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Abstract. Building a training system for medical personnel to properly interpret fetal heart rate tracing requires
developing accurate models that can relate various signal patterns to certain pathologies. In addition to modeling
the fetal heart rate signal itself, the change of uterine pressure that bears strong relation to fetal heart rate and
provides indications of maternal and fetal status should also be considered. In this work, we have developed a
group of parametric models to simulate uterine contractions during labor and delivery. Through analysis of real
patient records, we propose to model uterine contraction signals by three major components: regular contractions,
impulsive noise caused by fetal movements, and low amplitude noise invoked by maternal breathing and measuring
apparatus. The regular contractions are modeled by an asymmetric generalized Gaussian function and least
squares estimation is used to compute the parameter values of the asymmetric generalized Gaussian function
based on uterine contractions of real patients. Regular contractions are detected based on thresholding and
derivative analysis of uterine contractions. Impulsive noise caused by fetal movements and low amplitude noise by
maternal breathing and measuring apparatus are modeled by rational polynomial functions and Perlin noise,
respectively. Experiment results show the synthesized uterine contractions can mimic the real uterine contractions
realistically, demonstrating the effectiveness of the proposed algorithm.

1. Introduction

Uterine contractions are stimulated by uterine muscle
cells. Uterine contraction (UC) variations reflect the
physiological changes of the uterus during both
pregnancy and labor [1]. As a critical component in
fetal heart rate (FHR) monitoring during labor and
delivery, uterine contractions provide important
information regarding maternal and fetal wellbeing.
There are three main methods to record uterine
contractions [2]: tocography, electrohysterography,
and using intrauterine pressure catheter.
Tocography measures the strain exerted by uterus on
the maternal abdomen via external a tocotransducer.
Electrohysterography records the electrical uterine
activities from the maternal abdomen. The
intrauterine pressure catheter (IUPC) measures
intrauterine pressure invasively, and is mostly used
during labor. Regardless of their differences, all
three methods aim at providing records of the
contraction patterns and their relationship to FHR.
Proper interpretations of fetal heart rate and uterine
contractions require special training, while monitoring
of both are only available when pregnant women are
hospitalized in parturiency. Building a training
system that can simulate fetal heart rate and uterine
contractions can help medical personnel learn critical
patterns of both signals without putting patient in
danger. To gain better understanding of uterine
activities, it is necessary to develop mathematical
models to quantitatively describe various uterine
contraction patterns and this is the problem to be
addressed in this paper.

Even though FHR monitoring is now the standard

practice during labor and delivery, surprisingly, there
were only a few studies on uterine contraction
modeling and simulation. Young used polynomials
to model five characteristics of uterine contractions: 1)
gradual onset, 2) a linear rising segment, 3) a plateau
region, 4) a symmetrical fall, and 5) gradual offset,
and fitted the simulated contractions with recorded
IUPC data [3]. Their results matched their physical
analysis. However, their simulations were not
perfect especially in the tail region of the contraction
curve. Vauge et al. [4] developed a system of
differential equations that describe the dynamics of
uterine pressure during human parturition. This
method was based on three simplified assumptions:
identical contractile properties of all myometrial cells,
intrauterine pressure proportional to the number of
contracted myometrial cells, and that all cells have
three states, namely, contraction, recovery, and
resting. Their model was simple and effective
especially for normal contractions which begin in the
fundus, reach the apex, and then proceed
symmetrically downward toward the fundus. But this
method did not consider the fact that asymmetry can
occur when the uterine cells function independently
causing ineffective uterine contractions and minimal
dilatation [2]. Recently, Kemal et al. [5] employed
two methods to simulate uterine contractions. The
first one is based on the same mathematical model
proposed by Vauge [4]. The second approach is
based on recorded patient data. They first applied
Hilbert-Huang Transform (HHT) [6] to identify the
contraction locations from real patient data, and then
developed spatial-temporal simulations of uterine
contractions. All these methods discussed above
are capable of illustrating the dynamics of uterine
activities. However, these methodologies are
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deterministic and no comprehensive parameter
estimation for these models was developed.
Furthermore, the noise caused by fetal movements
and maternal breathing were not considered and
modeled. To address the problems in existing
uterine modeling and simulation, the paper proposes
a novel algorithm that integrates three major
components: asymmetric generalized Gaussian
function (AGGF) for modeling contractions, Perlin
noise for modeling maternal breathing and instrument
noise, and impulsive noise for modeling fetal
movements. The parameters of the asymmetric
generalized Gaussian function are estimated using
the least square method based on detected uterine
contractions from real patient records.

The remainder of this paper is structured as follows.
Section 2 first introduces the proposed asymmetric
generalized Gaussian functions for modeling uterine
contractions and then estimate the parameters of
generalized Gaussian functions based detected
contractions. Section 3 describes Perlin noise
generation for maternal breathing and low amplitude
noise modeling. Section 4 presents impulsive noise
generation for simulating disturbances caused by
fetal movements. Section 5 summarizes the
simulation procedure and compares the simulation
results. Section 6 concludes this paper and
discusses future research directions.

2. Uterine Contraction Modeling

2.1 Asymmetric Generalized Gaussian Function

A typical uterine contraction curve of a real patient is
depicted as a continuous waveform in Figure 1. This
curve is characterized by a basal tone varying from 0
to 20 units, and a deflection of the contraction curve
above the baseline, whose amplitude and duration
are within a certain range of values [2]. Moreover,
one should note this curve is asymmetric.
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Figure 1: Typical uterine contractions. Also shown
are parameters used for contraction detection.

Since the asymmetry of contraction curve matches

real cases of ineffective contractions and comprises
the symmetrical case, we propose to use an
asymmetric generalized Gaussian function to model
uterine contractions as follows.

f(t) = AI exp{ - (t _;~tl }[u (t -tl ) -u (t -to)]

+A, exp { - (t-~:t· }[u(t -fo)-u(t-t,)] (1)

+b(f)[u(t-tl)-u(t-f,)],

where the parameters of (1) are shown below.

AI, A, Amplitudes for the left and right sides
0./, a, Exponents for the left and right sides
[JI, [J, Variances for the left and right sides
u(t) A unit step function
It, t, Left and right cut off time
to The position wheref(t) reaches its maximum
b(t) Baseline representing some basal strain

exerted by the uterine muscle when
contractions do not occur

To simulate uterine contractions, we need to
determine the range within which the above
parameters lie and how they vary with time. So in
the next step we will detect uterine contractions from
real patient data and estimate the parameters for the
asymmetric generalized Gaussian function from the
detection results.

2.2 Uterine Contraction Detection

Several methods were proposed to detect uterine
contractions for different purposes. Radhakrishnan
et al. (7) developed a higher-order zero crossing
based method and studied the frequency of
occurrence of contractions in different pregnancy
stages. Novak et al. (8) described two UC detection
approaches: amplitude- and derivative-based
algorithm. By comparing the results from these two
methods, they suggested combining both methods
together to achieve better detection results. Aiming
at quantitatively analyzing uterine contractions in time
domain, Jezewski et al. (9) introduced a statistical
method to determine the threshold and also
considered duration condition for UC detection.
These methods were used to calculate the regular
parameters of uterine contractions such as amplitude,
duration, frequency of occurrence. Our method is
based on a combination of the last two methods, in
which thresholding is first performed to detect the
presence of uterine contractions, and
derivative-based method is applied subsequently to
include the samples whose amplitudes are below the
threshold, but still belonging to the contractions.

The algorithm proposed by Jezewski et al. (9) starts
with low pass filtering with cutoff frequency of 0.04 Hz
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(3)

to suppress the artifacts caused by fetal movements
and maternal breathing. Then the record is
analyzed by using a moving window with a length of 4
minutes and 1-minute step. Within each window, the
histogram of uterine pressure samples is constructed
first and the mode of the histogram is then selected
as the baseline value. Finally, the threshold level is
set as 10 units above the baseline and the validity of
data segment is examined. A valid contraction
should remains above the threshold level for a
duration longer than 30 seconds and the amplitude of
contraction exceeds 20 units.
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Figure 2: Intermediate results in uterine contraction
detection. (a) Raw UC data. (b) Filtered UC. (c)
UC detection by thresholding. (d) The derivatives of
filtered UC. (e) Improved UC detection results. (f)
The residual between raw UC and filtered UC which is
detected.

After the uterine contractions are detected, there are
still two remaining problems. The first is that the
amplitude of detected samples are mostly above the
threshold, thus the estimated parameters may not be
accurate enough to model the tail areas. We need to
include more samples from tail areas. On the other
hand, the tail areas are prone to other various
sources of noise. Before including them for parameter
estimation, we must differentiate contaminated
samples and uncontaminated or less-contaminated
samples. Since the derivatives in noisy area change
drastically, we propose to employ derivative-based
detection method to differentiate them. In other
words, for less contaminated contractions, the
derivative of the left side of the contraction should be
positive, while the derivative of right side should be

negative. Starting from the peak of the contraction,
we proceed to its left and compute the derivatives of
the smoothed uterine pressure signal and then search
the position where the derivative changed to negative
for left side curve, and denote it as the tail point. The
sample points between the peak and the tail point will
be utilized for curve parameters estimation. The
same principle applies to the right side of contraction
with positive derives being searched.

The results of uterine contraction detection are shown
Figure 2, where (a) is the original uterine pressure
signal; (b) is its filtered version, the red solid line
represents the base line; (c) illustrates the sample
whose values are above the threshold; (d) is the
derivatives of filtered UC data; (e) is the improved
uterine contraction detection result; and (f) shows the
residual between the detected contractions and
original signal (a).

2.3 Uterine Contraction Parameter Estimation

After the uterine contractions are detected, we need
to compute the parameters of the asymmetric
generalized Gaussian function (1) in order to simulate
the detected contractions. Here we only consider
the left half of the asymmetric generalized Gaussian
function (1), that is,

f(l) " A, exp{ J(t -;; JI"' }+b, [U(I-I, )-U(I-I.)J

(2)
for the parameter estimation, while the right half can
be handled similarly and thus is omitted in this paper.

First, the baseline b, is estimated as the contraction
value at the onset point /, which is the lowest point
between two filtered contractions. Thus

A, =f(to)-b,.

After simple manipulation, the remaining known
variables and unknown parameters are separated by
taking the logarithm of both sides of (2),

In J(t)-b, =-'(I-to t
A, /3,

Since J(t) - b, < A, ' adding minus sign to both sides
of (3) and taking logarithm again gives

Now we denote the detected uterine contraction data

set as {f(t,),t,}, 15,i5,N. where N is the

number of samples. Substituting the data set into
equation (4) and writing each term in matrix form, we
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By adding the above generated series together, we
have the Perlin noise

where tE [1, N], and p is called persistence factor

which controls the amplitude.

have

y=

lo ( -lo f(t~/-bl
)

In(-in f(t~/-blJ
loltl -tol, -1

In It2 - to I, -1
,X=

s

fp(t) =I/n,(t) ,
1=0

(9)

In(-In f(t~-bl)

P =[lnap]
(5)

Then equation (4) can be transformed into a concise
linear equation represented by a matrix product,

Y=Xp, (6)

where Xand Yare matrices containing detected
sample information, p is the parameter vector to be
estimated. The parameter estimation problem can
be expressed as the following minimization problem,

Po =arg min Ily - Xpll~, (7)
pelf

where Po is the solution. This is a least square

estimation problem whose solution is

Po =(XTXf' XTy . (8)

Thus we have obtained the parameter estimator for
the proposed asymmetric generalized Gaussian
function for modeling uterine contractions.

3. Perlin Noise

The low amplitude noise caused by maternal
breathing and measuring apparatus are random yet
exhibiting both low and high frequency characteristics
as shown in Figures 2(a) and (t). Common random
number generators cannot be used directly to
generate such noise, since they are too random to
exhibit the natural outlook of continuity and
self-similarity of the noise. To address this problem,
we propose to use Perlin noise generator (10) to
simulate the low amplitude noise.

A Perlin noise generator is composed of two
components: a noise function and an interpolation
function. The basic procedure of Perlin noise
generation is
(1) Generate a series of random numbers nl of

length from uniform distribution U[-0.1 0.1];
(2) Decimate the series to size 12;
(3) Upsample the decimated series to size by

B-spline interpolation and increase the amplitude
of the new series by a factor of p;

(4) Repeat (2) and (3) until reaching the specified

level S, and we obtain a set of series {nl. n2....,ns}.

(a)

(b)

(c)

(d)

l~
. .
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(e)

(f)

!j~
(g)

Figure 3: (a) - (t) are waveforms corresponding to 6
levels noise series {n1. n2.... ,n6}. (g) is the Perlin noise.
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4. Impulsive Noise Modeling

The last component to simulate is the spikes or large
magnitude impulsive noise in uterine contractions,
which suggest possible fetal movements [2]. After
examining the shape of those spikes, we propose to
use the following rational polynomial function to
model them

....

5. Uterine Contraction Synthesis

Uterine contraction simulation is finalized by
superimposing the components generated by the
asymmetric generalized Gaussian function, Perlin
noise, and impulsive noise. First, a typical segment
of 20 minutes was extracted from real patient record
and the parameters for the asymmetric generalized
Gaussian function were estimated. Figure 5
compares the parameters estimated from two
detected data sets. The first data set contains only
samples whose amplitude is above the threshold.
The second data set is the expanded version of the
first set by incorporating samples whose amplitude
are below the threshold but are belong to the
contraction. Figures 5 (a) and (b) plot parameters
estimated from the first set. Figures 5(c) and (d) are
estimated from the second set. It can be seen that
the parameters of the left side and right side are
different, validating the asymmetry of uterine
contractions.

To compare the impact of different parameters on
uterine contraction simulation, we select one set of
parameters from Figures 5(a) and (b), and another
set from Figures 5(c) and (d) to simulate two
contractions, namely, contraction 1 (green dotted line)
and contraction 2 (red dashed line), as shown in
Figure 5(e). It can be seen that the red dash line
achieves a better fit to the real contraction at both the
peak and tail area of the contraction and has smaller
normalized root mean square error (NRMSE), which
is defined as

2::1 (J; (i) - fo (i)Y
NRMSE = N (10)

max{fo(j)} - min {fo(k)}
lS.jS.N 1s.!<s.N

This result indicates that the derivative-based
analysis could help to recruit more effective data for
parameter estimation, and thus increase the
estimation accuracy. Finally, by adding together the
asymmetric Gaussian function, the Perlin noise, and
the impulsive noise, we obtain the final simulation
results in Figure 6(b). Comparing the original uterine
contraction record in Figure 6(a) and the simulated
results in Figure 6(b), it can be easily seen that the
proposed algorithm is very effective and produces
superb results.

(8)a

5

0

5

I ~ I

J(t) = ( )2
1+ t - to

b

where a is the amplitude which follows uniform
distribution with value between 0 and 50 units, b is the
scale parameter following uniform distribution with
value between 0 and 10, and to is the spike position.
A typical simulation result of the impulsive noise is
shown in Figure 4.

50
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One fact worth of explaining is the mechanism for
how the continuous noise is produced. Since n, is
generated from LLd. (independent and
identically-distributed) uniform distribution, it is
actually white noise. Through repeated
downsampling and upsampling, the new noise series
become the low-pass filtered version of the previous
noise series. In other words, decimation by a factor
of 2 reduces one half the Nyquist frequency of
previous noise, then B-spline interpolation restores
the sample number of noise without incurring new
frequency contents. Thus the noise ns generated in
the last step, occupies the lowest frequency band.
So the waveforms of the noise series from n\ to ns ,

become increasingly smoother. Figure 3 illustrates
the components of the Perlin noise generated in this
work, in which (a) is the noise generated from uniform
distribution U[-O.I, 0.1], (b) - (f) are low-pass filtered
version of noise generated from one level before with
p = 2. Note that the sub-figures in Figure 3 have
different vertical scales and low-frequency
components have much larger amplitudes than
high-frequency components. The final synthesized
Perlin noise is shown in Figure 3(g).

Figure 4: Impulsive noise simulation
••~-,;,--~;o---.:.....----.:..,.-;;;\;,..........-..!"...
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Figure 5: Parameters estimation and uterine
contraction simulation. (a) is the scatter plot of a,
and (b) is the scatter plot of fJ for left and right curves.
(c) and (d) are a and fJ plots of the second data set.
(e) shows the simulations of one uterine contraction
from two data sets.

Figure 6: Simulation results. (a) The original uterine
contraction recording. (b) Simulated uterine
contraction based on (a). It can be seen that the
proposed algorithm is very effective, producing
realistic simulations.

6. Conclusion

This paper proposed a set of parametric models to
simulate uterine contractions. The proposed
algorithm contains three major components: AGGF
model for contractions, Perlin noise for maternal
breathing and instrument noise, and rational
polynomial functions for fetal movements.
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