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Abstract. With the growing complexity of today's large scale problems, it has become more difficult to
find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an
acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have
several parameters that need to be "tuned" before they can reach good results. The problem then turns
into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One
Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters.
Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In
this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine
total weighted tardiness problem in which n jobs must be scheduled on a single machine without
preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the
problem are available in the literature. To fine tune the GA parameters in the most efficient way, we
compare multiple DOE models including 2-level (2k

) full factorial design, orthogonal array design, central
composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a
mathematical model is created using regression analysis, and solved to obtain the best parameter setting.
After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of
multiple instances were found efficiently.

1. INTRODUCTION
One of the most important effects of the improving
modern sciences and technologies is to enable us
understand and model real life problems
realistically and in more details. The natural
outcome of this fact is the rapid increase of
dimensions and complexity of the problems. With
the growing complexity of today's large scale
problems, it has become more difficult to find
optimal solutions by using only exact
mathematical methods. Due to the concern of
efficiency in terms of the solution quality, the need
to find near-optimal solutions in an acceptable
time frame requires using heuristic approaches.

Heuristics are quite new approaches in the field of
combinatorial optimization. A heuristic can be
defined as "a generic algorithmic template that
can be used for finding high quality solutions of
hard combinatorial optimization problems" [1].
Heuristic approaches have already proved
themselves in many large scale optimization
problems by offering near-optimal solutions where
there is no optimal solution found by other
approaches. In many cases, however, most
heuristics have several parameters that need to
be "tuned" before they can reach good results.
The accepted values of the parameters to be
employed in the heuristics have considerably
significant impact on both solution process and
the solution itself. To obtain the best reSUlts, the
problem then turns into "finding the best
parameter setting" for the heuristics to solve the

problems efficiently and timely, which becomes an
optimization problem by itself.

There are various methods used to find the best
parameter setting in the literature. One-Factor-At
a-Time (OFAT) approach for parameter tuning is
one of them; however, it neglects the interactions
between the parameters that might change the
whole solution process and quality of solution.
Particularly, in terms of the interactions, Design of
Experiments (DOE) methods are promising
approaches and can be easily employed to tune
the parameters more effectively.

In this paper, we seek the best parameter setting
for a genetic algorithm to solve the single machine
total weighted tardiness problem in which n jobs
must be scheduled on a single machine without
preemption, and the objective is to minimize the
total weighted tardiness. Benchmark instances for
the single machine total weighted tardiness
problem are available in the literature.

2. DESIGN OF EXPERIMENTS (DOE)

To fine tune the genetic algorithm parameters in
the most efficient way, we compare mUltiple DOE
tools including 2-level (2k

) full factorial design,
orthogonal array design, central composite
design, D-optimal design and signal-to-noise
(SIN) ratios method. In each DOE method, a
mathematical model is created using regression
analysis, and solved to obtain the best parameter
setting. After verification runs for other benchmark
instances by using the tuned parameter setting,
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DOE methods presented will be compared in
terms of their solution qualities.

The single machine total weighted tardiness
problem is used in this paper as a difficult problem
to demonstrate the use of DOE for setting the
optimization Genetic Algorithm (GA) parameters.
In this problem, n jobs must be scheduled on a
single machine where each job j has a given
processing time Pj and a due date dj . The
tardiness Tj is defined as max (0, Crdj) where Cj is
the job's completion time - a decision variable
that is based on the job sequence. The objective
function then becomes to minimize LJ=l wjTj.
This is a well known problem to which benchmark
problems are available. In seeking best parameter
setting for the GA, we will be using a MS-excel
Add-in called Evolver from Palisade [6].

We first implemented the problem in Excel
spreadsheet, and used the first instance of 40-job
benchmark problem to compare different DOE
methods that are discussed below. The upper and
lower levels for the GA parameters are given in
the Table 1.

Table 1: Upper and lower levels for parameters

Crossover Mutation Population
Level Prob. (A) Prob. (B) Size (C)
Lower 0.01 0.06 30
Upper 1 0.2 100

The GA stopping criteria are to run for 10 minutes
or to stop whenever the percent deviation of the
solution from the optimal solution/best solution
found so far becomes O. In the following sections,
we discuss and compare five DOE methods to
see which method performs best.

2.1. 2-Level (2k
) Full Factorial Design

2-Level (2k
) full factorial design is the one of the

most widely used DOE tools. In 2k full factorial
design, k is the number of factors. After the lower
and upper levels of the factors are determined, all
combinations of these factor levels are studied
simultaneously. In order to analyze the design,
each factor should be linearly independent, which
means the covariance of the factors should be
equal to zero. The covariance is a measure of
linear relationship between two random variables
[5], and can be calculated by using the following
equation where E(x) stands for the expected value
ofx.

Cov(x,y) = E(x,y) - E(x)E(y)

To calculate the covariance of the design, a
transformation is needed from the lower and
upper levels to (-1) and (+1), respectively. After
these substitutions, because E(x,y) = 0, E(x) = 0,
and E(y) = 0, Cov(x,y) is equal to zero. In
orthogonal designs, the covariance is always
equal to zero.

The 2k full factorial design is generated by using
Yates algorithm. According to this algorithm; for
the first factor, a column of (-1) and (+1) is written
down with the signs alternating each time. For the
second factor, the signs alternate in pairs, for the
third factor they alternate in triple, and so on. To
create the interactions columns, the levels of the
each factor forming the interactions are simply
multiplied.

In an experimental design, the number of
experiments (rows) must at least be equal to the
total degrees of freedom (DF) required for the
study, as shown in Table 2.

Table 2: DF for 2k full factorial design with k=3

Factors/Interactions DF
Overall Mean 1
A,B,C 3 (2-1)
AB, AC, BC 3(2-1)(2-1)
ABC 1(2-1 )(2-1 )(2-1)

Total 8

One drawback of 2k full factorial design is rapid
increase of the number of experiments while
increasing the number of the factors (25=32,
28=256, i O=1024). In 1940's, Fisher showed that
meaningful results can be obtained by conducting
a selected fraction of full factorial design which is
called fractional factorial design, 2k

-
p

, where p
stands for the fraction portion.

Since there are 3 factors (k=3) in our problem,
23=8 experiments are needed to run for 2-level full
factorial design in Table 3.

Table 3: The 2k full factorial design with k = 3

A B C AB AC BC ABC
1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 1 1 -1 1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1

In each experiment, the factors, or parameters,
are set and run according to the design. After the
solutions Y obtained from the experiments are
analyzed by implementing regression analysis,
the mathematical model is derived. However,
because R2 value of the model is 1.00, the term
that has minimum effect (AB) is removed, and
after running the regression analysis again, the
following model with R2 = 0.96 is obtained.

Y = 954.37 + 1.63A + 4.88B + 9.13C - 9.13AC +
15.63BC - 15.63ABC

When this model is solved by employing Excel
Solver to minimize Y, the parameter setting is
found by using 2k full factorial design as
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"Crossover = 0.01, Mutation = 0.2, Population =
30".

2.2. Orthogonal Array Design
The fact that effects of 3 or higher interactions
tend to be insignificant, and therefore may be
ignored, bring us to the fractional factorial design
type named orthogonal array (OA) design where
only main factors and 2-factor interactions are
considered. A typical OA tabulation is in the form
of La(bC

), where a is the number of experiments, b
is the number of levels, and c is the number of
columns. Taguchi has formulated 18 standard OA
designs [7], however they can also be modified by
using various methods. To select the appropriate
OA, first, number of factors and levels for each
factor, and 2-factor interactions to be estimated
must be defined. After calculating the OF, the OA
with the closest number of the experiments to OF
is selected. Interaction tables, or linear graphs
developed by Taguchi are then utilized to follow
the confounding pattern.

The OF of our problem for OA is 7 due to the
absence of 3-factor interactions. The most
appropriate OA for 3 factors, 2 levels and 7
experiments is La(27

) which is created in Table 4.

Table 4: The OA design with k = 3

C B BC A AC AB
1 -1 -1 1 -1 1 1
2 -1 -1 1 1 -1 -1
3 -1 1 -1 -1 1 -1
4 -1 1 -1 1 -1 1
5 1 -1 -1 -1 -1 1
6 1 -1 -1 1 1 -1
7 1 1 1 -1 -1 -1
8 1 1 1 1 1 1

Because there are only 3 factors in the problem,
all 2-factor interactions are included. As you
notice, the 2k full factorial and OA designs with
k=3 are about the same. The reason is that the
number of factors is quite small, and increasing
this number will clearly bring out the advantages
of OA designs in terms of the number of
experiments needed to study.

After implementing regression analysis for the OA
design, the same mathematical model with 2k full
factorial design is derived, except for the ABC
term. This model has R2 value of 0.65. As in 2k full
factorial design, Excel Solver gives the same
solution set for A, B, and C, respectively, namely,
the parameter setting for the OA design is again
"Crossover = 0.01, Mutation = 0.2, Population =
30".

2.3. Central Composite Design

In 2k full factorial and OA designs it is assumed
that the relationship between the 2-level factors is

linear. It is possible to increase the number of
levels to 3 to capture the nonlinearity, however, it
would be a bit controversial and none of the rules
for the 2-levels would apply in those designs.
Also, this would not be the best candidate for
continuous factors like parameters used in
heuristics. A better approach to cope with the
nonlinearity and continuous factors could be
Response Surface Method using the Central
Composite Design (CCO) developed by Box &
Wilson in 1950's [4].

CCO is a first-order design augmented by
additional points that allow the estimation of the
second-order mathematical model. CCO consists
of a full factorial or fractional factorial design (2k or
2k

•
P
), a center point (a row of zero's), and two

points on axes for each factor at a distance a from
the design center which result 2k+2k+1 or
2k

-P+2k+1experiments in total. The distance a is
calculated as (number of experiments in fractional
portion)1/4. It is possible to choose a = +1, which
is then called face-centered design.

In our problem, 23 = 8 experiments for the
fractional portion, 2(3) = 6 experiments for axial
portion, and 1 experiment for center portion, total
15 experiments are needed. The distance a is
equal to (8)1/4 == 1.4. To be able to set the
parameters for each experiment, the levels of the
parameters must be coded for the values (-1.4, -1,
0,1,1.4). The complete CCO with k = 3 is shown
in Table 5.

Table 5: Central Composite Design with k = 3

A B C AB AC BC A~ B~ C~

1 -1 -1 -1 1 1 1 1 1 1
2 1 -1 -1 -1 -1 1 1 1 1
3 -1 1 -1 -1 1 -1 1 1 1
4 1 1 -1 1 -1 -1 1 1 1
5 -1 -1 1 1 -1 -1 1 1 1
6 1 -1 1 -1 1 -1 1 1 1
7 -1 1 1 -1 -1 1 1 1 1
8 1 1 1 1 1 1 1 1 1
9 -1.4 0 0 0 0 0 2 0 0
10 1.4 0 0 0 0 0 2 0 0
11 0 -1.4 0 0 0 0 0 2 0
12 0 1.4 0 0 0 0 0 2 0
13 0 0 -1.4 0 0 0 0 0 2
14 0 0 1.4 0 0 0 0 0 2
15 0 0 0 0 0 0 0 0 0

After implementing regression analysis for
outcomes of the experiments, the following
mathematical model with R2 = 0.90 is derived:

Y = 939.42 + 3.58A + 0.758 - 5.58C - 1.13A8 +
5.38AC -11.888C + 5.94A2 + 5.9482

- 11.31C2

The solution set produced by Excel Solver is back
coded to their real values, and the parameter
setting found by CCO is "Crossover = 0.218,
Mutation = 0.193, Population = 100".
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2.4. D-Optimal Design

CCD is quite an efficient design especially due to
adding the second-order nonlinearity; however, in
some cases it may not be enough to understand
the relationships between factors. And also, the
number of experiences must be kept to an
absolute minimum. If a design has an absolute
minimum number of experiments, such design is
called "saturated design". The minimum number
of experiments can be calculated as (n+1)(n+2)/2
where n is number of factors. Besides these
advantages, if some experiments are infeasible,
saturated designs can be still used by extracting
these experiments from the design.

As some of the interesting features of saturated
designs, unlike the previous DOE methods, they
are not orthogonal and there are no degrees of
freedom to test the accuracy of the model.

Saturated designs are constructed by applied 0
optimality criterion. The following equation is the
estimator of simple linear regression:

y= bo + L>iX;

where bo is the intercept, bj are the slopes. If this
equation is written in matrix form, we have:

y= XB+c.
The set of design B can be estimated in the
following form by applying the Least Square
Regression method.

B= (XTXr1XTy

A statistical measure of accuracy of B is the
variance-covariance matrix:

V(B) = 0-2(XTXr'

where a2 is the variance of the error. V(B) is a
function of (XTXr' and to increase the accuracy,
(XTXr' should be minimized. Statistically,
minimizing (XTXr' is equal to maximizing the
determinant of (XTX). "0" in the term of D-optimal
comes from the first letter of the word
"determinant". There are some heuristics [2], and
software [3] to come up with a design that
maximizes the determinant of (XTX). To obtain
more accurate results, D-optimal designs can be
augmented by adding more experiments.

The absolute minimum of experiments for our
problem is 10 [=(3+1)(3+2)/2], and the D-optimal
design displayed in Table 6 is created by
augmenting the design by 2 experiments.

Like CCD, the levels of the parameters must be
coded for the values (-1, 0, 1). With the help of
regression analysis, the following mathematical
model is acquired:

Y = 92.48 - 0.63A + 2.62B + 8.37C - 6.38AB - 2

9.13AC + 15.63BC + 19.86A2 + 23.11 B2
- 18.83C

After the solution set given by Excel Solver is
back coded to their real values, and the parameter
setting found by D-Optimal is "Crossover = 0.420,
Mutation = 0.148, Population = 30".

Table 6: D-Optimal Design with k = 3

A B C AB AC BC A;/' B' C'
1 -1 -1 -1 1 1 1 1 1 1
2 -1 -1 1 1 -1 -1 1 1 1
3 -1 a a a 0 a 1 a a
4 -1 1 -1 -1 1 -1 1 1 1
5 -1 1 1 -1 -1 1 1 1 1
6 a -1 a a a a a 1 a
7 a a 1 a a a a a 1
8 1 -1 -1 -1 -1 1 1 1 1
9 1 -1 1 -1 1 -1 1 1 1

10 1 1 -1 1 -1 -1 1 1 1
11 1 1 a 1 a a 1 1 a
12 1 1 1 1 1 1 1 1 1

2.5. Signal-To-Noise (SIN) Ratio

DOE methods until this section are only based on
one instance of our problem, and do not consider
any information of other instances. The method of
signal-to-noise (SIN) ratio can be defined as a
performance measure that takes the mean and
the variability into account, and give the ability to
use information of other instances in seeking the
best parameter setting. It involves two types of
factors: control factors and noise factors. Noise
factors cause variability which leads to loss of
quality. There are three kinds of noise; outer
noise, inner noise, and between product noise, or
here can be defined as "between instance noise"
is the main reason in applying SIN ratio method in
our problem.

Generally, data analysis using SIN ratio (11) can be
performed to achieve three types of purposes:
smaller-the-better, larger-the-better and nominal
the-best. Since our target is to minimize the total
weighted tardiness for the single machine, the
appropriate type of '1 is smaller-the-better. To
minimize the sensitivity to noise factors, we
maximize 11 which is calculated by the following
equation [4].

1] = -lOloglo (y2 + 0-2)

In addition to first instance, fourth and ninth
instance are randomly selected as different
"products". Unlike in other methods, instead ?f
OA, D-optimal design in Table 6 is used In

creating the experiments for each instance
because of its advantages, and 11 is calculated as
the outcome for each experiment. Three
replications of D-optimal design for three
instances increase the total number of
experiments by 36 (=3x12).
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Table 7: Parameter settings of DOE methods

To be able to compare the solutions for different
instances, the percent deviation of the solution
from the optimal solution/best known solution is
used instead of the real outcomes of the
experiments.

Because 2k full factorial and orthogonal array
designs give same parameter settings for 3
factors, their common results share the first three
columns.

DOE Crossover Mutation Population
Type Prob.(A) Prob. (B) Size (C)

2' FF 0.010 0.200 30
OA 0.010 0.200 30
CCD 0.218 0.193 100
D-Opt. 0.420 0.148 30
SIN 0.465 0.157 30

3. COMPARISON OF DOE RESULTS

After applying five DOE methods to find the best
parameter setting for the single machine total
weighted tardiness problem, the findings are
summarized in Table 7. To test which method is
most effective with this problem, these parameter
settings are used in solving the first 20 instances
for both 40-job problems in Table 8 and 50-job
problems in Table 9 respectively [8].

Table 8: Comparison of Parameter settings for 40-job problem

After applying the steps of D-optimal design for
each instance, the regression analysis is run for to
obtain the following mathematical model:

Y =2.36 - 0.83A + 1.17B - 1.62C - 0.36AB +
0.52AC - 4.49BC - 9.27A2

- 7.30B2 + 6.07C2

After back coding the findings in Excel Solver to
their real values, the parameter setting found by
D-Optimal are "Crossover = 0.465, Mutation =
0.157, Population =30".

Orthogonal Array & 2' Central Composite D-Optimal SIN Ratios

Inst Full Factorial Designs Design Design Design
%Dev Iteration Time YoDev Iteration Time %Dev Iteration Time %Dev Iteration Time

1 4.71 4918 00:01:22 1.86 18863 00:04:44 1.86 1895 00:00:16 1.86 31781 00:17:00
2 4.65 23416 00:03:55 0.08 22391 00:05:09 0.08 23344 00:02:19 4.65 3789 00:01:16
3 6.70 726 00:00:09 6.70 2850 00:00:38 6.70 2260 00:00:18 0 2826 00:00:38
4 1.29 5016 00:01 :02 0 6853 00:01 :11 0 4966 00:00:37 1.29 2607 00:00:33
5 0 5213 00:00:51 0 4780 00:00:51 0 15052 00:01:41 0 961 00:00:13
6 0 35635 00:04:50 0 34295 00:04:23 0 6226 00:00:50 0 14237 00:02:18
7 3.91 10038 00:01 :39 0 85445 00:13:50 0 15282 00:01 :37 3.91 2536 00:00:34
8 0 12210 00:01:48 0 26492 00:03:32 0 8461 00:01 :06 0 4203 00:01 :03
9 0 39811 00:05:15 0.59 46315 00:06:28 0.65 4881 00:00:40 0 35208 00:04:39
10 1.40 24753 00:03:25 0.04 88492 00:12:38 0.04 51283 00:08:53 0 51208 00:06:26
11 1.94 72938 00:11 :37 0.01 96244 00:18:17 0 23267 00:03:58 0 23501 00:03:51
12 1.40 93314 00:14:41 0.68 96335 00:21 :41 0 26996 00:05:14 0 29814 00:05:48
13 1.00 99337 00:15:36 0.74 98275 00:29:59 0.64 25285 00:03:31 0.64 29204 00:05:11
14 0.35 94223 00:19:43 0.77 88256 00:17:54 0.33 24304 00:03:11 0.33 29969 00:07:08
15 0.95 94728 00:34:23 0.91 89698 00:16:42 0.84 36549 00:12:00 0.09 76972 00:14:47
16 2.96 85614 00:22:42 3.55 94294 00:11:51 0.69 94079 00:30:19 0.82 77826 00:14:46
17 1.96 82399 00:19:53 2.94 96468 00:30:05 0.49 82127 00:29:51 0.37 94687 00:17:20
18 2.53 99367 00:28:07 2.61 95935 00:22:10 0.85 89000 00:26:04 0.66 93455 00:15:24
19 2.26 93600 00:11:32 3.25 50709 00:10:12 0.94 99959 00:31 :45 0.82 97005 00:17:52
20 3.29 94366 00:10:28 3.91 79570 00:40:05 1.04 92765 00:17:28 1.54 90153 00:32:35
y 2.07 53581 00:10:39 1.43 61128 00:13:37 0.76 36399 00:09:05 0.85 39597 00:08:28

a 1.85 39953 00:10:04 1.84 36776 00:11:03 1.49 34984 00:11 :22 1.31 35674 00:08:37
0% 4 5 7 8

According to data from the 40-job and 50-job
problems, the SIN ratios and D-optimal designs
seem to be the best two methods of the five DOE
methods. While SIN ratios design could reach
optimum solutions/best known in 8 instances for
40-job and 6 instances 50-job problems, 0
optimal design could obtain them in 7 instances
for the 40-job problems, and 6 instances for the
50-job problems. In terms of average percentage
deviation, the number of iteration and running

time, they are also better than the other three
methods. We might accept that SIN ratios design
is slightly better than D-optimal design, but it
needs three times more experiments than 0
optimal design. Even though all DOE methods are
completed based on the first instance of 40-job
problem, the parameter settings found in these
processes produce very close results to the 50-job
problems which gives an idea about the
robustness of the parameter settings.
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Table 9: Comparison of Parameter settings for 50-job problem

Orthogonal Array & 2K Central Composite D-Optimal SIN Ratios

nst. Full Factorial Designs Design Design Design
%Devlteration Time %Dev Iteration Time VoDev. Iteration Time %Dev. Iteration Time

1 0 2198 00:00:43 0 4320 00:00:34 0 1095 00:00:20 0 3787 00:00:35
2 0.10 3836 00:01 :00 0.10 4320 00:00:34 0.75 1079 00:00:14 0.75 2963 00:00:31
3 0 55007 00:12:09 1.39 2517 00:00:29 1.39 469 00:00:07 0 3500 00:00:34
4 0 2977 00:00:59 0 4306 00:00:34 0 1339 00:00:19 0 2802 00:00:30
5 5.67 7730 00:02:51 5.67 7645 00:00:57 5.67 5460 00:01:02 5.67 2313 00:00:27
6 0.57 83204 00:37:36 0.63 98371 00:09:48 0.09 8665 00:01 :39 1.9 15136 00:01 :52
7 0.53 86284 00:19:19 0.10 98266 00:10:33 0 16295 00:03:46 0 23888 00:03:10
8 1.59 45109 00:12:23 1.52 89622 00:10:42 0 10580 00:02:14 0.53 18688 00:02:14
9 0.34 15032 00:03:37 0.39 25102 00:02:39 0.39 8665 00:00:25 0.39 6699 00:01 :53
10 0 69766 00:11:03 0 84602 00:12:46 0 7054 00:01:17 0 19074 00:02:38
11 3.37 92353 00:14:54 4.92 87583 00:13:10 0 26931 00:03:34 0.51 93839 00:13:46
12 4.15 85150 00:14:19 5.74 98291 00:14:20 0.93 17253 00:02:25 0.79 93465 00:12:35
13 3.49 89551 00:24:01 5.00 78979 00:11 :31 0.26 23561 00:03:44 0.16 97849 00:11 :58
14 1.12 86613 00:21 :19 2.06 92867 00:14:09 0.52 14498 00:02:18 0.62 65048 00:10:35
15 1.16 96432 00:11:46 2.59 93136 00:13:10 0.92 27107 00:04:37 0 82041 00:12:49
16 5.50 95136 00:16:26 7.11 71351 00:15:37 0.02 85596 00:08:51 1.41 90719 00:14:29
17 6.67 97738 00:09:44 7.61 91351 00:13:28 0.15 87644 00:09:17 1.2 99878 00:15:23
18 5.58 96171 00:09:25 7.97 65694 00:10:25 0.53 97533 00:09:33 2.16 99272 00:11 :57
19 3.51 95654 00:10:56 5.38 80849 00:12:35 0.19 86540 00:08:52 0.92 93995 00:18:40
20 5.31 78924 00:08:26 6.60 91293 00:16:13 0.48 88186 00:08:31 1.92 99114 00:12:08
y 2.43 64243 00:12:09 3.24 63523 00:09:13 0.61 30777 00:03:39 0.95 50704 00:07:26
a 2.37 36918 00:08:57 2.94 38429 00:05:47 1.25 35523 00:03:26 1.31 42911 00:06:24
0% 4 3 6 6

4. CONCLUSIONS

DOE offers a practical way to tune the heuristic
parameters. Because the number of parameters,
or factors, is not the same for all heuristics, it is
important to select the right DOE method. Table
10 shows how fast the number of experiments
increases for a small amount of increase in the
number of factors with three levels. Other
important issues' include selecting the number of
levels, values of the levels, the type of
relationships between factors, and the cost of
running of an experiment.

Table 10: Number of experiments for 3-levels

Factor (k) 3K FF OA CCD D-Opt.
4 81 27 25 15
5 243 81 43 21
7 2187 - 143 36

It should be noted that the same parameter
setting produces different solutions for different
instances although all instances are created from
the same distributions. For the total weighted
tardiness problem, the most effective methods
turned out to be the D-Optimal and SIN Ratios
Design, with the D-Optimal design requiring less
runs.

This paper presented a structured framework on
using DOE to tune optimization algorithm
parameters. The weighted tardiness scheduling
problem was used as a vehicle to demonstrate the

approach. The same approach can be applied to
other problems.
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