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Main Points

v'A glimpse of cosmic rays
astrophysics — contexually

v Cosmic rays astrophysics
and Earth

v'Cosmic rays astrophysics
and the heliosphere

v" Applications



Motivation?

“Cosmic rays blamed for global warming™
By Richard Gray, Science Correspondent, Sunday Telegraph

How cosmic rays could seed clouds

(UK)
11/02/2007

Dr. Svensmark (Danish National Space Center)
and co-workers believe cosmic rays affect

and impact our climate significantly and they
should be considered more carefully in

large-scale climate models.
[Space Science Reviews 93, 175 (2000);
Physical Review Letters 85, 5004 (2000).]

Cosmic rays-and-clouds connection has been
made before as were cosmic rays and
other geophysical phenomena, e.g., C-14

However, this recent conjecture goes farther!



Motivation?

“Varying cosmic-ray flux may explain cycles
of biodiversity™

By Bertram Schwarzschild, Physics Today
October 2007
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Motivation?

Gamma-ray picture of our moon illuminated by cosmic rays



Particle Environment

Two main sources of ionizing radiation:
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Expected Exposure Levels

magnetosheath

magnetopause




Transport of GCRs and SEPs

-Materials vary in their ability to shield against GCR nuclei
-Polymeric based materials tend to be most effective but
their structural properties remain poor

-Aluminum, like all metals, is a poor GCR shield
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GCR near Earth: Solar Cycle Dependence

RECENT CHANGES IN SOLAR ACTIVITY AND COSMIC RAYS

Direct, accurate measurements of cosmic ray intensity and various forms of solar activity began only in the late 20th century.
None of these measures shows any long-term trends that can explain the recent warming

@ Total solar irradiance as measured by spacecraft (W/m?)  @10.7 cm radio waves, an indicator of ultraviolet intensity {solar flux units)
@ smoothed sunspot number @ Cosmic ray intensity as measured by the Climax monitor in Colorado (% relative to 1954)
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Nuclei f (m2- sr-sec - MeV [ nucleon)

GCR near Earth: Modulation by the Sun
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Heliospheric magnetic field is
altered significantly between quiet
Sun and active Sun conditions

Simplified models can capture this
variation with a single ‘modulation
parameter’
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GCR near Earth: Observed Spectra

The ubiquitous Zipf-Pareto (power-law) distributions?
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100

Abundance relative to Carbon

GCR near Earth: Observed Composition
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Nuclear abundance: cosmic rays compared to solar system
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GCR composition is altered
from their source composition
due to propagation in the
interstellar medium (ISM)

Mostly spallation reactions
with the ISM’s protons
producing light secondaries
like Li, Be, and B

These tell us much about the
time GCRs spend and amount
of matter they meet in the
galaxy since their synthesis
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GCR near Earth:

Interactions
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A Very Brief History of Cosmic Rays

1912 Victor Hess discovers “extra-terrestrial radiation”

1930s-1940s Discovery of protons; secondaries; pions

1948 Discovery of helium and heavier nuclei (up to Z=28)

1960s Discovery of “ultra-heavy” (Z>28) nuclei; electrons
and positrons (x-ray astrophysics)

1970s Discovery of isotopes

1980s Age of cosmic rays; ISM properties

C_;, H_e:"“--m,__--hﬁ""‘ "‘

1990s+ Discovery of antiprotons; ACRs; The AMS Experiment ¥
GCRs with ultra high energies on the Space Station
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A Glimpse of Cosmic Rays Astrophysics

Origin of cosmic rays:
-supernovae remnants ISM matter
-nucleosnythesis (4m,— m,.)= 0.029 m, = 6x10% J/kg
-H, He, and CNO burning cycles
-nuclei heavier than Ni are unstable
-stable ones (e.g., Fe) can be accelerated

Acceleration of cosmic rays:
-first-ionization-potential differentiation
-supernovae shock
-First-order Fermi

Transport of cosmic rays Cassiopeia A
-diffusive —tied to the galactic magnetic field
-propagation effects (re-acceleration; spallation reactions;
radioactive decay...)

Modulation of cosmic rays
-cyclic
-minor energy loss
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A Glimpse of Cosmic Rays Astrophysics

Theoretical Framework
Ginzburg-Syrovatskii Equation [also known as Parker’s Equation]:
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-This equation is the basis of most theoretical/computational work on
cosmic rays transport and acceleration

-It is a statistical description for isotropic distribution functions

-It applies to energetic particles whenever their speed >> Alfvén speed,
if scattering (diffusion) is faster than macroscopic timecales

-It includes diffusive shock acceleration as well as solar modulation;
but not Fermi’s second-order acceleration process:

1 9 df
. pzDPP_
p-ap dap

Without a theory the facts are silent. -A.J. Hayek
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GCR Acceleration

Fermi Second-Order Acceleration Mechanism
[E. Fermi, “On the Origin of the Cosmic Radiation,” Phys. Rev. 75, 1169 (1949)]

Collisions between an already energetic particle and a moving, massive
cloud will on average result in an increase in the particle’s energy

according to: A
E V2
) =

Yo C

dE

— =rk =
dt

f(E) < E7" n=1+(rr)"!

The great tragedy of science is the slaying of an elegant theory by
ugly facts. -Thomas Huxley
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GCR Acceleration

Fermi First-Order Acceleration Mechanism
[E. Fermi, “Galactic Magnetic Fields and the Origin of Cosmic Radiation,” Astrophys. J. 119, 1 (1954)]

Energetic particles are accelerated by a passing shock‘\asthey scatter -and
get isotropized- in the turbulence before and ahead of the shock,
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All'the richness in the natural world is not a conseguence of
complex laws, but arises from the repeated applications of

simple laws. -L.P. Kadanoff
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GCR Acceleration

Diffusive shock acceleration (DSA) theory:
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DSA: No characteristic acceleration time!
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GCR Acceleration: DSA

Dispersive Transport ?
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A stochastic acceleration-time in the presence of a ‘boundary’ [in p and/or t] can be
shown to result in a ‘knee’ like structure — almost quite naturally...
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GCR Acceleration: DSA

Dispersive Transport ?
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GCR Acceleration: DSA

Standard transport theory —
Gaussian propagators

Dispersive transport —
Non-Gaussian propagators that are characterized by distributions
with long (algebraic) tails, e.g., lognormal, Levy, Pareto

Medium such that a random walker is characterized by a transit-time
distribution as well as a residence-time distribution

PR I T S S I S S O S
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