ented bounding boxes (OBBs), in which
an object is represented approximately,
for computational purposes, by a box
that encloses its outer boundary. Because
many parts of a robotic manipulator are
cylindrical, the OBB method has been
extended in this method to enable the
approximate representation of cylindri-
cal parts by use of octagonal or other
multiple-OBB assemblies denoted ori-
ented bounding prisms (OBPs).

A multiresolution OBB/OBP repre-
sentation of the robot and its manipula-
tor arm and a multiresolution OBB rep-
resentation of  external objects
(including terrain) are constructed and
used in a process in which collisions at
successively finer resolutions are de-
tected through computational detection
of overlaps between the corresponding
OBB and OBP models. For computa-
tional efficiency, the process is started at
the coarsest resolution and stopped as
soon as possible, preferably before
reaching the finest resolution. At the
coarsest resolution, there is a single OBB
enclosing all relevant external objects
and a single OBB enclosing the entire
robot. At the next finer level of resolu-
tion, the coarsest-resolution OBB is di-
vided into two OBBs, and so forth. If no
collision is detected at the coarsest reso-
lution, then there is no need for further
computation to detect collisions. If a col-
lision is detected at the coarsest resolu-
tion, then tests for collisions are per-
formed at the next finer level of
resolution. This process is continued to
successively finer resolutions until either
no more collisions are detected or the

finest resolution is reached.

The path-planning algorithm oper-
ates on a representation of the robot
arm and obstacles in a Cartesian coor-
dinate system. The figure schematically
depicts a simplified example of the
geometric effects of the algorithm. In
this example, the robot arm has been
commanded to move from a starting
point to a destination. The problem to
be solved by the algorithm is to choose
waypoints (W, Wy, ...) and straight-line
path segments connecting the way-
points (including the starting point
and destination as waypoints) so that
there is no collision along any segment.
The algorithm can be summarized as
follows:

1. Generate a straight-line path (s;)
from the starting point (W;) to the
destination.

2. Using the collision-detection method
described above, test for collisions
along this path.

3. If there is a collision (denoted by col-
lision point ¢;), then by use of a geom-
etry-based subalgorithm too complex
to be described within the space avail-
able for this article, generate two new
sub-paths (sy and s3) that connect a
new waypoint (Wy) with the ends of s;.

4. Test each new sub-path for collisions.

5. If a collision is detected on either sub-
path (e.g., at collision point ¢y on sy),
then in the manner of step 3, generate
new sub-sub paths (s and sg9) that con-
nect new way point Wy with Wy and Wo.

6. Test for collisions and generate new
path segments in the manner de-
scribed above until the starting and

Destination

Starting Point

A Multi-Segment Path is generated in an itera-
tive process of generating candidate segments
and testing them for collisions.

destination points are connected by

collision-free path segments. In this ex-

ample, the result is a total of seven way-
points connected by six path segments.

This work was done by Paul Backes and
Antonio Diaz-Calderon of Caltech for NASA’s
Jet Propulsion Laboratory.

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California
Institute of Technology at (626) 395-2322.
Refer to NPO-41697

¢3 Hybrid Automated Diagnosis of Discrete/Continuous Systems
Integration of complementary tools offers new approach to hybrid diagnosis.
NASA’s Jet Propulsion Laboratory, Pasadena, California

A recently conceived method of auto-
mated diagnosis of a complex electro-
mechanical system affords a complete
set of capabilities for hybrid diagnosis in
the case in which the state of the electro-
mechanical system is characterized by
both continuous and discrete values (as
represented by analog and digital sig-
nals, respectively). The method is an in-
tegration of two complementary diag-
nostic  systems: (1) beacon-based
exception analysis for multimissions
(BEAM), which is primarily useful in the
continuous domain and easily performs
diagnoses in the presence of transients;
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and (2) Livingstone, which is primarily
useful in the discrete domain and is typ-
ically restricted to quasi-steady condi-
tions. BEAM has been described in sev-
eral prior NASA Tech Briefs articles:
“Software for Autonomous Diagnosis of
Complex Systems” (NPO-20803), Vol.
26, No. 3 (March 2002), page 33; “Bea-
con-Based Exception Analysis for Multi-
missions” (NPO-20827), Vol. 26, No. 9
(September 2002), page 32; “Wavelet-
Based Real-Time Diagnosis of Complex
Systems” (NPO-20830), Vol. 27, No. 1
(January 2003), page 67; and “Inte-
grated Formulation of Beacon-Based Ex-

ception Analysis for Multimissions”
(NPO-21126), Vol. 27, No. 3 (March
2003), page 74.

Briefly, BEAM is a complete data-
analysis method, implemented in soft-
ware, for real-time or off-line detection
and characterization of faults. The basic
premise of BEAM is to characterize a sys-
tem from all available observations and
train the characterization with respect to
normal phases of operation. The obser-
vations are primarily continuous in na-
ture. BEAM isolates anomalies by analyz-
ing the deviations from nominal for
each phase of operation. Livingstone is a
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This Data-Flow Diagram illustrates the role of BEAM as a “smart” monitor for Livingstone.

model-based reasoner that uses a model
of a system, controller commands, and
sensor observations to track the system’s
state, and detect and diagnose faults.
Livingstone models a system within the
discrete domain. Therefore, continuous
sensor readings, as well as time, must be
discretized. To reason about continuous
systems, Livingstone uses “monitors”

that discretize the sensor readings using
trending and thresholding techniques.
In development of the a hybrid
method, BEAM results were sent to Liv-
ingstone to serve as an independent
source of evidence that is in addition to
the evidence gathered by Livingstone
standard monitors. The figure depicts
the flow of data in an early version of a

hybrid system dedicated to diagnosing a
simulated electromechanical system. In
effect, BEAM served as a “smart” moni-
tor for Livingstone. BEAM read the sim-
ulation data, processed the data to form
observations, and stored the observa-
tions in a file. A monitor stub synchro-
nized the events recorded by BEAM with
the output of the Livingstone standard
monitors according to time tags. This in-
formation was fed to a real-time inter-
face, which buffered and fed the infor-
mation to Livingstone, and requested
diagnoses at the appropriate times. In a
test, the hybrid system was found to cor-
rectly identify a failed component in an
electromechanical system for which nei-
ther BEAM nor Livingstone alone
yielded the correct diagnosis.

This work was done by Han Park, Mark
James, Ryan Mackey of Caltech; Howard
Cannon and Anapa Bajwa of NASA’s Ames
Research Center; and William Maul of
NASA’s Glenn Research Center for NASA’s Jet
Propulsion Laboratory.

The software used in this innovation is
available for commercial licensing. Please
contact Karina Edmonds of the California
Institute of Technology at (626) 395-2322.
Refer to NPO-40910.

¢3 State-Estimation Algorithm Based on Computer Vision
Available data are utilized optimally without incurring an excessive computational burden.
NASA's Jet Propulsion Laboratory, Pasadena, California

An algorithm and software to imple-
ment the algorithm are being developed
as means to estimate the state (thatis, the
position and velocity) of an autonomous
vehicle, relative to a visible nearby target
object, to provide guidance for maneu-
vering the vehicle. In the original in-
tended application, the autonomous ve-
hicle would be a spacecraft and the
nearby object would be a small astronom-
ical body (typically, a comet or asteroid)
to be explored by the spacecraft. The al-
gorithm could also be used on Earth in
analogous applications — for example,
for guiding underwater robots near such
objects of interest as sunken ships, min-
eral deposits, or submerged mines.

For the purpose of the algorithm, it is
assumed that the robot would be
equipped with a vision system that would
include one or more electronic cameras,
image-digitizing circuitry, and an image-
data-processing computer that would
generate feature-recognition data prod-
ucts. Such products customarily include
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bearing angles of lines of sight from the

camera(s) [and, hence, from the vehicle]

to recognized features. The data prod-

ucts that are processed by the present al-

gorithm are of the following types:

¢ The Cartesian vector from the camera to
areference point on or in the target body;

® Bearing angles from the camera to the
reference point;

e A landmark table (LMT);

® A paired-feature table (PFT); and

¢ A range point table (RPT).

The incorporation of the LMT and
PFT is particularly important. LMT and
PFT data are generated by typical com-
puter-vision systems that could be used in
the contemplated applications. In an
LMT, a vision system recognizes land-
marks from an onboard catalog and re-
ports their bearing angles and associated
known locations on the target body. In a
PFT, a vision system reports bearing an-
gles to features recognized as being com-
mon to two images taken at different
times. Relative to the LMT, the PFT can

be generated with less computation be-
cause it is necessary only to track features
frame-to-frame; it is not necessary to as-
sociate the features with landmarks.
However, it is more challenging to incor-
porate the PFT in a state-estimation algo-
rithm for reasons discussed below. The
LMT and PFT are complementary in the
sense that the LMT provides position-
type information while the PFT provides
velocity-type information. However, the
velocity-type information from the PFT is
incomplete because it includes an un-
known scale factor. A state-estimation al-
gorithm must fuse the aforementioned
data types to make an optimal estimate.
The following three main challenges
arise as parts of this data-fusion problem:
® The first challenge is posed by the
large number of features (typically
=50) that a typical computerized vision
system can recognize during any given
frame period. The large number of
features imposes a heavy burden for
real-time computation.
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