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cludes these features initially for zero
cost. It is also assumed that the feature ac-
quisition (FA) cost associated with each
feature is known in advance, and that the
FA cost for a given feature is the same for
all instances. Finally, CFA requires that
the base-level classifiers produce not only
a classification, but also a confidence (or
posterior probability).

CFA trains an ensemble of classifiers
M0 . . . Mf that use successively larger
subsets of the features to classify in-
stances. M0 uses only the “free” (zero
cost) features, and M1 additionally in-

corporates costly features F1 through Fi .
CFA reduces FA cost in that model Mi is
trained only on instances that cannot be
classified with sufficient confidence by
model Mi – 1. Therefore, values for fea-
ture Fi are acquired only for the in-
stances that require it. At test time, each
test instance is successively classified by
M0, M1, M2 . . . until its classification is
sufficiently confident (i.e., until the con-
fidence of the prediction reaches the
confidence threshold). Again, features
are acquired for the new instance only as
required. In an empirical comparison

with an existing method (Cost-Sensitive
Naive Bayes) that makes acquisition de-
cisions only during test time (and there-
fore requires that all training items be
fully acquired), CFA achieves the same
(or higher) level of performance at a
much reduced cost (by at least an order
of magnitude).

This work was done by Kiri L. Wagstaff of
Caltech and Marie desJardins and James Mac-
Glashan of the University of Maryland for
NASA’s Jet Propulsion Laboratory. For more in-
formation, contact iaoffice@jpl.nasa.gov.
NPO-46886

A two-stage predictive method was de-
veloped for lossless compression of cali-
brated hyperspectral imagery. The first
prediction stage uses a conventional lin-
ear predictor intended to exploit spatial
and/or spectral dependencies in the
data. The compressor tabulates counts
of the past values of the difference be-
tween this initial prediction and the ac-
tual sample value. To form the ultimate
predicted value, in the second stage,
these counts are combined with an

adaptively updated weight function in-
tended to capture information about
data regularities introduced by the cali-
bration process. Finally, prediction
residuals are losslessly encoded using
adaptive arithmetic coding.

Algorithms of this type are commonly
tested on a readily available collection of
images from the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) hyper-
spectral imager. On the standard calibrated
AVIRIS hyperspectral images that are most

widely used for compression benchmark-
ing, the new compressor provides more
than 0.5 bits/sample improvement over the
previous best compression results.

The algorithm has been implemented
in Mathematica. The compression algo-
rithm was demonstrated as beneficial on
12-bit calibrated AVIRIS images.

This work was done by Aaron B. Kiely and
Matthew A. Klimesh of Caltech for NASA’s Jet
Propulsion Laboratory. For more information,
contact iaoffice@jpl.nasa.gov.  NPO-46547 
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A recently developed algorithm for de-
modulation and decoding of a pulse-posi-
tion-modulation (PPM) signal is suitable
as a basis for designing a single hardware
decoding apparatus to be capable of han-
dling any PPM order. Hence, this algo-
rithm offers advantages of greater flexi-
bility and lower cost, in comparison with
prior such algorithms, which necessitate

the use of a distinct hardware implemen-
tation for each PPM order. In addition, in
comparison with the prior algorithms,
the present algorithm entails less com-
plexity in decoding at large orders.

An unavoidably lengthy presentation of
background information, including defi-
nitions of terms, is prerequisite to a mean-
ingful summary of this development. As

an aid to understanding, the figure illus-
trates the relevant processes of coding,
modulation, propagation, demodulation,
and decoding. An M-ary PPM signal has M
time slots per symbol period. A pulse (sig-
nifying 1) is transmitted during one of the
time slots; no pulse (signifying 0) is trans-
mitted during the other time slots.

The information intended to be con-

Universal Decoder for PPM of any Order
Complexity can be reduced and flexibility increased, at small cost in performance.
NASA’s Jet Propulsion Laboratory, Pasadena, California

Processing of Information in an M-ary PPM communication system includes the sequence of steps depicted here. The l-bit marginalizer is a feature of the
innovation reported here; the other features are typical of PPM systems in general.
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veyed from the transmitting end to the re-
ceiving end of a radio or optical communi-
cation channel is a K-bit vector u. This vec-
tor is encoded by an (N,K) binary
error-correcting code, producing an N-bit
vector a. In turn, the vector a is subdivided
into blocks of m = log2(M) bits and each
such block is mapped to an M-ary PPM
symbol. The resultant coding/modulation
scheme can be regarded as equivalent to a
nonlinear binary code. The binary vector
of PPM symbols, x is transmitted over a
Poisson channel, such that there is ob-
tained, at the receiver, a Poisson-distrib-
uted photon count characterized by a
mean background count nb during no-
pulse time slots and a mean signal-plus-
background count of ns+nb during a pulse
time slot.

In the receiver, demodulation of the
signal is effected in an iterative soft de-
coding process that involves considera-

tion of relationships among photon
counts and conditional likelihoods of
m-bit vectors of coded bits. Inasmuch as
the likelihoods of all the m-bit vectors of
coded bits mapping to the same PPM
symbol are correlated, the best per-
formance is obtained when the joint m-
bit conditional likelihoods are utilized.
Unfortunately, the complexity of de-
coding, measured in the number of op-
erations per bit, grows exponentially
with m, and can thus become prohibi-
tively expensive for large PPM orders.
For a system required to handle multi-
ple PPM orders, the cost is even higher
because it is necessary to have separate
decoding hardware for each order. This
concludes the prerequisite background
information.

In the present algorithm, the decoding
process as described above is modified by,
among other things, introduction of an l-

bit marginalizer subalgorithm. The term
“l-bit marginalizer” signifies that instead
of m-bit conditional likelihoods, the de-
coder computes l-bit conditional likeli-
hoods, where l is fixed. Fixing l, regard-
less of the value of m, makes it possible to
use a single hardware implementation for
any PPM order. One could minimize the
decoding complexity and obtain an espe-
cially simple design by fixing l at 1, but
this would entail some loss of perform-
ance. An intermediate solution is to fix l
at some value, greater than 1, that may be
less than or greater than m. This solution
makes it possible to obtain the desired
flexibility to handle any PPM order while
compromising between complexity and
loss of performance.

This work was done by Bruce E. Moision
of Caltech for NASA’s Jet Propulsion Labo-
ratory. For more information, contact iaof-
fice@jpl.nasa.gov. NPO-46013
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This algorithm provides a new way to
improve the accuracy and asymptotic be-
havior of a low-dimensional system
based on the proper orthogonal decom-
position (POD). Given a data set repre-
senting the evolution of a system of par-
tial differential equations (PDEs), such
as the Navier-Stokes equations for in-
compressible flow, one may obtain a low-
dimensional model in the form of ordi-
nary differential equations (ODEs) that
should model the dynamics of the flow.
Temporal sampling of the direct numer-
ical simulation of the PDEs produces a

spatial time series. The POD extracts the
temporal and spatial eigenfunctions of
this data set. Truncated to retain only
the most energetic modes followed by
Galerkin projection of these modes onto
the PDEs obtains a dynamical system of
ordinary differential equations for the
time-dependent behavior of the flow.

In practice, the steps leading to this
system of ODEs entail numerically com-
puting first-order derivatives of the
mean data field and the eigenfunctions,
and the computation of many inner
products. This is far from a perfect

process, and often results in the lack of
long-term stability of the system and in-
correct asymptotic behavior of the
model. This algorithm describes a new
stabilization method that utilizes the
temporal eigenfunctions to derive cor-
rection terms for the coefficients of the
dynamical system to significantly reduce
these errors. 

This work was done by Virginia L. Kalb of
Goddard Space Flight Center. For further in-
formation, contact the Goddard Innovative
Partnerships Office at (301) 286-5810. GSC-
15129-1

A mission reliability estimation
method has been designed to translate
mission requirements into choices of
robot modules in order to configure a
multi-robot team to have high reliability
at minimal cost. In order to build cost-ef-
fective robot teams for long-term mis-
sions, one must be able to compare alter-
native design paradigms in a principled
way by comparing the reliability of differ-
ent robot models and robot team config-

urations. Core modules have been cre-
ated including: a probabilistic module
with reliability-cost characteristics, a
method for combining the characteris-
tics of multiple modules to determine an
overall reliability-cost characteristic, and
a method for the generation of legiti-
mate module combinations based on
mission specifications and the selection
of the best of the resulting combinations
from a cost-reliability standpoint.

The developed methodology can be
used to predict the probability of a mis-
sion being completed, given informa-
tion about the components used to
build the robots, as well as information
about the mission tasks. In the research
for this innovation, sample robot mis-
sions were examined and compared to
the performance of robot teams with
different numbers of robots and differ-
ent numbers of spare components.

Mission Reliability Estimation for Repairable Robot Teams
An analytical model demonstrates autonomous and intelligent control systems capable of operating
distributed, multi-planetary surface vehicles for scouting or construction. 
NASA’s Jet Propulsion Laboratory, Pasadena, California


