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Design of Orion Soil Impact Study  

Using the Modern Design of Experiments 
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Two conventional One Factor At a Time (OFAT) test matrices under consideration for 

an Orion Landing System subscale soil impact study are reviewed. Certain weaknesses in the 

designs, systemic to OFAT experiment designs generally, are identified. An alternative test 

matrix is proposed that is based in the Modern Design of Experiments (MDOE), which 

achieves certain synergies by combining the original two test matrices into one. The 

attendant resource savings are quantified and the impact on uncertainty is discussed. 

I. Introduction 

ASA has engaged in studies of a number of land-based return scenarios for the Orion Crew Exploration 

Vehicle. A land-based return would cost less, and require less complex operations than sea-based recoveries 

such as those used in the Mercury, Gemini, and Apollo programs. Among other concepts have been considered are 

airbags and crushable subsystems. Reference 1 describes early experiments in support of one of these concepts, the 

airbag landing scenario. Figure 1 shows various stages of airbag empirical studies conducted at Langley Research 

Center. 

 

The airbag approach proved to have certain weight and volume disadvantages, but efforts to evaluate other 

alternatives have continued. Part of this effort entails an investigation of landing dynamics and loads associated with 

impacts on different variations of soil. Two Orion Landing System subscale soil impact experiments at Langley 

Research Center were proposed in support of this effort, the first of which involved a number of vertical drops of a 

scaled Orion boilerplate test article onto two different soil surfaces, and the second of which added a horizontal 

component of velocity to the first test. Both tests were designed using a conventional experimental method popular 

in aerospace testing, known as the One Factor At a Time (OFAT) method. The OFAT method has certain 
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Figure 1. Orion airbag landing dynamics studies at Langley Research Center; a) a six-airbag 

configuration attached to a full-scale Orion boilerplate capsule, b) a single airbag assembly in a test 

apparatus. 

http://en.wikipedia.org/wiki/Project_Mercury
http://en.wikipedia.org/wiki/Project_Gemini
http://en.wikipedia.org/wiki/Project_Apollo
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productivity and quality limitations that are described in more detail below. Resource constraints were in fact 

identified as a problem in both of these experiments, with dates in the originally proposed test matrices described as 

“a best case scenario with no lost days due to rain or other testing problems.” There were also cost constraints. 

The author was asked to review the initial test matrices with a view to evaluating the potential of formally 

designed experiments in this application. An alternative test design was developed that exploits certain elements of 

testing technology known collectively at Langley Research Center as the Modern Design of Experiments (MDOE). 

It was constructed to provide relief to the test schedule and certain other benefits, including the addition of an 

adequate number of replicates to assess uncertainty as well as certain quality assurance measures designed to reduce 

experimental error. The basic principles of MDOE testing for aerospace application, as well as selected examples, 

are provided in the references
2-18

. This paper had its genesis in an informal internal report to the Langley Orion 

landing dynamics team, but is published here as a tutorial example of “how the sausage is made” in a practical 

application of formal experiment design principles. 

Section II of this paper describes the original OFAT test matrices and discusses ways in which they can be 

improved. Section III presents the MDOE test matrix and describes the rationale for its construction. Section IV 

discusses certain quality issues and presents a smaller MDOE test matrix that circumvents some of these issues 

while also conserving run count and therefore cycle time and direct operating costs. Section V contains some 

summary remarks. 

II. The Original OFAT Test Plan and Possible Improvements 

The first of two originally proposed tests consisted of a number of vertical drops of a scaled Orion boilerplate 

test article onto two sandy surfaces that differ by moisture content and therefore density. The lower-density, dryer 

surface has a moisture content of 2.87% and a density of 80.0 lbs/ft
3
. The higher-density, moister surface has a 

moisture content of 16.66% and a density of 100.3 lbs/ft
3
. Two vertical velocities were planned, 25 ft/sec and 35 

ft/sec, as well as two test article pitch angles, 28° and either 23° or 33°, to be determined. Table 1 presents the 

original drop test schedule of runs. 

 

Table 2 list the runs originally proposed for a second test, in which the test article would be suspended via a 

cable system and would swing in an arc that intersects the ground. This swing test would therefore impart a 

horizontal component of velocity to the test article as well as the vertical component of the drop test in Table 1. 

As noted in the introduction, both the original drop test (Table 1) and swing test (Table 2) are examples of an 

experiment design methodology that is common in aerospace research. Known as One Factor At a Time (OFAT) 

testing, this method is characterized by the fact that in successive data points the levels of all independent variables 

(or factors) except one are held at a constant level. The OFAT practitioner changes only one factor at a time in 

progressing from point to point. 

Considerable efficiency can be achieved by a kind of “multitasking” in which we change more than one factor 

level at a time as we progress through the test matrix from point to point. Each point effectively works harder when 

multiple factors are changed at a time, by inducing compound changes in the response variables attributable not 

simply to the change in a single factor, but to changes in more than one factor at a time. Understandably, sensible 

researchers who encounter this concept for the first time tend to be concerned that individual factor effects cannot be 

distinguished from each other if data are acquired in this way. If impact velocity and pitch angle are both changed 

Table 1. Original Test Matrix for Vertical Drop Experiment. 

Date 
Vertical Speed 

(fps) 

Test Article Pitch 

(deg) 

Sand Moisture 

(%) 

Sand Density 

(lbs/ft
3
) 

6/22/09 25 28   2.87  80.0* 

6/23/09 25 28   2.87  80.0 

6/24/09 35 28   2.87  80.0 

6/29/09 25 23/33   2.87  80.0 

7/7/09 35 23/33   2.87  80.0 

7/10/09 25 28  16.66 100.3 

7/13/09 25 28  16.66 100.3 

7/14/09 35 28  16.66 100.3 

7/17/09 25 23/33  16.66 100.3 

7/21/09 35 23/33  16.66 100.3 
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before the next run, for example, how is it possible to say how much of the resulting change in impact g-loads is due 

to the velocity change, and how much is due to the change in pitch? 

 

Fortunately, it is neither impossible nor particularly difficult to segregate factor effects in response data acquired 

when multiple factors are changed on successive runs, if the experiment is designed according to a few fundamental 

principles. It is therefore possible to enjoy the efficiency that accrues from making each data point “work harder,” 

without confounding the effects of one factor change with those of another. This fact is exploited in the MDOE test 

matrices offered below. 

The two OFAT test matrices in Tables 1 and 2 have two factors in common: vertical speed and soil type. Both 

factors are set at two levels. The drop test varies pitch angle but not horizontal speed, while the swing test varies 

horizontal speed but not pitch angle. There is an opportunity to achieve some savings in the number of runs, as well 

as to gain some otherwise unavailable insights, by combing the two three-factor tests into a single four-factor test. 

Note that both the main vertical speed effect and the soil-type effect would both be known after the first OFAT 

test―the drop test of Table 1. Changing these variables again in the swing test is therefore not necessary, except to 

reveal interaction effects involving horizontal speed (to reveal how horizontal speed effects change from one soil or 

one vertical speed to another). However, this segregated design forecloses options to examine what is potentially an 

equally important interaction between pitch angle and horizontal speed, since one or the other is held constant in 

each of the two OFAT tests. That is, the original two-test approach cannot detect if the effect of changing pitch 

angle depends on horizontal speed, and conversely. 

Another advantage of combining the two OFAT tests is that it effectively increases the number of pure-error 

degrees of freedom available to assess random error. For small sample sizes this can substantially improve precision. 

In each of the OFAT tests, one point is replicated for each soil type. Since data acquired for each soil type is 

analyzed separately in an OFAT test, the empirical estimates of standard deviation will feature only one degree of 

freedom in each case. Variance estimates based on such a small sample are notoriously poor estimators of the true 

population variance. 

If the OFAT tests were combined so that g-loads could be modeled as a function of all four independent 

variables at once, the same number of replicates would translate into a four degree-of-freedom estimate of pure error 

variance, reducing the uncertainty by almost 80% compared to the single degree-of-freedom case. 

Combining the two tests into one means there is an opportunity to save some runs by examining soil type and 

vertical speed effects once instead of twice, and it also means that some additional insights might be had by 

examining the interaction between pitch and horizontal speed. Precision estimates can be improved, and there is also 

an opportunity for improving the accuracy of the test, as will now be outlined briefly. 

The unexplained variance in a sample of experimental data is assumed to be randomly distributed about some 

mean that is stable with time. Unfortunately, under commonly occurring conditions this mean tends to vary 

systematically with time due to effects that induce non-random variations in the data, resulting in a net bias shift that 

changes slowly with time. This is often the dominant source of uncertainty in high-precision tests for which the 

random error is small, yet systematic changes are often ignored under the assumption that, except for random error, 

the only changes that occur in measured response data are those that are induced by the experimenter making 

changes in the independent variables. 

Table 2. Original Test Matrix for Swinging Impact Experiment. 

Date 
Vertical 

Speed (fps) 

Horizontal 

Speed (fps) 

Test Article 

Pitch (deg) 

Sand Moisture 

(%) 

Sand Density 

(lbs/ft
3
) 

7/31/09 25 30 28   2.87  80.0* 

8/5/09 25 30 28   2.87  80.0 

8/7/09 25 40 28   2.87  80.0 

8/12/09 35 40  28   2.87  80.0 

8/14/09 35 50 28   2.87  80.0 

8/19/09 25 30 28  16.66 100.3** 

8/21/09 25 30 28  16.66 100.3 

8/26/09 25 40  28  16.66 100.3 

8/28/09 35 40 28  16.66 100.3 

8/30/09 35 50 28  16.66 100.3 

8/31/09 35 60 28  16.66 100.3 
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Environmental effects are one potential source of this time-varying bias shift in outdoor testing. In this test, for 

example, the sand that may be dry on day one will likely absorb water over time from humidity and dew, to say 

nothing of rain. Instruments will drift, operators will tire or get rushed at the end (“fatigue effects”) or get more into 

a groove through repetition (“learning effects”), the sand containment system may deform over time, and there will 

be scores of other effects that induce systematic (not random) changes in the data that will not be detected. Such 

errors tend to go in one direction for prolonged intervals, with ordinary random error superimposed. 

Consider the potential impact of such systematic variations on the original swing test. In this test, the horizontal 

speed is changed systematically over a two-week period from 30 fps to 50 fps for the dry sand runs and over a 

comparable period from 30 fps to 60 fps for the moist sand runs. Let us imagine that over the testing period, some 

combination of systematic changes in moisture content and other effects result in a gradual reduction in impact g-

loads compared to what would have been measured absent the systematic effects. Because horizontal speed is 

changed systematically with time, there is no way to distinguish between the effects of the systematic speed changes 

prescribed in the test matrix, and the systematic effects of gradually changing moisture, etc., that were not 

prescribed, but that occurred anyway. Stated differently, the g-loads would have changed over time whether speed 

was changed or not, even if all other known factors in the test matrix were held constant. 

By attributing the sum of speed effects plus the effects of changing moisture and other systematic errors to 

horizontal speed, one obtains an incorrect perception of how horizontal speed actually affects g-loads.  This is not a 

simple reduction in precision caused by ordinary random error, but rather an error of a more serious kind.  

Systematic errors degrade the accuracy of the result, not just the precision; we do not get a somewhat less precise 

estimate of what is essentially the right answer (“within experimental error”), we get the wrong answer altogether, 

and have no way of knowing it at the time. The effects of systematic error generally surface only when there is an 

attempt to reproduce the experimental results, sometimes months or years later, in an independent test in which data 

are inevitably acquired under a different set of unexplained systematic variations. 

Systematic errors may or may not be in play in the soil impact modeling tests, and they may or may not be 

significant if they are. Prudence dictates that we defend against such errors, however, since their effects can be so 

serious if they do occur. There is thus an opportunity to improve the reliability of the original OFAT test results by 

employing an inexpensive quality assurance tactic that defends against systematic unexplained variance. 

There is a widely recognized defense against systematic error that consists of simply randomizing the run order 

in which points in the test matrix are acquired. This ensures that not all low-speed data are acquired early, for 

example, when responses might be biased systematically in one direction, and not all the high-speed data are 

acquired later, when responses might be biased the other way. This in turn ensures that we see only the systematic 

effects of changes in impact speed, because by randomizing the run order, we induce an equal probability of a 

positive or a negative systematic error contribution at any given horizontal speed. That is, randomizing the run order 

simply converts systematic error effects into another component of error that is randomly distributed about the true 

functional relationship between independent variables and response variables. This random error component is easy 

to detect and easy to quantify. The chief virtue of randomizing the run order, however, is that it preserves the true 

functional relationship between independent variables and the responses that depend upon them. 

III. A Two-Soil MDOE Test Plan 

Among many ways that MDOE and OFAT test methods differ is the response surface modeling (RSM) 

perspective of an MDOE design. The goal is always to establish an empirically-derived mathematical relationship 

between each response of interest (horizontal and vertical impact g-loads in this test), and the independent variables 

upon which they depend (horizontal speed, vertical speed, pitch angle, and soil type in this test). Since there is 

seldom any prior knowledge of the true functional form of the response function, it is approximated by a polynomial 

Taylor series of sufficient order to adequately represent the response over the range of independent variables of 

interest. This RSM orientation informs the experiment design process, in that the test matrix is constructed with a 

view to maximizing the quality of response predictions made with such a model. 

A. Order of Model 

The order chosen for the Taylor-series approximation to the true (but unknown) response function is a key 

determinant of the adequacy of the empirical response model. The model will feature lack-of-fit errors if the order is 

too low. If the order is too high, there can be large prediction errors near the design-space boundaries (often where 

the greatest accuracy is needed), and resources can be wasted acquiring the extra degrees of freedom needed to fit a 

model with superfluous higher-order terms. 
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Because the true underlying relationship between each response variable and the factors upon which it depends 

is generally unknown, there is inevitably a certain amount of guesswork in selecting the order of the polynomial 

function that will be used to approximate it. The decision was guided in this test by the number of distinct levels of 

each factor selected by the subject-matter experts in the original OFAT design. For example, the fact that only two 

levels of vertical speed were included in either the OFAT drop test or the OFAT swing test suggests that the 

relationship between impact g-loads and vertical impact speed can be adequately represented as first-order over the 

limited speed range of interest (25 fps to 35 fps). 

Figure 2 displays how peak impact g-loads varied with vertical impact speed in the Orion airbag test illustrated 

in Fig. 1. In this test, resource constraints dictated the decision to reject an earlier quadratic design and to model the 

responses as first-order functions of the independent variables with factor interactions. A number of replicates were 

acquired at the center of the design space to test for curvature, among other reasons. The center-point replicates are 

the red points in Fig. 2. The spread in center-point replicates suggest the degree of scatter in the data. 

 

 

Some curvature is indicated, with the entire sample of center points located below the straight-line response 

approximation. On the other hand, the mean of the center-point sample is not substantially below the straight line, 

given the spread in the center points and the fact that there is also some uncertainty in the response model itself 

(indicated by the Least Significant Difference (LSD) bars at the two ends of the model). 

The soil impact study will not involve airbags and the g-loads are likely to be somewhat different, but Fig. 2 

does suggest some small second-order effect in the relationship between g-load and vertical speed. The original 

OFAT drop test matrix features only two levels of pitch angle (28° and either 23° or 33°, TBD), suggesting that a 

response model that is first-order in pitch would be adequate, but based on the experience displayed in Fig. 2, a 

response model that is second-order in pitch angle may provide a better response representation. 

The OFAT swing test features three levels of horizontal speed for the dry-soil runs and four levels for moist soil, 

suggesting that a response up to third order might be necessary for the latter case. However, subsequent discussions 

among the principals have focused on only three levels of horizontal speed for either soil type, suggesting that a 

second-order response model would be adequate. 

Soil type is a categorical variable, meaning that it can only be set at discrete levels. In this test there are only two 

levels: “dry” and “moist”. A response surface model representing g-loads as a function of this factor cannot have 

quadratic or higher-order terms involving this factor. 

 

Figure 2. Impact g-loading as a function of impact speed for an Orion 

airbag landing. 
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B. Scale of the Experiment 

Scaling the experiment refers to the process of determining how many runs to acquire. Since each run costs 

money and consumes cycle time (for which some cost can be attributed), costs are minimized in an MDOE 

experiment design by prescribing the fewest runs adequate for the experiment. We note in passing that this 

philosophy conflicts with the common OFAT perception of productivity, which equates productivity with data 

volume. The OFAT practitioner is inclined to acquire the most runs that resources permit, while the MDOE 

practitioner seeks to manage with the fewest runs that are adequate to achieve the objectives at hand. 

For reasons discussed in the previous subsection, a second-order polynomial response model was selected to be 

fitted to data acquired in the Orion soil impact experiment. This key decision determines the minimum number of 

runs to be acquired, since there must be at least one degree of freedom (one run) for each term in the response 

model. 

In general, a full d
th

-order polynomial in k factors has p terms, including the intercept term, where 

 
 !

! !

d k
p

d k


  (1) 

A full 2
nd

-order polynomial in k=4 factors would therefore have (2+4)!/2!4! = 15 terms. Since soil type is a 

categorical factor with only two levels, there can be no quadratic term for this variable and thus the polynomial 

response model for this experiment will have only 14 terms. 

Let us make the following assignment of independent variables: 

 

x1 = horizontal speed 

x2 = vertical speed 

x3 = pitch angle 

x4 = soil type 

 

The response model can then be represented as follows, where the b’s represent model coefficients determined 

by regression, with obvious subscripts: 

 

0

1 1 2 2 3 3 4 4

12 1 2 13 1 3 14 1 4 23 2 3 24 2 4 34 3 4

2 2 2
11 1 22 2 33 3

 (one intercept term)

   (four linear terms)

   (six interaction terms)

   (three quadratic terms)

b

b x b x b x b x

b x x b x x b x x b x x b x x b x x

b x b x b x

   

     

  

 (2) 

Note that there are 1+4+6+3 = 14 terms in this model, as Eq. (1) predicts after correcting for the lack of a 

quadratic x4 term, and thus the minimum number of runs to fit this model is 14. However, it would be unwise to 

specify only 14 runs for this experiment, because fitting the model given in Eq. (2) would exhaust all the available 

degrees of freedom, leaving no residual degrees of freedom to assess experimental error. We therefore specify some 

additional so-called pure error degrees of freedom, consisting of replicates of some subset of the 14 points specified 

to fit the model. 

There is an element of judgment in specifying the number of replicates, but the quality of an experimental 

estimate of standard deviation degrades substantially as this number gets smaller. The 95% precision-interval half-

width approaches the well-known “two-sigma” level (actually, 1.960 sigma) as the number of replicates approaches 

infinity, but it is a common convention to say that a standard deviation based on 10 or more replicates is sufficient to 

invoke the “large sample” approximation by which a 95% precision interval half-width may be said to be “two 

sigma.” For sample sizes smaller than 10, a small-sample adjustment is applied that results in a larger number of 

standard deviations corresponding to a 95% precision interval half-width. 

Table 3 reveals how the 95% precision interval depends on the number of replicates used to estimate the 

standard deviation. Five replicates are specified for this test, bringing the total number of runs to 19. However, as 

Table 3 indicates, fewer replicates can be specified at the expense of additional uncertainty. 

When sufficient information is available to do so, the scaling process takes into account precision goals and the 

quality of the measurement environment.  For a given standard deviation in replicated runs, the required volume of 

data depends on the precision requirement and the number of terms in the response model, as Eq. (3) indicates. In 

this equation, t is the number of standard deviations associated with a (1-)% precision interval half-width,  is the 
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standard deviation of replicated points,  is the precision level, and p is the number of terms in the response model, 

as given in Eq. (1). 

 

2
t

n p 



 
  

 
 (3) 

Equation (3) indicates that the minimum number of runs required to meet precision requirements increases with 

the complexity of the response model (p) and the inherent variability of the test environment (). Also, by Table 3 

the minimum volume of data increases as the number of replicates decreases (t) and as the precision requirement 

gets more stringent. 

 

No precision requirements were specified by the principals for this test, and the standard deviation is unknown. 

For these reasons the scaling was based simply on the term count in the response model (14) and a number of 

replicates judged to be reasonable (5), for a total of n=19 runs. The plan is to estimate the precision associated with 

this run count after a five degree-of-freedom estimate of the standard deviation has been obtained. We know that for 

this test, n=19, p=14, and (from Table 3), t=2.571. Inserting these numbers into Eq. (3) yields the following result: 

  
14

2.571 2.21
19

p
t

n
   

 
    
 

 (4) 

That is, the 95% precision interval half-width associated with response predictions made with Eq. (2) will be 

2.21 times the standard deviation estimated from five replicated runs. The Orion airbag impact study mentioned 

earlier was characterized by a standard deviation in peak vertical g-load of 0.31 g. While g-loads in the soil impact 

test are likely to be different, it is possible that the run-to-run repeatability might be comparable to the airbag test. If 

that is the case, we will be able to report model predictions ±(2.21)(0.31) g = ±0.68 g, with 95% confidence. 

Note from Eq. (3) that the minimum number of runs is a sensitive function of the precision requirement. Let us 

assume for a moment that the ±0.68 g precision we are anticipating is deemed insufficient, and that an uncertainty of 

no more that ±0.5 g is required for this test at the 95% confidence level. If the five degree-of-freedom estimate of 

standard deviation is still 0.31 g, then by Eq. (3) and Table 3 the minimum number of runs required to deliver the 

specified ±0.5 g precision level would be 

 
  

22
2.571 0.31

14 35.6 36
0.5

t
n p 



  
     

    
 (5) 

Thirty-six runs far exceed what is currently planned. From a “cup half empty” perspective, it might be accurately 

stated that a relatively small improvement in precision (from ±0.68 g to ±0.5 g) would require a considerable 

increase in the number of runs. From the “cup half full” point of view, this illustrates that substantial resource 

savings can be achieved at the expense of a relatively minor compromise in the specified level of precision. In this 

example, 36-19=17 runs can be saved be relaxing the precision requirement a mere 0.68-0.5=0.18 g. 

Table 3. 95% Precision Interval Half-Widths for Various Numbers 

of Replicates, in Standard Deviations. 
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The discussion of how specifications of precision are related to minimum data volume requirements is provided 

simply as tutorial background. As previously noted, there are no specified precision requirements in this test, and no 

a-priori estimates of the standard deviation. The experiment design calls for 19 runs based solely on the quadratic 

response model that has been specified and a decision to include five replicates. Rather than scaling the experiment 

to meet specified precision requirements, the precision achievable with the experiment scaled as described will be 

quantified and documented, by solving for  in Eq. 3 once  has been empirically determined. 

C. Site Selection 

Given that 19 runs will be acquired, it is necessary to decide which runs. That is, it is necessary to decide which 

combinations of factor levels will comprise the 19 runs. This process is called “site selection,” because each data 

point can be represented graphically as a location (or “site”) in a design space constructed by assigning each 

independent variable to one axis of a Cartesian coordinate system. Every point in such a design space represents a 

unique combination of independent variable values. 

OFAT site selection decisions are often based on operator convenience, or they are made to maximize data 

acquisition rate or to provide the most uniform coverage of the design space that is possible. Site selection decisions 

in an MDOE experiment design are made to maximize quality. It turns out that the uncertainty associated with 

response surface model predictions can be influenced by the selection of sites within the design space where the data 

are acquired to which the model is fitted. Figure 3 illustrates the basic concept for the simple case of a first order 

response function of one independent variable. 

 

The solid line in each part of Fig. 3 represents the best fit to two data points, each featuring the same degree of 

experimental error as indicated by the error bars on each point. The dashed lines represent extreme values of straight 

lines that might have been fitted if other points had been acquired that were within experimental error of the points 

actually acquired. 

Even though the experimental data feature the identical amount of uncertainty in Figs. 3a and 3b, there is a much 

greater range of possible slopes and y-intercepts in Fig. 3a than in Fig. 3b. That is, there is more uncertainty in the 

slope and y-intercept estimated in Fig 3a than in the slope and y-intercept estimated in Fig 3b, notwithstanding the 

same experimental error in both cases. The improvement in Fig 3b relative to Fig 3a can be explained entirely by the 

difference in site selection. When fitting the data to a response model of the form y = b0 + b1x, the uncertainty in b0 

and b1 depends on the sites selected to acquire the data. 

A simple first-order function of one variable was used in Fig. 3 to illustrate the relationship between site 

selection and uncertainty in the coefficients of the fitted response model, but this is a general phenomenon that 

extends to functions of any order, fitted to any number of independent variables. In the MDOE test matrix presented 

below, the 14 unique design space sites required for this design were selected to provide the smallest error in the 

coefficients of a second-order model fitted to four independent variables, absent the quadratic term of one of the 

 

Figure 3. First order function of one variable fitted to data acquired at different design space sites. a) 

Nearer center of design space, b) Nearer design-space boundaries. 
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variables (soil type). These site selection decisions require a substantial number of calculations that are typically 

performed with experiment design software dedicated to this specific task. 

 

Having chosen the 14 unique sites that minimize the coefficients in the response model of Eq. (2), it remains 

only to decide which five of these points to replicate in order to be able to make a reasonable estimate of random 

error. In the MDOE test matrix presented below, this decision is based on the leverage of each data point. 

A data point is said to possess high leverage if a given experimental error in that point would have a significant 

degree of influence on the coefficients of the fitted model. Figure 4 illustrates this concept. An experimental error in 

the large-x data point would have a greater influence on the slope and y-intercept of the fitted line than the same 

error in any of the other points. 

 

Table 4. Two-Soil MDOE Test Matrix. 

 

 

Figure 4. High Leverage Point 
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A data point is not suspect simply because it has high leverage. The high leverage simply means that if there are 

any problems with that point, the consequences can be relatively severe. As long as the experimental error in a high-

leverage point is not extreme, the fact that it has high leverage presents no special problem. 

The leverage associated with a data point acquired at a given site can be reduced by replicating the point 

acquired at that site. A single replicate reduces the leverage at a given site by a factor of two, with each point now 

sharing leverage equal to half the leverage of the point before it was replicated. That is, replication provides a kind 

of diversification, in which the risk of a bad data point is distributed over two or more points. The more often the 

same point is replicated, the lower the leverage will be for each point acquired at that site. 

Leverage was computed for each of the 14 unique sites necessary to fit Eq. (2) with the smallest uncertainty in 

the regression coefficients. These points were then rank-ordered by leverage, with the five highest-leverage points 

selected for replication. In this way, the final five points were selected for the MDOE test matrix of Table 4. 

 

 

 

Figure 5b. Design space in horizontal velocity (fps) and pitch angle (deg). 

 

Figure 5a. Design space in horizontal and vertical velocity, fps. 
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In Table 4, runs 4, 7, 8, 9, and 11 are replicated by runs 10, 12, 19, 18, and 17, respectively. All other points are 

unique. Figures 5a, 5b, and 5c show the test matrix in graphical form, displaying the design space from three 

perspectives. Numbers next to various sites indicate how many points total are acquired at that site. Note that these 

are not necessarily replicates.  Each view shows only two numerical variables. Some sites have points differing by 

the value of the third numerical variable. 

IV. Discussion 

The run order is randomized to defend against systematic variation that is likely to occur over such a long-

duration outdoor experiment; however, the difficulty of randomizing on soil type is acknowledged, due to the 

practical problems of drying a large mass of moist sand. If all the dry runs are executed before any of the moist runs, 

then a key factor in the test; namely, the difference in impact loading due to soil type, will be confounded with the 

sum of all systematic variations that occur over the duration of this test. There is always the option to ignore the 

possibility of systematic error and execute all the dry runs first and then the moist runs, but the quality of the test 

result will be degraded if unexplained systematic variations are in play. There are alternative experiment designs 

available to cope with restrictions on randomization (a class of designs known as “split-plot design,” for example), 

but these require a larger number of runs than resource constraints in the current test can accommodate. 

Note in Table 4 that it is not necessary to change from dry to wet or from wet to dry on every new run. There are 

in fact some streaks, so that there are only nine transitions. Note also that transitions from dry to moist present no 

particular problem. It is only transitions from moist to dry that are problematical, as these are the only transitions 

that would require that moisture be removed from the sand. There are only four such transitions in Table 4, between 

runs 5 & 6, 8 & 9, 11 & 12, and 17 & 18. One way to maintain the defense against systematic variation provided by 

randomization while avoiding the practical difficulties of drying out the sand between runs would be to replace the 

moist sand of runs 5, 8, 11, and 17 with fresh, dry sand before executing runs 6, 9, 12, and 18. There would be some 

added expense, which could be charged to the cost of maintaining quality in the test. 

Another factor to consider that bears on the question of randomizing on soil type is that there are significant 

differences in horizontal speed for each of the moist-dry transitions. This means that the horizontal impact location 

will differ considerably from run to run. It may not be necessary to replace all of the moist sand with dry sand on the 

four moist-dry transitions, but only that portion of the landing area where the impact will occur on the next dry-soil 

run. One other point to be made is that by planning to replace moist sand with fresh dry sand at prescribed intervals, 

potential complications can be avoided that are associated with the dry sand gradually picking up moisture over the 

duration of the dry runs. 

 

Figure 5c. Design space in vertical velocity (fps) and pitch angle (deg). 
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Note that the negative consequences of doing all dry runs and all moist runs in two groups have nothing to do 

with the MDOE design. The original OFAT drop and swing test matrices also featured runs grouped by dry and 

moist soil, and they, too, would be vulnerable to systematic variation. There is always the option of trading some 

quality for some convenience, by executing all of the dry runs in Table 4 before any of the moist runs. 

One other option, already under discussion by the principals, is to conduct the experiment for one soil type only. 

The effect of soil type on landing loads could not be quantified under this option but some additional schedule relief 

could be achieved with fewer runs, and also some additional quality assurance could be derived from the fact that 

the other three independent variables are all easy to change and therefore present no impediment to run order 

randomization. 

Table 5 below is a one-soil, fully randomized MDOE test matrix, designed to provide a fit to the response 

surface model of Eq. (6) that minimizes uncertainty for all of the regression coefficients. 

 

0

1 1 2 2 3 3

12 1 2 13 1 3 23 2 3

2 2 2
11 1 22 2 33 3

 (one intercept term)

   (three linear terms)

   (three interaction terms)

   (three quadratic terms)

b

b x b x b x

b x x b x x b x x

b x b x b x

  

  

  

 (6) 

Equation (6) is a second-order polynomial in the three numerical variables: horizontal and vertical speed, and 

pitch angle. It differs from Eq. (2) in that the linear soil-type variable is eliminated, as are three of the interaction 

terms involving the interaction of soil type with each of the numerical variables. Since four terms are eliminated, 

only 10 data points are required to fit this model, down from 14 for the two-soil case, although some residual 

degrees of freedom must be added to assess uncertainty. (See Eq. (1) with d=2 and p=3). 

 

Five replicates were added to the 14 points required to fit Eq. (2) in the two-soil MDOE design, bringing the 

total point count to 19 (Table 4). Because the original OFAT run count of 21 runs was considered problematical, no 

additional residual degrees of freedom were specified for the 19-run MDOE two-soil design. Instead, the decision 

was made to provide a two-run cushion relative to the OFAT plan. Had the resources been available, lack-of-fit 

degrees of freedom would have been specified in addition to the pure error (replicate) degrees of freedom that were 

included in the design. Given the reduction of five runs afforded by dropping soil type as a variable, there is an 

opportunity to add lack of fit degrees of freedom as well as replicates. 

“Model” degrees of freedom represent the minimum number of points required to fit a given model [Eq. (1)]. 

“Pure error” (PE) degrees of freedom are comprised of replicates of model points. “Lack of fit” (LOF) degrees of 

freedom consist of addition points that are acquired at unique sites in the design space; that is, they are not replicates 

Table 5. Single-Soil MDOE Test Matrix 
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of any other points. LOF degrees of freedom serve three useful functions. First, if the response function is more 

complex than originally assumed, LOF degrees of freedom provide additional points to which higher-order terms in 

the model might be fit. But even if the original response model is adequate, the LOF points serve to reduce the 

average leverage of the fitted points, making the response model less vulnerable to experimental error at any given 

point. Finally, LOF degrees of freedom facilitate certain goodness-of-fit tests that indicate when a quality result has 

been achieved. 

For the single-soil MDOE design of Table 5, four replicates were added to the 10-point minimum run count 

required to fit Eq. (6). In addition, three LOF degrees of freedom were added, bringing the total run count to 17. The 

addition of three LOF degrees of freedom reduced the average leverage from 0.737 to 0.588, more than a 20% 

reduction. A leverage of 1 is the maximum value a point can have, and corresponds to a case in which the response 

is forced through that point. If a straight line is fitted to two points, for example, the leverage of each point is 1. Nine 

of the points in the two-soil design had a leverage of 1. Because of the addition of LOF degrees of freedom in the 

one-soil design, none of the points in that design has a leverage of 1, and the overall design is much less vulnerable 

to experimental error in any one or two points. 

The single-soil design achieves a four-run savings compared to the original 21-run OFAT plan. Seven of these 

runs―four PE and three LOF―are for quality assurance and quality assessment, but are not absolutely essential. It 

would be possible to execute the single-soil MDOE test in as few as 10 runs, if resource constraints required it. 

V. Summary Remarks 

The OFAT experiment designs for two Orion landing system subscale soil impact experiments have been 

reviewed, with a view to determining if they might be improved by the application of MDOE testing methods. The 

OFAT tests included some provision for assessing pure error, and the drop test especially displayed a laudable 

symmetry that would have permitted the estimation not only of main effects for each of its independent variables, 

but interaction effects among all the variables as well. The swing test had to make some concessions to good 

experiment design structure to accommodate what was initially believed to be a requirement for a relatively large 

number of horizontal speed levels, but it too provided for some replication to assess pure error. 

Both OFAT tests were susceptible to unexplained systematic variation. There was a significant degree of 

unnecessary duplication across the two tests, with no option to assess interactions between independent variables 

that were changed in one test but not the other. There was no provision to assess any nonlinear dependence on any 

of the independent variables except horizontal speed. More runs were specified than necessary to obtain the 

information available from either OFAT test. With some alterations, considerably more information could be 

acquired in fewer runs, and with less uncertainty. 

The two OFAT tests were combined into a single MDOE test matrix with the following characteristics: 

 Main effects for horizontal speed, vertical speed, pitch angle, and soil type, as well as interaction effects 

among all six pairwise combinations of these variables can be quantified. 

 Second-order effects (curvature) in all three of the numerical variables can be quantified. 

 The minimum number of runs necessary to quantify main effects, interaction effects, and curvature has 

been computed and documented. 

 An improved estimate of random error has been incorporated. 

o More degrees of freedom to produce a more reliable estimate 

o More representative distribution of replicated points throughout the test period 

 A proactive defense against potentially serious systematic trends in the unexplained variance has been 

invoked (run-order randomization) that ensures the assumptions of statistical independence are met, 

which minimizes uncertainty. 

 Replicates were selected to reduce the greatest instances of leverage, thereby minimizing the potential 

adverse impact of significant experimental error. 

 Restrictions on randomization by soil type were discussed, with certain workarounds proposed. 

 An alternative single-soil test matrix was developed with the same quality assurance and assessment 

features of the two-soil design. 

 The two-soil MDOE design achieves the above improvements with a reduction of two runs compared to 

the OFAT approach (19 runs vs. 21, or 10%). 

The single-soil MDOE design achieved the above improvements with a reduction of four runs compared to the 

OFAT approach (17 runs vs. 21, or 19%). 
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