® The second challenge is associated
with the lack of range information
when camera measurements are the
only measurements available. Cam-
era’s measurements consist only of
bearings to specific feature points in
images. The PFT data type is especially
challenging inasmuch as recognized
features do not necessarily represent
known objects and do not contain lo-
cation information.

The third challenge is posed by the
fact that computer vision information
often relates to images taken in the
past. For example, the PFT data type
reports features that were recognized
as being common to two images taken
at earlier times. The need to update
the current state estimate by use of in-
formation from the past presents a

challenge because prior recursive

state-estimating algorithms typically

only propagate the current state.

The present algorithm addresses
these challenges by incorporating the
following innovations:

The first innovation is a preprocessing
step, based on QR factorization (a par-
ticular matrix factorization, a descrip-
tion of which would exceed the scope of
this article), that provides for optimal
compression of LMT, PFT, and RPT up-
dates that involve large numbers of rec-
ognized features. This compression
eliminates the need for a considerable
amount of real-time computation.

The second innovation is a mathemat-
ical annihilation method for forming a
linear measurement equation from the
PFT data. The annihilation method is

equivalent to a mathematical projection
that eliminates the dependence on the
unknown scale factor.

The third innovation is a state-augmenta-
tion method for handling PFT and other
data types that relate states from two or
more past instants of time. The state-aug-
mentation method stands in contrast to a
prior stochastic cloning method. State aug-
mentation provides an optimal solution to
the state-estimation problem, while stochas-
tic cloning can be shown to be suboptimal.

This work was done by David Bayard and
Paul Brugarolas of Caltech for NASA’s Jet
Propulsion Laboratory.

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California
Institute of Technology at (626) 395-2322.
Refer to NPO-41321

Computation can be simplified in cases in which data are noiseless.

Langley Research Center, Hampton, Virginia

A method of approximating a scalar
function of n independent variables
(where 7 is a positive integer) to arbi-
trary accuracy has been developed.
This method is expected to be attrac-
tive for use in engineering computa-
tions in which it is necessary to link
global models with local ones or in
which it is necessary to interpolate
noiseless tabular data that have been
computed from analytic functions or
numerical models in n-dimensional
spaces of design parameters.

This method is related to prior statisti-
cally based methods of fitting low-order
approximate functional representations
(response surfaces) to noisy experimen-
tal data. The prior methods are advanta-
geous in situations in which large
amounts of noisy data are available, but
in situations in which the data and the
functions that they represent are noise-
less, it is computationally inefficient to
generate the large quantities of data
needed for fitting. Moreover, in the prior
statistically based methods, the low-order
functional representation cannot be de-
fined to a specified degree of accuracy.
The latter shortcoming limits the useful-
ness of response surfaces in design-opti-
mization computations because (1) opti-
mization calculations involve gradients of
functions, which are approximated to or-
ders lower than those of the functions
themselves and, hence, can be so inaccu-
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rate as to yield poor results; and (2) the
accuracy of a response surface can vary
widely over its domain. The present
method overcomes these shortcomings
of the prior methods.

Increasingly, modern computational-
simulation programs generate values of
gradients of functions in addition to val-
ues of the functions themselves, in order
to satisfy the need for accurate gradient
as well as function values for optimiza-
tions. Taking advantage of this trend, the
present method relies on the availability
of both gradient and function data. In
this method, the space of n independent
variables is subdivided into an n-dimen-
sional mesh of simplex elements (sim-
plices) that amount to n-dimensional
generalizations of modeling techniques
used in the finite-element method. The
exact values of the scalar function and its
gradient, as generated by the applicable
computational model, are specified at
the simplex nodes, which are intersec-
tions of coordinate axes of the n-dimen-
sional mesh. Within each simplex, the
function and its gradient are interpo-
lated approximately by a set of basis func-
tions of the n coordinates.

In order to minimize the computa-
tional burden, one tries to use basis
functions of order no higher than that
needed to limit the error in the approx-
imation to an acceptably low value. It
would be preferable if, in a given case,

¢3 Representing Functions in n Dimensions to Arbitrary Accuracy

APPROXIMATION OF FUNCTION

ERROR IN APPROXIMATION

In a Simple Example, the function ba? is approx-
imated by a third-order (complete to second
order) polynomial on a triangular simplex. The
error is zero at the nodes of the simplex and
greatest near the middle.
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one could obtain acceptable accuracy
from polynomial functions of order no
higher than third, complete to second
order (see figure). The advantage of
using such low-order polynomials is that
the interpolation could be performed

without need for matrix operations
(which would, if needed, add to the
computational burden). Approximate-
error-indicator quantities, defined on
the edges of the simplices, have been de-
rived as guides to whether there is a

need to refine the simplices to reduce
the errors.

This work was done by Stephen J. Scotti of
Langley Research Center. Further information
is contained in a TSP (see page 1).
LAR-16297-1

3 Accumulate-Repeat-Accumulate-Accumulate Codes

Fast, high-performance coders and decoders could be designed.

NASA's Jet Propulsion Laboratory, Pasadena, California

Accumulate-repeat-accumulate-accu-
mulate (ARAA) codes have been pro-
posed, inspired by the recently pro-
posed accumulate-repeat-accumulate
(ARA) codes. These are error-correct-
ing codes suitable for use in a variety of
wireless data-communication systems
that include noisy channels. ARAA
codes can be regarded as serial turbo-
like codes or as a subclass of low-density
parity-check (LDPC) codes, and, like
ARA codes they have projected graph
or protograph representations; these
characteristics make it possible to de-
sign high-speed iterative decoders that

utilize belief-propagation algorithms.
The objective in proposing ARAA codes
as a subclass of ARA codes was to en-
hance the errorfloor performance of
ARA codes while maintaining simple
encoding structures and low maximum
variable node degree.

A rate-1/2 classical repeat-and-accu-
mulate (RA) code has a high threshold
(3.01 dB). An ARAA code can be viewed
as a preceded RA code with puncturing
in concatenation with another accumu-
lation, wherein the preceding is also sim-
ply an accumulation; these characteris-
tics make it possible to design very fast

encoders. The top part of the figure il-
lustrates the simplest example of the en-
coding process for a rate-1/2 ARA code,
its protograph (filled nodes correspond
to transmitted code symbols), and the
corresponding decoding threshold of
0.516 dB. Other rate-1/2 ARA examples
with maximum variable node degree 5
have thresholds as low as 0.26 dB, which
can be compared to the Shannon capac-
ity limit of 0.19 dB.

The bottom part of the figure illus-
trates a simple example of the encoding
process for a rate-1/2 ARAA code, its
protograph, and the corresponding

ARA Coding With Repeat 3, Rate 1/2,
Systematic Bits to Channel
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These Block Diagrams and Protographs illustrate the similarities and differences between a simple rate-1/2 ARA code and a simple rate-1/2 ARAA code.
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