
277

A Chess-Like Game For Teaching Engineering Students To
Solve Large System Of Simultaneous Linear Equations

Due T. Nguyen1
; Ahmed Ali Mohammed2

; and Subhash Kadiam3

1Professor, ODU, 2Structural Engineer/Ph.D Student, ODU
1dnguyen@odu.edu, 2ahmedaIi484@yahoo.com, 3skadi002@odu.edu

Abstract. Solving large (and sparse) system of simultaneous linear equations has been (and continues to
be) a major challenging problem for many real-world engineering/science applications [1-2]. For many
practicaillarge-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear
equations can be conveniently represented in matrix notation as [A] {x} ={b} , where the square

coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution

vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase,

Matrix Factorization phase, Forward solution phase, and Backward solution phase.

In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering
students to understand crucial details about matrix reordering and factorization phases. A "chess-like"
game has been developed and can be played by either a single player, or two players. Through this
"chess-like" open-ended game, the players/learners will not only understand the key concepts involved in
reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new
algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for
matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments,
where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays
of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited.
Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access
to the internet web-site [4]!

where [A] = known coefficient matrix, with
dimension NxN
{b} =known right-hand-§.ide (RHS) Nx1 vector
{x} = unknown Nx1 vector.

Step 1: Matrix Factorization phase

In this step, the coefficient matrix [A] can be
decomposed into

[A] = [Uf[U] (2) (5)

(3)

(4)

where [U] is an NxN upper triangular matrix.

The following simple example will illustrate how to
find the matrix [U].

Various terms of the factorized matrix [U] can be
computed/derived as follows (see Eq. 2):

Multiplying 2 matrices on the right-hand-side
(RHS) of Eq. (3), then equating each upper
triangular RHS terms to the corresponding ones
on the upper-triangular left-hand-side (LHS), one
gets the following 6 equations for the 6 unknowns
in the factorized matrix [U] .

r-;- A12 Al3
U II = '\jAIl ;u\2 =-;ul3 =-

un un

()
1 A -u uu - A - U 2 1.. u _ 23 12 13 .

22- 22 \2 '23- ,
U 22

(1)[A] {x} = {b}

2. SYMMETRICAL POSITIVE DEFINITE (SPD)
~LE

For many practical SLE, the coefficient matrix [A]
(see Eq.1) is SPD. In this case, efficient 3-step
Cholesky algorithms [1-2] can be used.

1. INTRODUCTION

Solving large (and sparse) system of
§.imultaneous linear gquations (SLE) has been
(and continues to be) a major challenging problem
for many real-world engineering/science
applications [1-2]. In matrix notation, the SLE can
be represented as:

278

(16)

j-I

bj - LUijYi

i=1Yj =

In general, one has

Step 3: Backward Solution phase

Since [U] is an upper triangular matrix, Eq. (10)

can be efficiently solved for the original unknown

xN

X
N

_
I

vector {x}, according to the order xN-2 ,hence

U\2Y\ +u22Yz =bz ~ Yz =bz - u\2Y\ / uzz (14)

Similarly

b3 - u13Y\ - U 23Y2
Y3 = (15)

U33(6)

(7)

(9)

i-I

Aij - LUkiUkj
k=1

In general, for a general NxN matrix, the diagonal
and off-diagonal terms of the factorized matrix
[U] can be computed from the following formulas:

I

u;; =(A;; - f(Uki YJ2
k=\

As a quick example, one computes:

A S7 - U IS U I7 - U 2S U 27 - U 3S U 37 - U 4S U 47
U S7 = (8)

uss
Thus, for computing u(i = 5, j = 7), one only

needs to use the (already computed) data in
columns # i(=5), and # j(=7) of [Ul, respectively.

Step 2: Forward Solution phase

Substituting Eq. (2) into Eq. (1), one gets:

[Uf[U]{x} = {b}

Let's define:

[U]{x} ={y} (10)
the name "backward solution".

As a quick example, one has:

, hence the name "forward solution".

Since [Uf is a lower triangular matrix, Eq. (11)

can be efficiently solved for the intermediate
unknown vector {y}, according to the order

YI

Y2

Then, Eq. (9) becomes:

[Uf {y} = {b} (11)

U44 X 4 = Y4' hence x4 = Y4

U44

U33 X 3 + U34 X 4 =Y3' hence X
3

= Y3 - U34X4

U33

(17)

(18)

(19)

YN
As a quick example, one has:

In general, one has:
N

Y j - LUjiXi
i=j+1

X j =---"----
ujj

(22)

(21)

(20)
Y2 - U 23 X 3 - U 24 X 4x

2
= -'---=---=---"---"-'---'-

u22

YI - U 12 X 2 - u13 x3 - U I4 X 4XI = -'--'----=--=--'-"---''------'-''---'-

uIl

Similarly:

(12)

(13)

o

279

Multiplying the 3 matrices on the RHS of Eq. (24),
then equating the resulting upper-triangular RHS
terms of Eq. (24) to the corresponding ones on
the LHS, one obtains the following formulas for
the "diagonal" [D], and "lower-triangular" [L]
matrices:

Remarks

(a) Amongst the above 3-step Cholesky
algorithms, factorization phase in step 1
consumes about 95% of the total SLE solution
time.

(b) If the coefficient matrix [A] is symmetrical but
not necessary positive definite, then the above
Cholesky algorithms will not be valid. In this case,

the following LDLT algorithms can be employed:

Step 3: Backward solution phase

In this step, Eq. (28) can be efficiently solved for

the original unknown vector {x}.

(30)[L]{z} = {b}

Eq. (30) can be efficiently solved for the vector
{z}, then Eq. (29) can be conveniently (and

trivially) solved for the vector {y}.

3. RE-ORDERING ALGORITHMS FOR
MINIMIZING FILL-IN TERMS [1,2].

During the factorization phase (of Cholesky, or

LDLT
algorithms), many "zero" terms in the

original/given matrix [Aj will become "non-zero"
terms in the factored matrix [U]. These new non
zero terms are often called as "fill-in" terms
(indicated by the symbol F). It is, therefore, highly
desirable to minimize these fill-in terms, so that
both computational time/effort and computer
memory requirements can be substantially
reduced. For example, the following matrix [A] and

vector {b} are given:

(23)

011 L2I L3I
] (24)

o 0 I L"

D" 0 0 I

o O][DII 0
I 0 0 D"

L" I 0 0

[A] =[LHD][Lf

For example,

;-1

D;; = Au - 'LL;kDkk (25) 112 7 0 0 0 2

k=1 7 110 5 4 3 0

. (}-1)(1 J [A]= 0 5 88 0 0 1
Li) = Ai) - f;L;kDkkLjk * D

jj

(26) 0 4 0 66 0 0

0 3 0 0 44 0

Thus, the LDLT algorithms can be summarized 2 0 1 0 0 11
by the following step-by-step procedures

121
Step1: Factorization phase

129

[A] = [L][DHLf (23, repeated)
{b}=

94

70
Step 2: Forward solution and diagonal scaling

47phase
14

Substituting Eq. (23) into Eq.(1), one gets:

(31)

(32)

[LHDHLf {x} = {b} (27)
The Cholesky factorization matrix [Uj, based on
the original matrix [Aj (see Eq. 31) and Eqs. (6-7),
can be symbolically computed as:

Let's define:
x x 0 0 0 x

[Lf {x} = {y} (28) 0 x x x x F

[u]=
0 0 x F F x (33)

[D]{y} = {z} (29) 0 0 0 x F F

0 0 0 0 x F
Then Eq. (27) becomes:

0 0 0 0 0 x

280

In Eq. (33), the symbols "x", and "F" represents
the "non-zero" and "Fill-in" terms, respectively.

The factorized matrix [U*] can be "symbolically"

computed from [A*] as:

IPERM (new equation #) = {old equation #} (34)

Now, one would like to solve the following
modified §ystem of linear gquations (SLE) for

{x*} ,

In practical applications, however, it is always a
necessary step to send the original matrix [A]
through re-ordering algorithms (or subroutines)
[Refs 1-2] and produce the following integer
mapping array

(39)

xOOxOx

OxOOxO

[u']= 0 0 x 0 x 0
OOOxxF

OOOOxx

OOOOOx

You can clearly see the big benefits of solving the
SLE shown in Eq. (38), instead of solving the
original Eq. (1), since the factorized matrix

[U*] has only 1 fill-in term (see the symbol "F" in

Eq. 39), as compared to 6 fill-in-terms occurred in
the factorized matrix [U] (shown in Eq. 33)!

4. ON-LINE CHESS-LIKE GAME FOR
REORDERING/FACTORIZED PHASE [4].

Based on the discussions presented in the
previous section 2 (about factorization phase),
and section 3 (about reordering phase), one can
easily see the similar operations between the
symbolic, numerical factorization and reordering
phases of sparse SLE.

In practical computer implementation for the
solution of SLE, the reordering phase is usually
conducted first (to produce the mapping between
"old~new" equation numbers, as indicated in the
integer array IPERM(-) in Eqs. 34-35).

Then, the sparse "symbolic" factorization phase is
followed by using either Cholesky Eqs. 6-7, or

the LDLT Eqs. 25-26 (without requiring the
actual/numerical values to be computed). The
reason is because during the "symbolic
factorization" phase, one only wishes to find the
number (and the location) of non-zero "fill-in
terms". This "symbolic" factorization process is
necessary for allocating the "computer memory"
requirement for the "numerical factorization"
phase which will actually compute the exact

numerical values of [U*], based on the same

Cholesky Eqs. (6-7) (or the LDLT Eqs. (25-26».

(36)

(38)

(37)

11 0 0 1 0 2

7 44 0 0 3 0

[A']= 0 0 66 0 4 0

1 0 0 88 5 0

0 3 4 5 110 7

2 0 0 0 7 112

and

14
47

{b'} = 70

94
129

121

such as, for this example:
1 6

2 5

IPERM 3 = 4 (35)
4 3

5 2

6 1
Using the above results (see Eq. 35), one will be
able to construct the following re-arranged
matrices:

rather than to solve the original SLE (see Eq.1).
The original unknown vector {x} can be easily

recovered from {x*}and {IPERM} , shown in

Eq. (35).

In this work, a chess-like game (shown in Figure 1
[4]) has been designed with the follOWing
objectives:

281

Figure 1: A Chess-Like Game For Learning to
Solve SLE.

..-CiJ-_........
(j)(i)(i)(j)(j)(j)(j)

-, c:::I:=J
~_. c:::I:=J

........- c:::I:::l

computer environments [3], such as animated
sound, human voice, motions, graphical colors
etc... have all been incorporated and programmed
into the developed game-software to be appealing
to game players/learners.

2. In the developed "Chess-Like Game", fictitious
monetary (or any kind of 'scoring system") is
rewarded (and broadcasted by computer
animated human voice) to game players based on
how he/she swaps the node (or equation)
numbers, and consequently based on how many
fill-in "F" terms occurred.

(A) Teaching undergraduate/HS students the
process how to use the reordering output

IPERM(-), see Eqs. (34-35) for converting the
original/given matrix [A], see Eq. (31), into the

new/modified matrix [A"] , see Eq. (36). This step

is reflected in Figure 1, when the "Game Player"
decides to swap node (or equation) "i" (say i =2)
with another node (or equation) "j", and click the
"CONFIRM" icon!

Since node "i = 2" is currently connected to nodes
j = 4,6,7,8; hence swapping node i = 2 with the
above nodes j will "NOT" change the
number/pattern of "Fill-in" terms. However, if node
i =2 is swapped with node j =1, or 3, or 5, then
the fill-in terms pattern may change (for better or
worse)!

(B) Helping undergraduate/HS students to
understand the "symbolic" factorization" phase, by
symbolically utilizing the Cholesky factorized Eqs.
(6-7). This step is illustrated in Figure 1, for which
the "game player" will see (and also hear the
computer animated sound, and human voice), the
non-zero terms (including fill-in terms) of the
original matrix [A] to move to the new locations in

the new/modified matrix [A"].
(C) Helping undergraduate/HS students to
understand the "numerical factorization" phase, by
numerically utilizing the same Cholesky factorized
Eqs. (6-7).

(D) Teaching undergraduate engineering/science
students and even high-school (HS) students to
"understand existing reordering concepts", or
even to "discover new reordering algorithms"

5. FURTHER EXPLANATION ON THE
DEVELOPED GAME

1. In the above Chess-Like Game, which is
available on-line [4], powerful features of FLASH

3. Based on the original/given matrix [A], and
existing re-ordering algorithms (such as the
Reverse Cuthill-Mckee, or RCM algorithms [1-2])
the number of fill-in ("F") terms can be computed
(using RCM algorithms). This internally generated
information will be used to judge how good the
players/learners are, and/or broadcast
"congratulations message" to a particular player
who discovers new (swapping node) strategies
which are even better than RCM algorithms!

4. Initially, the player(s) will select the matrix size
(8x8, or larger is recommended), and the
percentage (50%, or larger is suggested) of zero
terms (or sparsity of the matrix). Then, "START
Game" icon will be clicked by the player.

5. The player will then CLICK one of the selected
node "i" (or equation) numbers appearing on the
computer screen. The player will see those nodes
"j" which are connected to node "i" (based on the
given/generated matrix [A]). The player then has
to decide to swap node "i" with one of the possible
node "j". After confirming the player's decision, the
outcomes/results will be announced by the
computer animated human voice, and the money
award will (or will NOT) be given to the
players/learners, accordingly. In this software, a
maximum of $1,000,000 can be earned by the
player, and the "exact dollar amount" will be
INVERSELY proportional to the number of fill-in
terms occurred (as a consequence of the player's
decision on how to swap node "i" with another
node "j").

6. The next player will continue to play, with
his/her move (meaning to swap the ith node with
the jth node) based on the current best non-zero
terms pattern of the matrix.

282

Note:
In order to evaluate the students' performance on
our developed "Chess-Like Game" for solving
SLE, a detailed survey will be conducted for the
"Numerical Methods" (CEE-305) course (for 3-rd
year undergraduate engineering students) at the
end of the Fal1'2009 semester. Results of this
survey should give us information about success,
the level of player engagement, the average
scores, etc... , and will be reported in the near
future.

6. ACKNOWLEDGMENTS
The authors would like to acknowledge the partial
supports, provided in this work through the
National Science Foundation (NSF Grant
#0836916). Useful comments suggested by
Jennifer McNamara (Track Chairperson) are
appreciated and have been incorporated in this
paper.

7. REFERENCES

[1] Duc T. Nguyen, "Finite Element Methods:
Parallel-Sparse Statics and Eigen-Solutions",
Springer Publisher (2006).
[2] Duc T. Nguyen, "Parallel-vector Equation
Solvers for Finite Element Engineering
Applications", Kluwer Academic/Plenum
Publishers (2002).
[3] www.brothersoft.com/downloads/flash-
animation-software.html.
[4]
http://www.lions.odu.edu/-amoha006/Filiinterms/F
ILLINTERMS.html

