

NASA's Long-term Debris Environment and Active Debris Removal Modeling Activities

J.-C. Liou NASA Orbital Debris Program Office Johnson Space Center, Houston, Texas

International Conference on Orbital Debris Removal 8-10 December 2009, Chantilly, Virginia

Outline

- Review of the long-term debris environment modeling activities at the NASA Orbital Debris Program Office since 2004
- Updated assessments of the environment
- Necessity to model the effectiveness of debris removal technologies

A Key Orbital Debris Evolutionary Model

- LEGEND, a <u>LE</u>O-to-<u>G</u>EO <u>En</u>vironment <u>D</u>ebris model, was developed between 2002 and 2004
 - Is a high fidelity three-dimensional numerical simulation model with the capability to treat objects individually
 - Uses a deterministic approach to mimic the historical debris environment based on recorded launches and breakups
 - Uses a Monte Carlo approach and a reliable collision probability evaluation algorithm to simulate the future breakups and the growth of the debris populations
 - Future debris environment is analyzed based on specified launch traffic cycle, postmission disposal, and active debris removal options

LEGEND Simulated LEO Collisions (V_{imp})

• Average Vimp~12 km/s; ~50% collisions have Vimp > 14 km/s

LEGEND Simulated LEO Collisions (RAAN)

 Collisions are more likely to occur when the two objects' right ascensions of the ascending node (RAAN) are 180° apart

An Assessment of the LEO Environment

A major LEGEND study on the debris environment was conducted in 2005

- "The current debris population in the LEO region has reached the point where the environment is unstable and collisions will become the most dominant debris-generating mechanism in the future."
- "Only remediation of the near-Earth environment the removal of existing large objects from orbit – can prevent future problems for research in and commercialization of space."

- Liou and Johnson, **Science**, 20 January 2006

Previous Studies

- Increasing debris population may lead to collision cascade (Kessler and Cour-Palais 1978; Eichler and Rex 1989)
- The "critical density" concept was pioneered by Kessler (1991) to describe the threshold of the instability
- Various analytical, semi-analytical, and numerical studies, based on different model assumptions and different future traffic rates (constant, increased, with or without postmission disposal, etc.) have been performed
 - Su (1993); Rossi et al. (1994); Anselmo et al. (1997); Kessler (2000); Kessler and Anz-Meador (2001); Krisko et al. (2001)
- These study results indicate that, as the space activities continue, the LEO debris populations at some altitudes are unstable and population growth may be inevitable

Instability of the Current LEO Environment

(no new launches beyond 1/1/2006)

- Collision fragments replace other decaying debris through the next 50 years, keeping the total population approximately constant
- Beyond 2055, the rate of decaying debris decreases, leading to a net increase in the overall satellite population due to collisions

A Realistic Assessment

- In reality, the situation will be worse than the "no new launches" scenario as
 - satellites launches will continue
 - major breakups may continue to occur (e.g., Fengyun-1C, Briz-M, Iridium 33/Cosmos 2251)
- Postmission disposal (such as a 25-year decay rule) will help, but will be insufficient to prevent the selfgenerating phenomenon from happening
- To preserve the near-Earth space for future generations, active debris removal (ADR) must be considered

LEO Environment After FY-1C and Iridium/Cosmos Breakups

• Solid lines: 1957-to-2006, no new launches beyond 2006

• Dashed lines: 1957-to-2009, no new launches beyond 2009

NASA

Collisions in LEO

Active Debris Removal Modeling

- The NASA Orbital Debris Program Office initiated the LEGEND ADR modeling study in late 2006
 - Develop simple, reliable, and objective ADR selection criteria
 - Quantify the effectiveness of different ADR scenarios
 - Explore various ADR strategies to stabilize the future debris environment
- The results indicate that the key to stabilize the future LEO environment in the next 200 years
 - A good implementation of the commonly adopted mitigation measures (passivation, 25-year rule, etc.)
 - An active debris removal of about five objects per year
 - Select RSOs with the highest [M × Pc]

LEGEND Benchmark Scenario

LEGEND baseline scenario (PMD25):

- 1. Include (1957 to 31 Dec 2006) + FY-1C fragments + 200 years
- 2. Repeat (1999-to-2006) launch traffic
- 3. Allow no explosions for R/Bs and S/Cs launched after 2006
- 4. Include objects 10 cm and larger in collision consideration
- 5. Move R/Bs to 25-year decay orbits after launch
- 6. Move S/Cs to 25-year decay orbits or LEO collection orbits (depending on ΔV) after 8 years of mission lifetime
- 7. Set postmission disposal success rate to 90%
- 8. Complete 100 Monte Carlo runs
- 9. Focus on the 10 cm and larger populations

ADR Scenarios

LEGEND ADR scenarios (PMD + ADR):

- 1. through 9. are identical to those in the baseline scenario
- 10. Start active debris removal in 2020
- 11. Follow RSO selection criteria
 - Exclude operational S/Cs (assuming mission lifetime of 8 years)
 - Exclude objects with perigee altitude above 2000 km
 - Exclude objects with eccentricity greater than 0.5
 - Exclude fragments
 - Select objects with the highest [mass \times P_c], where P_c is the instantaneous collision probability at the beginning of the year
- 12. Test two removal rates. After objects are selected (at the beginning of each year), remove them from the simulated environment immediately
 - 2 objects per year (ADR02)
 - 5 objects per year (ADR05)

LEO Population Control

- PMD scenario predicts the LEO populations would increase by ~75% in 200 years
- The population growth could be reduced by half with a removal rate of 2 obj/year
- LEO environment could be stabilized with a removal rate of 5 obj/year

Spatial Density of Objects 10 cm and Larger

• The ADR selection criterion, mass \times P_c, successfully removes objects from high collision activity regions and reduces the overall population growth.

Optimize ADR Target Selection

- Different parameters can be defined to quantify the effectiveness of the ADR target selection criteria
 - Population growth (≥10 cm or others)
 - Collision activities
 - Mass, spatial density, risks (conjunctions, damage) to selected payloads, risks to human space activities, etc.

Effective Reduction Factor (ERF), ADR05	
Number of objects removed via ADR through 2206 (A)	935
Reduction in LEO ≥10 cm objects by 2206 (B)	7,196
ERF by 2206 = (B) / (A)	7.7

Collision Reduction, ADR05	
Number of objects removed via ADR through 2206 (A)	935
Reduction in cumulative collisions by 2206 (C)	17.9
(A) / (C)	52

Concluding Remarks (1/2)

Key to stabilize the future LEO environment

- A good implementation of the commonly adopted mitigation measures (passivation, 25-year rule, etc.)
- An active debris removal of about five objects per year starting in the near future (~2020)
 - Select RSOs with the highest [M × Pc]
- The environment can be better than what it is today if more than 5 objects per year are removed

GEO and MEO

The population growth is moderate in the next 200 years

Concluding Remarks (2/2)

- The challenges ahead
 - Community consensus, recognition, and commitment
 - Technology
 - Cost
 - Ownership, legal, liability, policy, etc.
- Alternative target selection criteria (in size, altitude, inclination, class, etc.) may be more practical, but will need to be carefully evaluated to maximize the benefit-cost ratio of active debris removal

