
PARTIAL LEAST SQUARES AND NEURAL NETWORKS FOR QUANTITATIVE CALIBRATION OF
LASER-INDUCED BREAKDOWN SPECTROSCOPY (LIBS) OF GEOLOGIC SAMPLES. R. B. Anderson 1 ,
R.V. Morris2, S.M. Clegg3, S. D. Humphries3 , R. C. Wiens3 , J.F. Bell III 1 , and S. A. Mertzman4 . 1 Cornell University,
Department of Astronomy, Ithaca, NY 14850 (randerson@astro.cornell.edu), 2NASA Johnson Space Center, 2101
NASA Parkway, Houston, TX 77058, 3Los Alamos National Laboratory, P.O. Box 1663 MS J565, Los Alamos, NM
87545, 4Dept. of Geosciences, Franklin and Marshall College, Lancaster, PA 17604.

Introduction: The ChemCam instrument [1] on the
Mars Science Laboratory (MSL) rover will be used to
obtain the chemical composition of surface targets
within 7 m of the rover using Laser Induced Break-
down Spectroscopy (LIBS). ChemCam analyzes atom-
ic emission spectra (240-800 nm) from a plasma cre-
ated by a pulsed Nd:KGW 1067 nm laser. The LIBS
spectra can be used in a semiquantitative way to rap-
idly classify targets (e.g., basalt, andesite, carbonate,
sulfate, etc.) and in a quantitative way to estimate their
major and minor element chemical compositions.

Quantitative chemical analysis from LIBS spectra is
complicated by a number of factors, including chemical
matrix effects [2]. Recent work has shown promising
results using multivariate techniques such as partial
least squares (PLS) regression and artificial neural
networks (ANN) to predict elemental abundances in
samples [e.g. 2-6]. To develop, refine, and evaluate
analysis schemes for LIBS spectra of geologic materi-
als, we collected spectra of a diverse set of well-
characterized natural geologic samples and are compar-
ing the predictive abilities of PLS, cascade correlation
ANN (CC-ANN) and multilayer perceptron ANN
(MLP-ANN) analysis procedures.

Methods and Samples: LIBS spectra were ac-
quired with a laboratory simulation of the MSL Chem-
Cam instrument. It uses a Nd:YAG laser operating at
1064 nm, pulsed at 10 Hz with a pulse energy of 17
mJ/pulse. Targets were placed in a vacuum chamber
filled with —7 Torr CO 2 at a distance of 7 m. Plasma
emission was collected with a telescope and directed
through a fiber into one of three Ocean Optics HR2000
spectrometers covering the UV (245.00-325.97 nm),
VIS (381.86-471.03 nm) and VNIR (494.93-927.06
nm) wavelength regions.

We selected a diverse suite of rock slab samples
from the Mars analog sample collection at NASA's
Johnson Space Center [7]. Their chemical composi-
tions are known from independent XRF analysis. This
sample collection has been used to validate the calibra-
tion of previous instruments on orbital and landed Mars
missions including CRISM, OMEGA, MER Pancam,
Mini-TES, and Mossbauer, and Phoenix SSI. Our
ChemCam samples are common to those being ana-
lyzed (in different physical forms) by testbed versions

of the MSL CheMin and SAM instruments and by the
flight Mastcam instrument.

Typically, the rock slabs were analyzed 5 to 7 at
time along with 5 pressed powder geostandards [8].
When possible, we chose standards with a similar
composition to the geologic samples. The geostandards
included andesites, basalts, dolomites, gypsum and
olivine. LIBS spectra were acquired for 5 spots on each
rock slab and geostandard target.

Data Analysis: As a first step in data analysis, the
UV, VIS and VNIR spectra for each point on each tar-
get were normalized and combined to form a single
spectrum with 6144 channels. The intensity of atomic
emission lines correspond to atomic fraction rather
than oxide weight percent, so all standard and sample
composition values were converted to atomic fractions.
In our analysis for both PLS and ANNs, half of the
geologic samples were used to create models for the
major rock-forming elements which were then used to
predict atomic fractions in the remaining samples based
on their spectra (Figure 1).

Partial least squares: We used the commercial Un-
scrambler program [9] to conduct PLS analysis. The
PLS algorithm [10] identifies wavelengths in the spec-
trum for which the intensity correlates (or anticorre-
lates) with the element of interest, resulting in a set of
one weight per wavelength in the spectrum. PLS can be
used to model a single variable (PLS1) or multiple
variables (PLS2). The results shown here are based on
PLS2 models for the major rock-forming elements.

Artificial neural networks: ANNs have also been
used for predicting elemental abundances based on
LIBS spectra. [4-5] ANNs are inherently nonlinear and
have a high tolerance for noise, both of which are de-
sirable for analyzing remote LIBS data. ANNs are
based on numerous, interconnected simple processing
elements ("neurons"), organized as layers with the out-
put of one layer serving as the input for the following
layer(s). Previous work using ANNs for LIBS analysis
used MLP-ANNs with an input layer, one intermediate
"hidden" layer and an output layer [4-5]. One of the
drawbacks of MLP-ANNs is that the optimum number
of neurons in the hidden layer(s) can only be deter-
mined by trial and error. It is prohibitively time con-
suming to conduct this trial and error method with the
entire LIBS spectrum, so we have taken a similar ap-



proach to Sirven et al. [4] and selected several strong
lines for each element of interest and trained MLP-
ANNs based on the intensity of emission at those
wavelengths only.

We also used the cascade correlation (CC) algo-
rithm to train ANNs [10]. CC begins with only an in-
put and output layer and adds new intermediate neu-
rons one at a time. CC-ANNs learn rapidly and deter-
mine their own size and topology. Because of the
learning speed and simplicity of the networks gener-
ated with CC, it was feasible to input the entire LIBS
spectrum.

To conduct ANN calculations, we used the open-
source Fast Artificial Neural Network (FANN) library
[11] and the associated graphical interface, FannTool.

Results: Figure 1 shows the results of PLS2 pre-
dictions (blue diamonds), CC-ANN predictions (red
circles) and MLP-ANN predictions (green triangles) of
the atomic fraction of Si, Fe and Ca in half of the geo-
logic samples. Each point on the plot is the average of
five predictions corresponding to the five LIBS spots
analyzed per sample. Error bars show the standard
deviation of the predictions for the five points. A per-
fect prediction would fall along the black line.

Our preliminary results show that PLS2, CC-ANNs
and MLP-ANNs perform comparably in predicting
atomic fractions of major elements. Most samples were
predicted well, as long as their composition was within
the range of training set compositions. For Fe, a MLP-
ANN with 5 hidden nodes performed better than PLS2
or ANN, as shown by the tight cluster of green points
near the target line in figure 1b.

Future work: We are in the process of collecting
LIBS spectra for —200 geologic samples for which we
have independent major and minor element abun-
dances by standard XRF techniques in order to com-
pile a comprehensive spectral database for use during
the MSL mission. We will continue to compare MLP-
and CC-ANNs and PLS to determine which method is
best suited for quantitative ChemCam analyses. All
three methods perform best when the training set is as
similar as possible to the samples being predicted.
Therefore we also intend to study clustering methods
which would group similar spectra prior to generating
a quantitative model.
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