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model-based reasoner that uses a model
of a system, controller commands, and
sensor observations to track the system’s
state, and detect and diagnose faults.
Livingstone models a system within the
discrete domain. Therefore, continuous
sensor readings, as well as time, must be
discretized. To reason about continuous
systems, Livingstone uses “monitors”

that discretize the sensor readings using
trending and thresholding techniques.

In development of the a hybrid
method, BEAM results were sent to Liv-
ingstone to serve as an independent
source of evidence that is in addition to
the evidence gathered by Livingstone
standard monitors. The figure depicts
the flow of data in an early version of a

hybrid system dedicated to diagnosing a
simulated electromechanical system. In
effect, BEAM served as a “smart” moni-
tor for Livingstone. BEAM read the sim-
ulation data, processed the data to form
observations, and stored the observa-
tions in a file. A monitor stub synchro-
nized the events recorded by BEAM with
the output of the Livingstone standard
monitors according to time tags. This in-
formation was fed to a real-time inter-
face, which buffered and fed the infor-
mation to Livingstone, and requested
diagnoses at the appropriate times. In a
test, the hybrid system was found to cor-
rectly identify a failed component in an
electromechanical system for which nei-
ther BEAM nor Livingstone alone
yielded the correct diagnosis.

This work was done by Han Park, Mark
James, Ryan Mackey of Caltech; Howard
Cannon and Anapa Bajwa of NASA’s Ames
Research Center; and William Maul of
NASA’s Glenn Research Center for NASA’s Jet
Propulsion Laboratory. 

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California
Institute of Technology at (626) 395-2322.
Refer to NPO-40910.

This Data-Flow Diagram illustrates the role of BEAM as a “smart” monitor for Livingstone.
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State-Estimation Algorithm Based on Computer Vision
Available data are utilized optimally without incurring an excessive computational burden.
NASA’s Jet Propulsion Laboratory, Pasadena, California

An algorithm and software to imple-
ment the algorithm are being developed
as means to estimate the state (that is, the
position and velocity) of an autonomous
vehicle, relative to a visible nearby target
object, to provide guidance for maneu-
vering the vehicle. In the original in-
tended application, the autonomous ve-
hicle would be a spacecraft and the
nearby object would be a small astronom-
ical body (typically, a comet or asteroid)
to be explored by the spacecraft. The al-
gorithm could also be used on Earth in
analogous applications — for example,
for guiding underwater robots near such
objects of interest as sunken ships, min-
eral deposits, or submerged mines.

For the purpose of the algorithm, it is
assumed that the robot would be
equipped with a vision system that would
include one or more electronic cameras,
image-digitizing circuitry, and an image-
data-processing computer that would
generate feature-recognition data prod-
ucts. Such products customarily include

bearing angles of lines of sight from the
camera(s) [and, hence, from the vehicle]
to recognized features. The data prod-
ucts that are processed by the present al-
gorithm are of the following types:
• The Cartesian vector from the camera to

a reference point on or in the target body;
• Bearing angles from the camera to the

reference point;
• A landmark table (LMT);
• A paired-feature table (PFT); and
• A range point table (RPT).

The incorporation of the LMT and
PFT is particularly important. LMT and
PFT data are generated by typical com-
puter-vision systems that could be used in
the contemplated applications. In an
LMT, a vision system recognizes land-
marks from an onboard catalog and re-
ports their bearing angles and associated
known locations on the target body. In a
PFT, a vision system reports bearing an-
gles to features recognized as being com-
mon to two images taken at different
times. Relative to the LMT, the PFT can

be generated with less computation be-
cause it is necessary only to track features
frame-to-frame; it is not necessary to as-
sociate the features with landmarks.
However, it is more challenging to incor-
porate the PFT in a state-estimation algo-
rithm for reasons discussed below. The
LMT and PFT are complementary in the
sense that the LMT provides position-
type information while the PFT provides
velocity-type information. However, the
velocity-type information from the PFT is
incomplete because it includes an un-
known scale factor. A state-estimation al-
gorithm must fuse the aforementioned
data types to make an optimal estimate.

The following three main challenges
arise as parts of this data-fusion problem:
• The first challenge is posed by the

large number of features (typically
50) that a typical computerized vision

system can recognize during any given
frame period. The large number of
features imposes a heavy burden for
real-time computation.
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A method of approximating a scalar
function of n independent variables
(where n is a positive integer) to arbi-
trary accuracy has been developed.
This method is expected to be attrac-
tive for use in engineering computa-
tions in which it is necessary to link
global models with local ones or in
which it is necessary to interpolate
noiseless tabular data that have been
computed from analytic functions or
numerical models in n-dimensional
spaces of design parameters.

This method is related to prior statisti-
cally based methods of fitting low-order
approximate functional representations
(response surfaces) to noisy experimen-
tal data. The prior methods are advanta-
geous in situations in which large
amounts of noisy data are available, but
in situations in which the data and the
functions that they represent are noise-
less, it is computationally inefficient to
generate the large quantities of data
needed for fitting. Moreover, in the prior
statistically based methods, the low-order
functional representation cannot be de-
fined to a specified degree of accuracy.
The latter shortcoming limits the useful-
ness of response surfaces in design-opti-
mization computations because (1) opti-
mization calculations involve gradients of
functions, which are approximated to or-
ders lower than those of the functions
themselves and, hence, can be so inaccu-

rate as to yield poor results; and (2) the
accuracy of a response surface can vary
widely over its domain. The present
method overcomes these shortcomings
of the prior methods.

Increasingly, modern computational-
simulation programs generate values of
gradients of functions in addition to val-
ues of the functions themselves, in order
to satisfy the need for accurate gradient
as well as function values for optimiza-
tions. Taking advantage of this trend, the
present method relies on the availability
of both gradient and function data. In
this method, the space of n independent
variables is subdivided into an n-dimen-
sional mesh of simplex elements (sim-
plices) that amount to n-dimensional
generalizations of modeling techniques
used in the finite-element method. The
exact values of the scalar function and its
gradient, as generated by the applicable
computational model, are specified at
the simplex nodes, which are intersec-
tions of coordinate axes of the n-dimen-
sional mesh. Within each simplex, the
function and its gradient are interpo-
lated approximately by a set of basis func-
tions of the n coordinates.

In order to minimize the computa-
tional burden, one tries to use basis
functions of order no higher than that
needed to limit the error in the approx-
imation to an acceptably low value. It
would be preferable if, in a given case,

Representing Functions in n Dimensions to Arbitrary Accuracy
Computation can be simplified in cases in which data are noiseless.
Langley Research Center, Hampton, Virginia
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In a Simple Example, the function ba3 is approx-
imated by a third-order (complete to second
order) polynomial on a triangular simplex. The
error is zero at the nodes of the simplex and
greatest near the middle.

• The second challenge is associated
with the lack of range information
when camera measurements are the
only measurements available. Cam-
era’s measurements consist only of
bearings to specific feature points in
images. The PFT data type is especially
challenging inasmuch as recognized
features do not necessarily represent
known objects and do not contain lo-
cation information.

• The third challenge is posed by the
fact that computer vision information
often relates to images taken in the
past. For example, the PFT data type
reports features that were recognized
as being common to two images taken
at earlier times. The need to update
the current state estimate by use of in-
formation from the past presents a

challenge because prior recursive
state-estimating algorithms typically
only propagate the current state.
The present algorithm addresses

these challenges by incorporating the
following innovations:

The first innovation is a preprocessing
step, based on QR factorization (a par-
ticular matrix factorization, a descrip-
tion of which would exceed the scope of
this article), that provides for optimal
compression of LMT, PFT, and RPT up-
dates that involve large numbers of rec-
ognized features. This compression
eliminates the need for a considerable
amount of real-time computation.

The second innovation is a mathemat-
ical annihilation method for forming a
linear measurement equation from the
PFT data. The annihilation method is

equivalent to a mathematical projection
that eliminates the dependence on the
unknown scale factor.

The third innovation is a state-augmenta-
tion method for handling PFT and other
data types that relate states from two or
more past instants of time. The state-aug-
mentation method stands in contrast to a
prior stochastic cloning method. State aug-
mentation provides an optimal solution to
the state-estimation problem, while stochas-
tic cloning can be shown to be suboptimal.

This work was done by David Bayard and
Paul Brugarolas of Caltech for NASA’s Jet
Propulsion Laboratory. 

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California
Institute of Technology at (626) 395-2322.
Refer to NPO-41321


