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A bstr act 

Ballistic limit equations define the failure of metallic Whipple shields in three parts: low velocity, shatter, and 

hypervelocity. Failure limits in the shatter regime are based on a linear interpolation between the onset of 

projectile fragmentation, and impulsive rupture of the shield rear wall. A series of hypervelocity impact tests have 

been performed on aluminum alloy Whipple shields to investigate failure mechanisms and performance limits in 

the shatter regime. Test results demonstrated a more rapid increase in performance than predicted by the latest 

iteration of the JSC Whipple shield BLE following the onset of projectile fragmentation. This increase in 

performance was found to level out between 4.0-5.0 km/s, with a subsequent decrease in performance for 

velocities up to 6.0 km/s. For a detached spall failure criterion, the failure limit was found to continually decrease 

up to a velocity of 7.0 km/s, substantially varying from the BLE, while for perforation-based failure an increase in 

performance was observed. An existing phenomenological ballistic limit curve was found to provide a more 

accurate reproduction of shield behavior that the BLE, however a number of underlying assumptions such as the 

occurrence of complete projectile fragmentation and the effect on performance of incipient projectile melt were 

found to be inaccurate. A cratering relationship based on the largest residual fragment size has been derived for 

application at velocities between 3.0-4.0 km/s, and was shown to accurately reproduce the trends of the 

experimental data. Further investigation is required to allow a full analytical description of shatter regime 
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performance for metallic Whipple shields. 
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Nomenclature 
    
d Diameter (cm) b Bumper 
S Shield spacing (cm) c Critical 
t Thickness (cm) f Fragment 
V Velocity (km/s) p Projectile 
θ Impact angle (deg) w Rear wall 
ρ Density (g/cm3) LV Low velocity 
σ Yield strength (ksi) HV Hypervelocity 

1. I ntr oduction 

In 1947 Fred Whipple suggested that a thin “bumper”, when placed in front of a space vehicles 

pressure hull, would substantially increase the vehicle’s level of protection against impacting meteors. 

From Apollo through Space Station, the Whipple shield concept has provided the baseline for shielding 

against the impact of micrometeoroids and orbital debris (MMOD). Over the range of impact velocities 

relevant for Earth-orbiting spacecraft, the performance of a Whipple shield is characterized in three 

parts: low velocity, shatter, and hypervelocity. In the low velocity regime, the projectile remains intact 

during penetration of the shield bumper plate, leading to impact of an intact (albeit possibly deformed 

and eroded) projectile upon the shield rear wall. Transition to the shatter regime occurs once the impact 

shock amplitudes are sufficient to induce fragmentation of the projectile. Within the shatter regime, 

further increases in projectile velocity result in increased projectile fragmentation, transitioning from a 

small number of solid fragments to a multitude of small, finely dispersed mixed phase debris cloud 

(solid and molten fragments). Transition to the hypervelocity regime is defined by the point at which 

the rear wall failure mechanism changes from cratering-based to impulsive, similar to that induced by a 
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gaseous blast wave. Increased impact speeds within the hypervelocity regime are expected to increase 

the debris cloud kinetic energy, resulting in a decrease in shielding performance.  

Ballistic limit equations (BLEs) are used to design and evaluate the performance of shields for 

MMOD protection. For a metallic Whipple shield, the new non optimum equation (NNO) [1], or 

variations thereof (e.g. [2]) are commonly used. These equations are based on cratering relationships in 

the low velocity regime, momentum conservation in the hypervelocity regime, and a linear interpolation 

between the two in the shatter regime. With a debris environment increasingly dominated by manmade 

debris, vehicles operating in low earth orbit (LEO) are subject to slower median encounter velocities. 

As such, the performance of shielding at velocities in the shatter regime is increasingly important to 

mission risk predictions. In this paper, the results of an experimental impact study to characterize 

failure limits of an aluminum alloy Whipple shield in the shatter regime are presented. 

2. Pr edicting the failur e limit of metallic W hipple shields 

The most recent iteration of the Whipple shield ballistic limit equation is based on the NNO 

approach and incorporates a selection of modifications proposed by Reimerdes et al. [2].   

In the low velocity regime, i.e. V < VLV: 
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In the hypervelocity regime, i.e. V ≥ 7: 
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where F2
* is a de-rating factor which accounts for the detrimental effect on projectile fragmentation 

(and hence, shielding performance) for insufficiently thick bumper plates, i.e.: 
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and rS/D is ratio between the required rear wall thickness when the bumper thickness is zero, and when it 

is equal to the limit (tb/dp)crit, i.e.: 
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Linear interpolation is used in the shatter regime, i.e. VLV < V < VHV: 
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Although providing a reasonable and conservative simplification of shield performance for risk 

assessment, the linear interpolation in the shatter regime may not accurately reproduce the actual 

behavior observed for this shield type. In 1970, Swift et al. [6] reported on a series of hypervelocity 

impact experiments that were performed on aluminum shields with constant spacing and bumper 
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thickness, while the shield rear wall thickness was varied in order to determine the failure threshold. In 

this series of experiments, failure was defined as the limit between puncture and no puncture, evaluated 

via dye penetrant and gas leak criterion. To effectively describe the types of damages observed in target 

photographs, and in an effort to better characterize the impact performance of a dual-wall structure, 

Hopkins et al. [4] defined a phenomenological ballistic limit curve (BLC), shown in Fig. 1. In region I, 

the typical damage observed was a single crater – indicating an intact projectile. In region II, typical 

damage graduated from a few fairly large craters to a multitude of small craters as a result of the onset 

and escalation of projectile fragmentation. In region III, the appearance of damage remained rather 

constant, with each individual crater increasing in size and depth. In region IV, solid fragment craters 

similar in appearance to those in region II/III were increasingly interspersed by soft contour craters 

made by molten fragments. Throughout region V, soft contour craters caused by molten material were 

the dominant damage observable. Region VI damage was characterized by a mixture of molten and 

vapor damage, where the failure transitions from penetration and perforation to rupture and tearing at 

the upper velocity limits. Damage in region VII was similar to that of pressing by high-pressure gas.  

 
Fig. 1. Phenomenological ballistic limit curve for an Al-alloy Whipple shield (reproduced from [4]) 

The phenomenological BLC is reproduced Fig. 2 together with test data from [6], and is shown to 

provide a significantly better reproduction of the experimental trends than the NNO BLE [1].  
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Fig. 2. Comparison of the phenomenological and NNO ballistic limit curves with test data (reproduced from [5]). Test 

configuration: tb = 0.079 cm (Al6061-T6), S = 5.08 cm, θ = 0°, dp = 0.3175 cm. 

The transition velocities for the phenomenological ballistic limit curve can be inferred from [4] as: 

• Region I: V < 3.1 km/s 

• Region II: 3.1 < V < 4.4 km/s 

• Region III: 4.4 < V < 5.6 km/s 

• Region IV: 5.6 < V < 7.0 km/s 

• Region V: V > 7 km/s 

 

The upper limit of region I refers to the onset of projectile fragmentation, which is commonly 

defined for aluminum on aluminum impact at 3.0 km/s (e.g. [1]). Velocities for incipient and complete 

melt are assumed to be based on 1-D entropy trapping calculations (e.g. [4]). For aluminum-on-

aluminum impacts, the upper limits for region III and IV are calculated as 5.62 and 7.04 km/s 

respectively (A = 0.1704 Mb; γ = 4.3; Γ = 2.0). 
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Concurrent to the research of Swift and Hopkins, Nysmith [3] investigated failure modes of double-

sheet Whipple shield structures and defined failure limits, or ballistic limit curves, based on the physical 

processes by which the shield rear wall failed. He found that, for particular shield configurations, the 

velocity of a constant mass projectile required to perforate the shield rear wall was double-valued, i.e. 

there exists a range between two failure velocities in which failures do not occur (see hc/d in Fig. 3). 

This occurred as a result of the changing state of material in the debris cloud following impact and 

perforation of the bumper plate, and the distance separating the bumper from the shield rear wall.  

 
Fig. 3. Hypothetical performance curve for double sheet structures (from [3]) 

A series of hypervelocity impact tests have recently been performed at NASA JSC’s White Sand’s 

Test Facility to reproduce the experimental findings of Swift et al. The purpose of these experiments is 
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to investigate the claim of Swift, Hopkins, Nysmith etc. that the ballistic performance of Whipple shield 

structures in the shatter regime substantially deviates from the linear approximation of current BLEs 

used in mission risk assessment. In this paper, the results of the test program, along with an analysis of 

shield failure mechanism and the corresponding role of material phase in the debris cloud are discussed. 

As the metallic Whipple shield represents one of the most simple and widely applied shielding 

configurations, a better understanding of failure processes and mechanisms will aid in the design and 

evaluation of new shield types.   

3. I mpact T esting 

A total of 82 successful impact tests were performed on aluminum alloy Whipple shields nominally 

identical to those tested by Swift et al. in [6]. The thickness of the Al6061-T6 bumper (tb = 0.079 cm), 

shield spacing (S = 5.08 cm) and projectile diameter (dp = 0.3175 cm) were constant, while the Al6061-

T6 rear wall thickness (tw) was modified in order to determine the ballistic limits of the shield. Tests 

were performed at varying impact angles (0°/45°/60°) and over a range of velocities from 2.27-7.20 

km/s. In all the tests, failure was defined as the ejection of any material into the simulated pressure hull 

(i.e. detached spall, SP), however distinction was made between spalled targets and those clearly 

perforated (P). It should be noted that the failure criteria is different to that used in the original 

investigation, which assessed failure through use of dye penetrant or gas leak (i.e. perforation). A 

schematic of the test configuration is shown in Fig. 4. 

A summary of the test conditions and results is given in Table 1. Of the 82 tests there were 23 

perforated targets, 17 spalled targets, and 42 pass results. It is interesting to note that only 1 of the 17 

detached spall results were achieved in oblique incidence tests.   
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Fig. 4. Schematic of the Whipple shield test setup. 

 
In Fig. 5 and Fig. 6 the test results at 0° and 45° are plotted against the JSC Whipple shield BLE 

(Eq. (1)-(7)). There are three key findings in the figures, namely: 

1. Following the onset of projectile fragmentation, shield performance improves more rapidly 

in the shatter regime than predicted by the BLE,  

2. In the upper ranges of the shatter regime, shield performance is found to decrease with 

increasing impact velocity, 

3. Detached spallation limits in normal incidence tests at velocities between 5.8-6.9 km/s are 

significantly under predicted by the BLE. 

 

Fig. 7 and Fig. 8 show a series of rear wall damage photographs for normal incidence tests with 

impact velocities between 2.6-6.9 km/s. A clear progression from solid projectile impact (HD9920118), 

to fragmentation initiation (HD9902117), through increasing degrees of fragmentation (HD9920060-

HD9920057) and the onset of melting (HD9920159-HD9920116) can be observed on the front side of 

the targets, which corresponds well with the descriptions from [4]. The rear side view shows that the 

targets all fractured internally (incipient spall) without any detachment of material.  

Al6061-T6 rear wall 
(tw = varied) 
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(tb = 0.07 cm) 
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(S = 5.08 cm) 
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Table 1. Overview of Whipple shield test conditions and results 

Test no. θ 
(deg) 

V 
(km/s) 

tw 
(cm) 

Result  Test no. θ 
(deg) 

V 
(km/s) 

tw 
(cm) 

Result 

HD9920118 0 2.6 0.4572 NP  HD0020010 45 6.50 0.4064 NP 
HD9920117 0 3 0.4572 NP  HD0020122 45 6.53 0.254 NP 
HD9920060 0 4.7 0.254 NP  HD0020047 45 6.60 0.3175 NP 
HD9920057 0 5.5 0.3175 NP  HD0020053 45 7.20 0.3175 NP 
HD9920159 0 6 0.4064 NP  HD9920272 45 3.10 0.3175 P 
HD9920151 0 6.6 0.4064 NP  HD0020011 45 4.50 0.3175 P 
HD9920116 0 6.9 0.4572 NP  HD9920271 45 4.50 0.2032 P 
HD9820223 0 2.5 0.254 P  HD0020087 45 5.45 0.254 P 
HD9920028 0 2.6 0.3175 P  HD0020078 45 5.60 0.2286 P 
HD9820222 0 3 0.3175 P  HD0020052 45 5.70 0.2032 P 
HD9820221 0 4.4 0.2032 P  HD0020077 45 5.93 0.2032 P 
HD9920030 0 4.5 0.2286 P  HD9920270 45 6.50 0.2286 P 
HD9920115 0 5.7 0.254 P  HD0020113 45 6.59 0.254 P 
HD9820220 0 6.6 0.1803 P  HD0020088 45 6.68 0.254 P 
HD9920104 0 2.7 0.4064 SP  HD0020153 45 6.81 0.254 P 
HD9920040 0 3.1 0.4064 SP  HD0020242 60 2.27 0.1803 NP 
HD9920003 0 5.8 0.254 SP  HD0020116 60 2.37 0.2286 NP 
HD9920152 0 5.9 0.3175 SP  HD0020171 60 2.63 0.2032 NP 
HD9920058 0 5.9 0.2286 SP  HD0020219 60 2.67 0.1600 NP 
HD9920014 0 6 0.2032 SP  HD0120003 60 2.76 0.1803 NP 
HD9920065 0 6.4 0.254 SP  HD0020170 60 2.93 0.2032 NP 
HD9920004 0 6.4 0.2032 SP  HD0120079 60 3.03 0.1803 NP 
HD9920032 0 6.4 0.2286 SP  HD0020015 60 3.10 0.2286 NP 
HD9920114 0 6.5 0.3175 SP  HD9920275 60 3.10 0.254 NP 
HD9820217 0 6.5 0.1803 SP  HD9920274 60 4.30 0.2286 NP 
HD9920066 0 6.7 0.4064 SP  HD0020062 60 4.37 0.1803 NP 
HD9920009 0 6.7 0.1803 SP  HD0020014 60 4.50 0.2032 NP 
HD9920005 0 6.9 0.254 SP  HD0020195 60 4.56 0.2286 NP 
HD9920034 0 6.9 0.3175 SP  HD0020169 60 5.09 0.2286 NP 
HD0020217 45 2.29 0.2286 NP  HD0020090 60 5.71 0.254 NP 
HD0020241 45 2.32 0.2286 NP  HD0020123 60 6.00 0.254 NP 
HD0020154 45 2.42 0.4064 NP  HD9920273 60 6.50 0.2032 NP 
HD0120055 45 2.48 0.2032 NP  HD0020061 60 6.95 0.2286 NP 
HD0020112 45 2.56 0.3175 NP  HD0120004 60 2.66 0.127 P 
HD0020194 45 2.63 0.254 NP  HD0020119 60 4.51 0.1600 P 
HD0120005 45 2.75 0.2032 NP  HD0020060 60 5.67 0.1803 P 
HD0020048 45 3.00 0.4064 NP  HD0020019 60 6.00 0.2032 P 
HD0020050 45 4.60 0.4064 NP  HD0020013 60 6.60 0.1803 P 
HD0020152 45 5.61 0.4064 NP  HD0020117 60 5.70 0.2032 SP 
HD0020121 45 5.69 0.3175 NP  HD0020059 60 5.94 0.2286 NP 
HD0020051 45 6.00 0.2286 NP  HD0020118 60 6.80 0.2032 SP 
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Fig. 5. Results and ballistic limit curves for the normal incidence (0°) tests. 

 

 
Fig. 6. Results and ballistic limit curves for the normal incidence (45°) tests. 
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Fig. 7. Rear wall (front view) damage profile with increasing impact velocity (clockwise from top left)   

 
Fig. 8. Rear wall (rear view) damage profile with increasing impact velocity (clockwise from top left)   

An interesting feature in Fig. 8 is that the lower speed (2.6/3.0 km/s) and higher-speed (6.0/6.6 

km/s) tests all show a single, clearly defined bulge (or scab), while the tests at 4.7 and 5.5 km/s 

demonstrate more complex damage features with multiple fracture zones or bulges.  
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4. Discussion 

The ballistic limit of the Whipple shield configuration tested in this study was shown in Fig. 5 and 

Fig. 6 to contain additional features in the shatter regime that are not captured in the linear interpolation 

of current BLEs. These features, however, appear to be well reproduced by the phenomenological curve 

proposed by Hopkins et al. in [4]. The primary deviation from the linear curve is the increased rate of 

performance enhancement following incipient fragmentation (i.e. region II), followed by a decrease in 

performance due to increased kinetic energy of fully fragmented particles prior to the onset of insipient 

melt (i.e. region III).  

Piekutowski [8] investigated the formation of debris clouds during hypervelocity impact, and 

characterized the largest fragment generated for a variety of bumper thickness to projectile diameter 

ratios (tb/dp) across a range of impact velocities, defined as: 

 
2.24204.8 0.049,f b pd V for t d and−= =  (8) 

 
2.24147.1 0.084.f b pd V t dfor−= =

 

(9) 

where df is the largest fragment diameter (mm). 

However, an alternate fit can be made to the test data in [8], defined as:  

( ) 0.166 0.1340.865.62
VV

f p b pd d e t d
− +−= ×  (10) 

 

A comparison between Eq. (10) and the original relationships derived by Piektowski is made in Fig. 

9. For the sake of comparison, Eq.’s (8) and (9) have been extrapolated to larger tb/dp values, and are 

also interpolated for plotting with tb/dp as the independent variable. For tb/dp ratios in the range 

characterized by Piekutowski (i.e. 0.049-0.084, see Figure 23 in [8]) the two curves provide similar 

results, however for tb/dp ratios less than 0.049 and greater than 0.084, there is a substantial difference. 
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Fig. 9. Comparing largest fragment relationships from Piekutowski (published [8] and extrapolated) and Eq. (10). 

 

If perforation of a Whipple shield rear wall in the initial stages of the shatter regime is assumed to 

occur due to cratering by the largest fragment in the debris cloud, the ballistic limit can be determined 

by an extension of Eq. (1). In terms of required rear wall thickness, the ballistic limit is calculated as: 

( )( )( )5 3 1 219 18 1 2 2 30.6 cos 40w f p bt d V tθ ρ σ= −  (11) 
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Eq. (11) is plotted in Fig. 10 with test data from Table 1 as well as that reported in [4]. It should be 

noted that the failure criteria used by Hopkins et al. was clear perforation, and as such detached 

spallation results are not differentiated from pass results. The JSC Whipple shield equation and 

phenomenological curve from [8] are also included in the figure for comparison. 

 
Fig. 10. Largest fragment-based ballistic limit approximation in the shatter regime. 

 

Although the largest fragment approach is shown to be non-conservative for two test results 

between 3.4-4.1 km/s, the slope of the curve agrees well with the performance decreased noted in this 

velocity range. A scaling factor of 1.3, when added to Eq. (10), shows an excellent level of agreement 

with the test results.  
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approximately 5.0 km/s, is observable in Fig. 10. At velocities above 5 km/s, there is a near linear 

increase in the rear wall thickness to prevent detached spallation – extending up to 0.41 cm at 6.7 km/s. 

To prevent perforation, the required rear wall thickness increases through until 6.0 km/s, followed by a 

rapid decrease until approximately 7.0 km/s. Hopkins et al. [4] claim that rear wall damage between 4.4 

and 5.6 km/s is due to increased kinetic energy of individual fragments (which remain a constant size). 

It is shown in Fig. 9 that the diameter of the largest projectile fragment continues to decrease in this 

velocity range, refuting this claim. The assumption of constant fragment size was based on the 

appearance of rear wall damage in this velocity range, which remained constant (slight increase in 

depth and diameter of individual craters). A radiograph of the internal structure of a debris cloud is 

shown in Fig. 11a (from [8]). Although the image is for a lower tb/dp ratio (0.046), the characteristics 

and key features of the cloud are still relevant, namely: the front element of the cloud is most 

effectively shocked (hence the appearance of tiny molten fragments), decreasing in efficiency through 

the central element containing the largest fragment, to the rear element or spall shell. The spall shell 

contains those fragments of the projectile that are compressed and released by a shock wave that 

dissipated a significant percentage of its amplitude, and as such, contains projectile material subject to 

the minimum degree of shock heating (demonstrated in Fig. 11b). It is considered that the appearance 

of rear wall damage for velocities between 4.0 and 5.6 km/s is dominated by the slow moving, solid 

spall shell fragments. 

In order to determine the cause of decreasing performance for velocities between ~5.0 and ~6.0 

km/s, the rear wall damage features shown in Fig. 8 are of interest. In this velocity range, the 

appearance of damage on the rear side of the shield rear wall varies from a single, clearly defined bulge 

(or incipient spall), to a chaotic feature with multiple damage sites and no clearly deformed central 
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zone. It is considered, therefore, that failure in this velocity range is due to the interaction of not only 

the largest fragment with the rear wall, but is more of a cumulative effect resulting from multiple large 

fragment impacts. At this time, an analytical description of this behavior (and subsequently an 

expression for the ballistic limit) is unavailable. 

  
Fig. 11. a) Internal structure of a debris cloud following impact of a 12.7 mm-diameter Al2017-T4 sphere on a 0.59 mm-thick 

Al6061-T6 bumper plate at 6.26 km/s (from [8]). b) Specific internal energy contours within a projectile during impact at 8 
km/s (tb/dp=0.2) from solidus (contour 0, 0.67 MJ/kg) to liquidus (contour 9, 1.07 MJ/kg) (from [9]). 

 

Hopkins et al. [4] assume the onset of incipient melt occurs at 5.6 km/s (based on 1D-entropy 

trapping calculations), which manifests in the BLC as an immediate improvement in shield 

performance. A more reasonable assumption may be that the effect is only noticeable in the shield 

performance once a sufficient percentage of the projectile is molten. From the test data, the 

performance affect appears to begin between 6.0-6.2 km/s. Alme and Rhoades [9] investigated 

projectile melt for impact on thin aluminum bumper plates using the numerical hydrocode CALE from 

the Lawrence Livermore National Laboratory. Using enthalpy to determine incipient and complete 
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melt, simulations of impact at 6.0 km/s showed approximately 20% of the projectile mass had exceeded 

the incipient melt condition, with 5% at complete melt. Thus, the onset of region IV (defined by 

Hopkins et al. [4]) should be defined as 6.0 km/s, rather than 5.6 km/s. 

5. Summar y and C onclusions 

The performance of a metallic Whipple shield is described by ballistic limit equations in three 

parts: low velocity based on cratering relationships, hypervelocity based on momentum conservation, 

and intermediate velocity (or shatter) as a linear interpolation between the two. Although preferred in 

terms of computational simplicity, the linear interpolation in the shatter regime may fail to reproduce 

performance trends previously identified by a number of authors (e.g. [3][4]). In order to investigate the 

performance of a Whipple shield in the shatter regime, a number of hypervelocity impact tests were 

performed in which the projectile diameter, bumper thickness, and shield spacing were constant, while 

the rear wall thickness was varied in order to determine failure limits. Test results were found to agree 

well with those presented in [4], and demonstrated trends that were not well reproduced by the linear 

interpolation of the BLE. Following the onset of projectile fragmentation, a much more rapid increase 

in shield performance was noted between velocities of 3.1 and 4.0 km/s than predicted by the BLE. At 

velocities between 4.0-5.0 km/s, performance was relatively constant, followed by a decrease between 

5.6 and 6.0 km/s for perforation-based failure. For detached spall, the required rear wall thickness was 

found to increase linearly up to 7 km/s - a result significantly different to that predicted by the BLE. 

A re-evaluation of Piekutowski’s largest residual fragment size [8] provided the basis for extending 

the low velocity cratering equation beyond the onset of projectile fragmentation. Although non-

conservative, the slope of the derived relationship reproduced the experimental trends well and can be 
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empirically scaled to match the test data for velocities between 3.0-4.0 km/s. The subsequent decrease 

in performance is expected to occur as a result of complex interactions between multiple fragment 

impacts, based on the appearance of rear wall damage (incipient spall feature). To date, there is no 

analytical procedure to characterize this effect. 

The variation of the Whipple shield failure limits in the shatter regime showed a good level of 

agreement with a phenomenological ballistic limit curve proposed by Hopkins et al. [4]. However, 

some key features related to complete fragmentation at 4.4 km/s, incipient melt at 5.6 km/s, and 

complete melt at 7.0 km/s are considered inaccurate. The largest-fragment based analysis showed a 

continuing decrease in fragment size beyond 4.4 km/s, however this cannot be inferred from inspection 

of the target rear wall (as done by Hopkins et al.) due to the impact of slower moving solid fragments of 

the spall shell. Although 5.6 km/s is considered a reasonable estimate for the onset of incipient melt 

(based on simulation results from Alme and Rhoades [9]), any affect on performance is not expected 

until a significant percentage of the projectile mass exceeds this condition. From the test results, this 

appears to occur at approximately 6.0 km/s, relating to 20% incipient melt and 5% complete melt of the 

projectile mass. The findings of Alme and Rhoades also suggest that the complete melt is not expected 

to occur until velocities well above 7.0 km/s, as suggested in the phenomenological BLC.  
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