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Landscape characterization can be viewed
as an attempt to invert the forward map-
ping of the simulator and recover the in-
puts that produce a particular output.

Given that a single simulation run
can take days or weeks to complete
even on a large computing cluster, Sim-
Learn attempts to reduce costs by re-
ducing the number of simulations
needed to effect discoveries. Unlike
conventional data-mining methods that
are applied to static predefined
datasets, SimLearn involves an iterative
process in which a “most informative”
dataset is constructed dynamically by
using the simulator as an oracle. On
each iteration, the algorithm models
the knowledge it has gained through
previous simulation trials and then
chooses which simulation trials to run
next. Running these trials through the
simulator produces new data in the
form of input-output pairs.

The overall process is embodied in an
algorithm that combines support vector
machines (SVMs) with active learning.
SVMs use learning from examples (the
examples are the input-output pairs gen-
erated by running the simulator) and a
principle called maximum margin to de-
rive predictors that generalize well to new
inputs. In SimLearn, the SVM plays the

role of modeling the knowledge that has
been gained through previous simulation
trials. Active learning is used to deter-
mine which new input points would be
most informative if their output were
known. The selected input points are run
through the simulator to generate new
information that can be used to refine
the SVM. The process is then repeated.
SimLearn carefully balances exploration
(semi-randomly searching around the
input space) versus exploitation (using
the current state of knowledge to con-
duct a tightly focused search).

During each iteration, SimLearn uses
not one, but an ensemble of SVMs. Each
SVM in the ensemble is characterized by
different hyperparameters that control
various aspects of the learned predictor
— for example, whether the predictor is
constrained to be very smooth (nearby
points in input space lead to similar out-
put predictions) or whether the predic-
tor is allowed to be “bumpy.” The various
SVMs will have different preferences
about which input points they would like
to run through the simulator next. Sim-
Learn includes a formal mechanism for
balancing the ensemble SVM prefer-
ences so that a single choice can be
made for the next set of trials.

Initial tests with two real-world scien-

tific simulators have shown that Sim-
Learn is effective in reducing the number
of trials needed to accurately identify the
regions of input space leading to particu-
lar output behaviors. In the first applica-
tion involving simulations of collisions be-
tween asteroids and the gravitational
interactions between the resulting frag-
ments, parameters of the two colliding as-
teroids that lead to binary pairs (gravita-
tionally bound fragments in orbit around
a common center of mass) were identi-
fied using only half the simulation trials
needed to obtain equivalent knowledge
from a grid-based sampling approach. In
the second application involving simula-
tions of the Earth's magnetosphere, there
was a corresponding reduction by a fac-
tor of six in the number of simulation tri-
als required.

This work was performed by Michael Burl,
Dennis DeCoste, Dominic Mazzoni, and
Lucas Scharenbroich of Caltech and Brian
Enke and William Merline of the Southwest
Research Institute for NASA’s Jet Propulsion
Laboratory. Further information is contained
in a TSP (see page 1).

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California
Institute of Technology at (626) 395-2322.
Refer to NPO-43399.

An improved method has been de-
vised for controlling the DC bias ap-
plied to an electro-optical crystal that is
part of a Mach-Zehnder modulator that
generates low-duty-cycle optical pulses
for a pulse-position modulation (PPM)
optical data-communication system. In
such a system, it is desirable to mini-
mize the transmission of light during
the intervals between pulses, and for
this purpose, it is necessary to maximize
the extinction ratio of the modulator
(the ratio between the power transmit-
ted during an “on” period and the
power transmitted during an “off” pe-
riod). The present method is related to
prior dither error feedback methods,
but unlike in those methods, there is no
need for an auxiliary modulation sub-
system to generate a dithering signal.
Instead, as described below, dither is ef-
fected through alternation of the polar-
ity of the modulation signal.

Electro-Optical Modulator Bias Control Using Bipolar Pulses
Bias is automatically adjusted to maintain maximum extinction during “off” periods.
NASA’s Jet Propulsion Laboratory, Pasadena, California
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Figure 1. A Mach-Zehnder Modulator is a Mach-Zehnder interferometer that includes an electro-opti-
cal crystal for varying the difference between the lengths of its two optical paths. If Vbias is set at the
optimum value, then the output optical power varies as a symmetrical function of VRF.
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The upper part of Figure 1 schematically
depicts a Mach-Zehnder modulator. The
signal applied to the electro-optical crystal
consists of a radio-frequency modulating
pulse signal, VRF, superimposed on a DC
bias Vbias. Maximum extinction occurs dur-
ing the “off” (VRF = 0) period if Vbias is set at
a value that makes the two optical paths dif-
fer by an odd integer multiple of a half wave-
length so that the beams traveling along the
two paths interfere destructively at the out-
put beam splitter. Assuming that the modu-
lating pulse signal VRF has a rectangular
waveform, maximum transmission occurs
during the “on” period if the amplitude of
VRF is set to a value, Vπ, that shifts the length

of the affected optical path by a half wave-
length so that now the two beams interfere
constructively at the output beam splitter.

The modulating pulse signal is AC-cou-
pled from an amplifier to the electro-opti-
cal crystal. Sometimes, two successive
pulses occur so close in time that the oper-
ating point of the amplifier drifts, one re-
sult being that there is not enough time for
the signal level to return to ground be-
tween pulses. Also, the difference between
the optical-path lengths can drift with
changes in temperature and other spuri-
ous effects. The effects of both types of
drift are suppressed in the present
method, in which one takes advantage of

the fact that when Vbias is set at the value for
maximum extinction, equal-magnitude
positive and negative pulses applied to the
electro-optical crystal produce equal out-
put light pulses.

In a modulation system designed and
operated according to this method (see
Figure 2), the modulating pulses are con-
verted to alternating polarity, a small por-
tion of optical output power is sampled by
a photodetector, the photodetector output
is multiplied by a sample of the alternating-
polarity modulating signal, and the prod-
uct is integrated over time to obtain an
error signal. When Vbias is not at the opti-
mum, maximum-extinction value, there is
either an overshoot or an undershoot in
the output light pulse, such that the inte-
gral signal amounts to an error signal that
is proportional, in both magnitude and
sign, to the difference between the actual
and optimum values of Vbias. The integral
signal is amplified and added to a DC offset
voltage, and the sum fed to a bias control
input terminal to drive the modulator to-
ward optimum bias. Normally, the DC off-
set voltage would be set initially at a maxi-
mum-extinction point. 

This work was done by William Farr and
Joseph Kovalik of Caltech for NASA’s Jet Propul-
sion Laboratory. Further information is con-
tained in a TSP (see page 1).
NPO-41301
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Figure 2. This Modulation System for PPM optical communication includes a bias control loop that cor-
rects for electrical and thermal drifts to maintain a maximum extinction ratio.

Generative Representations for Automated Design of Robots
Compact representations circumvent the computational obstacle to complexity.
Ames Research Center, Moffett Field, California

A method of automated design of
complex, modular robots involves an
evolutionary process in which generative
representations of designs are used. The
term “generative representations” as
used here signifies, loosely, representa-
tions that consist of or include algo-

rithms, computer programs, and the
like, wherein encoded designs can reuse
elements of their encoding and thereby
evolve toward greater complexity.

Automated design of robots through
synthetic evolutionary processes has al-
ready been demonstrated, but it is not
clear whether genetically inspired
search algorithms can yield designs that
are sufficiently complex for practical en-
gineering. The ultimate success of such
algorithms as tools for automation of de-
sign depends on the scaling properties
of representations of designs. A non-
generative representation (one in which
each element of the encoded design is
used at most once in translating to the de-
sign) scales linearly with the number of el-
ements. Search algorithms that use non-
generative representations quickly become
intractable (search times vary approxi-
mately exponentially with numbers of de-

sign elements), and thus are not amenable
to scaling to complex designs.

Generative representations are com-
pact representations and were devised as
means to circumvent the above-men-
tioned fundamental restriction on scala-
bility. In the present method, a robot is
defined by a compact programmatic
form (its generative representation) and
the evolutionary variation takes place on
this form. The evolutionary process is an
iterative one, wherein each cycle consists
of the following steps:
1. Generative representations are gener-

ated in an evolutionary subprocess.
2. Each generative representation is a

program that, when compiled, pro-
duces an assembly procedure.

3. In a computational simulation, a con-
structor executes an assembly proce-
dure to generate a robot.

4. A physical-simulation program tests

The “Quatrobot” Is a Walking Robot that was
designed by automated evolutionary synthesis,
using a generative representation. The robot
was built after 13 iterations.


