conversion of the FORTRAN engine-weight
estimation code into an object-oriented code using NPSS
interpreted language. The engine-weight modeling system and
its object-oriented architecture are described. Validation of the
code is presented.

WATE+ Architecture

The object-oriented WATE (or WATE++) calculates the
weight and dimension of each major engine component,
relative to a reference point, usually the design point. The
WATE++ architecture is intended to be flexible and extensi-
ble. It exploits the capabilities of object-oriented programming
(inheritance, polymorphism, and encapsulation), as well as
modemn object-oriented concepts including framework and
component objects. Inheritance is used to concentrate code
common to multiple component types in abstract component
classes, preventing code duplication and enhancing code
maintainability. For example, the ‘Axial Compressor class’ in
Figure 1 represents an abstract ancestor incorporating all
functionality common to fan, low-pressure compressor, and
high-pressure compressor. Encapsulation enhances code
maintainability and readability by concentrating all data decla-
rations and procedures in a single code unit. Polymorphism is
the ability of parameters to represent different object classes
and is extensively applied in WATE++. It allows the frame-
work to get the correct behavior of each WATE++ element
without knowing what the specific type of each one is. For
example, the WATE++ has an abstract identifier ‘calcGeome-
try’ to calculate the geometry of any component in the model.
During simulation, ‘calcGeometry’ subsequently represents all
WATE+ components and runs their geometry calculations so
that the engine flowpath can be drawn.

There are three primary object types that are used in the
WATE++ calculations: elements, ports, and subelements.

Elements

WATE++ celements perform high level component
calculations. Elements may have many plug locations termed
sockets, into which computational blocks termed subelements
may be attached. The compressor element, for example,
contains a socket into which the subelement that does the disk-
sizing calculation is attached. It also has sockets into which
the user may plug subelements for computing the gearbox and
frame weights.
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Ports

Ports provide data connectivity between elements. In
WATE++, ports are used to transfer geometry information
(such as radius and axial position) between elements. It also
provides mechanical links from one element to another. For
example, a port is used to connect the shaft with the compres-
sor and turbine.

Subelements

Subelements perform specific, detailed computations. They
generally only work when connected to sockets. WATE++
supports multiple types of subelements that can plug into the
element sockets. Each subelement performs detailed computa-
tions that impact the element’s overall calculations. The varia-
ble-area-nozzle subelement, for example, can be plugged into
the nozzle element socket for variable-area nozzle computa-
tion. Sockets on an element need not be filled; default values
will be used if left empty.

Element and Subelement Classes

The abstract class “WATEelement’ encapsulates the com-
mon structural components of a gas turbine engine. These
component classes and their inheritance hierarchy are shown
in Figure 1. In the entire code, the interaction between differ-
ent classes is only through messages.

Interaction With the Thermodynamic Cycle Model

WATE++ is designed to function with the thermodynamic
cycle model within the NPSS framework, as shown in Fig-
ure 2. The thermo design point case of the thermodynamic
cycle model can be used to provide engine cycle data required
for sizing the engine components, or additional off-design
points can be run and the output data will be scanned for
maximum conditions of airflows, pressures, or temperatures
for each component. In order to produce the most accurate
weight estimate, the off-design cases should encompass the
maximum performance level required for each engine compo-
nent. All components that contribute weight must also be
included in the thermodynamic cycle model.

The development of NPSS was a cooperative effort
between NASA and other government agencies, industry, and
universities to integrate propulsion technologies with high-
performance computing and communication technologies into
a complete system for performing detailed full-engine
simulations (Fig. 6). It consists of three main elements: (1) the
engineering application models, (2) the system sofiware for
the simulation environment, and (3) the high-performance
computing platform. To facilitate the timely and cost-effective
capture of complex physical processes, NPSS uses object-
oriented technologies such as C++ objects to encapsulate



individual engine components and Object Request Brokers The ultimate goal of NPSS is to create a “numerical test

(ORB’s) from the Common Object Request Broker cell” that enables engineers to examine various design options
Architecture for object communication and deployment across numerically and minimize the number of costly and time-
heterogeneous computing platforms. consuming real life tests.
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Figure 1.—WATE++ component inheritance architecture.
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TABLE 1.—LIST OF MATERIALS IN WATE++

MATERIAL DATABASE
The material database in WATE++ consists qf materlal' data TieALaY | MARMB09 | Inconal708 | Udimet710
of most of the commonly-used aerospace materials. The list of :
materials is shown in Table 1. The object WATEmaterial TH17 Wi-52 Inconel-718 | Waspaloy
allows the user to enter the material name to specify which Tr6042 IN-100 TD Nickel p—
material property table to use. Material properties will be
automatically set using the material property table unless the Alloy 713C | Hastelloy-X | Haynes-188 | Rene-80
user chooses to qverride the?m. The user can override a givgn Alloy 713LC | Hastelloy-S L-605 Rene-95
property by defmlpg a function or t.'flble vylth the same material Alloy-901 FCorelL B A6 410 sl
name within the given WATEmaterial object.
B-1900 Inconel-601 N-155 4130 steel
WATE+H+ Illpllt and Olltpllt IN-100 Inconel-617 V-67 4340 steel
MAR-M247 | Ihconel-625 | Udimet-500 | 17-4PH steel
' The basic format of a WATE++ input file is text—ba'sed. The MAR-M202 | Inconel-690 | Udimet-700
input procedures can be broken down into three main steps:

(1) creation of objects, (2) assignment of values to variables,
and (3) commands. The input file is read sequentially so
normally an object will be created then values assigned to its
variables and the process repeated with the next object. Once
all the objects have been declared then commands are made to
the code. An example of WATE++ input for an engine fan is
shown in Appendix A.

NASA/TM—2009-215656

A data-viewer object, which uniquely determines which
variables to output as well as its format, has been created to
generate WATE++ output file. An example of WATE++
output is shown in Appendix B.



WATE+H Execution

WATE+ components are contained within WATEassem-
bly. Execution of the WATE++ components happens in two
phases. The first phase is the “COLLECT” phase, where the
WATE+ components query the thermodynamic cycle model
as it runs to determine maximum values of temperatures and
pressures and other parameters that WATE++ will later use to
calculate weights and lengths. At some point, the WATE++
components will be placed in the “CALCULATE?” state. The
WATEassembly can then be executed directly, by calling the
run() function on it, and this will cause all of the WATE++
components to perform their calculations. An engine flowpath
plot can be obtained by instantiating a WATEsvgViewer object
inside the WATEassembly.

Validation of WATE++ Code

The validation of WATE++ has been done by using it to
perform an engine sizing and weight calculation for a
300-passenger aircraft engine (GE90 lass). The results are
compared with those calculated by the FORTRAN WATE in
Table 2. Both versions of the code produce essentially identic-
al results. The flowpath of the engine is shown in Figure 3.
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TABLE 2.—A COMPARISON OF ENGINE WEIGHT
AND DIMENSIONS OUTPUT BETWEEN WATE++

AND WATE (FORTRAN)
WATE++ WATE Percent
difference
Bare engine, wt./Ib 16430 16428 0.01
Total engine, wt./lb 18156 18154 0.01
Inlet/nacelle, wt./Ib 1891 1892 0.05
Engine pod, wt./lb 20047 20046 0.04
Length, in. 202.8 203.0 0.10
Pod length, in. 263.1 263.3 0.08
Fan cowl length, in. 207.6 2076 | @ --—
Engine maximum 122.7 1227 | -—-
diameter, in.
Nacelle maximum 150.8 150.9 0.07
diameter, in.
Engine pod c.g. 794 78.6 0.25
location, in.
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Figure 3.—300-passenger engine flowpath model generated by WATE++.
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Summary

In this paper, the architecture of WATE++, an object-
oriented engine-weight estimation code, has been described.
The code was converted from the structured FORTRAN
version of the code, to improve its maintainability and exten-
sibility. It was accomplished by carefully designing the object
classes and choosing the exact data type to suit the application.
The code has been validated by comparing the results that it
calculated with those calculated by the FORTRAN version.
Both versions of the code give essentially identical results, as
should be the case.
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Appendix A
Wate++ Input File For a Gas Turbine Engine Fan—An Example

//

// FAN

/7

WATEhiBypassFan WATE Fan {
componentRef = "Fan";

numContainedStages = 1;
MNin = 0.630;
MNout= 0.460;
stglMaxPR = 1.7;
hubTipRatioIn = 0.30;

numBlades_in = 22;

calcStatorWt = FALSE;

bladeMaterial.type = "Ti_17";

statorMaterial.type = "Ti_6Al_4v";

real bladeMaterial.rho(real) { return 0.096; }

real statorMaterial.rho(real) { return 0.1; }

real containmentMaterial.rho(real) { return 0.051; }
contRingRadialThickness = 2;

bladeSolidity = 1.5;

bladeVolumeFactor = 0.024;

stglBladeAR = 2.045;

lastStgBladeAR = 2.045;

bladeTaperRatio = 1.40;

maxSpdRatio_in = 1.000;

s_Nmech = 1.;

geometryType = "ConstTipRadius";

radiusChangeStg = 1;
numStatorBlades_in = 54
statorVolumeFactor = 0.
stglStatorAR = 3.754;
lastStgStatorAR = 3.754;

RSlenRatioPreSplit = 0.65;
RSlenRatioPostSplit = 1.85;
RSlenRatioBypass = 0.78;

real caseMaterial.rho(real) { return 0.1; }
real igvMaterial.rho(real) { return 0.1; }

i
14;

ductLenInnerRR = 0.0;

statorSolidity = 0.0;
stglStatorRotorLR =1.0;
lastStgStatorRotorLR = 1.0;

Table TB_PRvsTipSpd(real pratio) {
pratio = {1., 1.18, 1.36, 1.43, 1.503, 1.581, 1.667,
1.775, 1.9}
utip = {600., 885.,1100.,1200., 1300., 1400.,
1500., 1600.,1700.}

WATEdiskMTC S_Disk {
shapel = "OPTIMUM";
material.type = "Ti_17";
shaftRef = "WATE LP Shaft";

WATEframeCustom S_RearFrame {
isFrontFrame = FALSE;
isStator = TRUE;
real material.rho(real) { return 0.16; }
real supportMaterial.rho(real) { return 0.1; }
volumeFactor = 0.05;
aspectRatio_in = 2.90;
supportThickness = 0.1;
gapFrameLengthRatio = 0.35;

numBlades_in = 54;

passThruComp = "WATE Ducté";

connectPoint = "REAR";

rearBearingRef = "WATE_LP_Shaft.bearingl";

WATEtowerShaft S TowerShaft {
HPX = 500;
diamRatio = 0.90;
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