
83

Random vs. Combinatorial Methods for
Discrete Event Simulation of a Grid Computer Network

D. Richard Kuhn*, Raghu Kacker*, Yu Lei**
*Nationallnstitute of Standards and Technology, ** University of Texas, Arlington

kuhn@nist.gov, raghu.kacker@nist.gov, ylei@uta.edu

Abstract: This study compared random and t-way combinatorial inputs of a network simulator, to
determine if these two approaches produce significantly different deadlock detection for varying network
configurations. Modeling deadlock detection is important for analyzing configuration changes that could
inadvertently degrade network operations, or to determine modifications that could be made by attackers
to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random
generation, of inputs. In this study, we compare random with combinatorial generation of inputs.
Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at
least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly
all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all
deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way
interactions adds no additional information that would not be obtained by testing all 5-way interactions.
While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot
be known in advance, covering all t-way interactions may be more efficient than using random generation
of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network
simulation. Achieving the same degree of coverage provided by 4-way tests would have required
approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for
detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these
results and implications for modeling and simulation.

1 Background

A number of studies have shown combinatorial
methods to be highly effective for software
testing (e.g., [3], [6], [16], [8]. The effectiveness
of combinatorial test methods rests on the
observation that a significant number of events
in software are triggered only by the interaction
of two or more variable values. By including
tests for all 2-way, 3-way, etc., interactions, the
test set should be able to detect events that
occur only with complex interactions. The
complexity of discrete event simulation suggests
that, as with software testing, combinatorial
methods may be effective for finding events
triggered only by rare multi-way interactions of
input values. In this paper, we compare the
effectiveness of combinatorial versus random
generation of inputs in a grid computer network
simulation for finding configurations that lead to
deadlock.

The key enabler in combinatorial testing is a
covering array that covers all t-way
combinations of parameter values, for a desired
strength t. Covering arrays are combinatorial

objects that represent interaction test suites. A
covering array, CA(N;t, k, v), is an N x k array,
where k is the number of variables, and v is the
number of possible values for each variable such
that in every N x t subarray, each t-tuple occurs at
least once, then t is the strength of the coverage
of interactions. Each row of a covering array
represents a test, with one column for each
parameter that is varied in testing. Collectively,
the rows of the array include every t-way
combination of parameter values at least once.
For example, Figure 1 shows a covering array that
includes all 3-way combinations of binary values
for 10 parameters. Each row corresponds to one
test, and each column gives the values for a
particular parameter. It can be seen that any three
columns in any order contain all eight possible
combinations (000,001,010,011,100,101,110,
111) of the parameter values. Collectively, this
set of tests will exercise all 3-way combinations of
input values in only 13 tests, as compared with
1,024 for exhaustive coverage.

The primary goal in the simulation is to study the
behavior of the system with different input
configurations. For example, a network simulation

84

Parameters

2 Experimental Evaluation

Figure 1: 3-way covering array for 10
parameters with 2 values each

Subject Application and Test Suites:
Software under test for the experiment was
Simured [13], a multicomputer network simulator

Parameter Values
1 DIMENSIONS 1,2,4,6,8

2 NODOSDIM 2,4,6

3 NUMVIRT 1,2,3,8

4 NUMVIRTINJ 1,2,3,8

5 NUMVIRTEJE 1,2,3,8

6 LONBUFFER 1,2,4,6

7 NUMDIR 1,2

8 FORWARDING 0,1

9 PHYSICAL t, f

10 ROUTING 0,1,2,3

11 DELFIFO 1,2,4,6

12 DELCROSS 1,2,4,6

13 DELCHANNEL 1,2,4,6

14 DELSWITCH 1,2,4,6

Table 1: Simured configuration parameters and
test values used

developed at the University of Valencia. The
software is available in C++ and Java versions, for
both Linuxand Windows. The core command line
code (not including user interface or graphical
display) consists of 2,131 lines of C++. Simured
provides a simulation of the SWitching and routing
layers for a multicomputer, allowing the user to
study grid computer configurations to investigate
the effect of topologies and configurable
parameters on routing, timing, and other variables
of interest. We used the C++ command line
version of this software, compiled with gcc and run
on 54-bit processors under Red Hat Enterprise
Linux V4. No modifications were made to the
Simured software.

Simured provides a set of 14 parameters that can
be set to a variety of values in a configuration file
that is read by the simulator. Parameters and
possible values used are shown in Table 1. The
total number of possible configurations with these
parameter values is 3.1 x 107

. Larger values are
possible for a number of parameters, but would
require extensive run time on a large system.

Evaluation Metrics: Test suites were evaluated
according to the number of deadlocks detected.
We also compare the percentage of t-way
combinations covered for the random test suites
of equal size, and determine the number of
random tests needed to provide 100% coverage
of the respective t-way combinations. (By
definition, a covering array provides 100%
coverage of t-way combinations.)

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 a 1 a 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 a 1 1 1 0 0 0
0 1 1 a a 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 a a 1 0 1 0
0 0 Q 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 a 1 1 0 0 1 0 0
1 0 a a 0 0 0 1 1 1
0 1 0 0 a 1 1 1 0 1

This work investigates the hypothesis that
combinatorial test suites will detect significantly
more deadlocks than random test suites of the
same size, for interaction strengths of t =2, 3, 4.

Test 1
Test 2

Test 13

may investigate the effect of configurations on
packet rate, delay, or potential for deadlock in
the network, just as.a production line simulation
may study the effects of changing line speed,
interconnection between workstations, and
buffer size on the number of items that can be
produced per hour.

In this study we compare random and
combinatorial testing of a network simulator, to
determine if these two test approaches produce
significantly different deadlock detection in the
simulation. Using deadlocks as events of
interest makes evaluating program responses
straightforward and unambiguous. Numerical
results such as packet rates or delays are not
considered, but could be the subject of a future
investigation. The two test modes - random or
combinatorial - are compared using a standard
two-tailed t-test for statistical significance.

Independent and Dependent Variables: The
independent variable in this study is the type of
testing used, either t-way combinatorial or
random. The dependent variable is the number
of deadlocks detected.

85

om and I Qenerate
Interaction Two-tailed
strength probability

2 .0035
3 .1778
4 .0235

Table 2' Deadlocks combinatorial vs random

For pairwise testing (t =2), combinatorial testing
detected slightly fewer deadlocks than an equal
number of random tests, and the difference is
statistically significant. At interaction strength t = 3
the difference between the two test methods is not
statistically significant. At t = 4, however, the
covering arrays produced by IPaG detected
significantly more deadlocks than an equal
number of random tests. In the next section we
consider some possible reasons for the variation
in effectiveness of these two test methods. Two
important considerations should be noted about
the difference in deadlocks detected:

simulations), and the average deadlock detection
calculated.

Table 3: t-test results for difference between
rand paG d tests

4 Results and Analysis

4.1 Test Results
Results for the two test modes were compared
with a standard t-test for paired samples. Table 2
shows the number of deadlocks detected using
tests produced from IPaG versus the average
number of deadlocks detected with an equal
number of randomly generated tests. Values for
random test detection represent the average of
eight runs with randomly generated tests at each
combination of interaction level and packet count.
Table 3 gives the two-tailed probability of a
difference between the numbers of deadlocks
detected by combinatorial and random testing.

,
Deadlocks Detected - combinatorial

t Tests Packets
500 1000 2000 4000 8000

2 28 0 0 0 0 0
3 161 2 3 2 3 3
4 752 14 14 14 14 14

, Averaae Deadlocks Detected - random
t Tests Packets

500 1000 2000 4000 8000
2 28 0.63 0.25 0.75 0.50 O. 75
3 161 3.00 3.00 3.00 3.00 3.00
4 752 10.13 11.75 10.38 13.00 13.25

Threats to Validity: Clearly there are limitation
on the extent to which these results can be
generalized to other applications. While
previous comparisons of combinatorial and
random testing focused on fault detection, this
study evaluates these methods with respect to
deadlock detection in a simulation. Some
implications of this difference are discussed in
the analysis of results, in Section 4.2. A second
difference is the nature of the software under
test. Simured is a small but complex program
that is not assumed to have characteristics
similar to other application domains. Network
simulation requires extensive calculations for
statistics such as packet transmission rates and
delays, and is not directly comparable to other
types of software.

While the issues raised above should be
considered in evaluating results, we believe that
the experiment has identified a number of
factors that can be usefully considered when
deciding whether to use random or
combinatorial testing for a particular problem.

Each test set was executed for 500, 1000, 2000,
4000, and 8000-packet simulation runs. For
combinatorial testing, one test suite run was
conducted for each of the five packet counts and
three interaction levels (28, 161, and 752 tests,
for a total of 4,705 simulations). Random
generation produces a different test set with
each test generation run. For random testing,
eight runs at each combination of packet count
and interaction level were conducted (37,640

3 Testing Procedure

Covering arrays that include all t-way
combinations for t =2, 3, and 4 were generated
using the IPaG algorithm [11], which produces
compact test suites. Test suites for the
configuration shown in 0 included 28, 161, and
752 tests for t = 2, 3, and 4 respectively.
Random test suites matching the sizes of the 2,
3, and 4-way combinatorial test suites were
produced using the standard C library rand()
function, producing one test at a time with a call
to rand() for each variable value. In generating
random test sets, the rand() function was
initialized with a call to srand() to seed the
pseudo-random number generator from the
system clock. From these tests, configuration
files were generated for Simured and the
command line version of Simured invoked with
each configuration file.

86

combinatorial methods found more deadlock
configurations, but also consistently found 14
deadlocks for the most complex (4-way)
interactions, while there was a great degree of
variation among the random configurations.

4.2 Analysis of Results
. In considering explanations for the results,

we first note that there can be a number of
differences between the simulations conducted
in this work and software testing in other
application domains. In many applications, such
as databases or web applications, different
parameter values may result in different
execution paths within an application, but the
amount and complexity of processing is often
similar for many different inputs. Network
simulation, by contrast, may exhibit wide
variations in processing depending on whether
the input configuration is a small network of
simple topology, or a large, complex one. This
difference was observed in widely varying run
times (not reported in this paper), and may also
contribute to the distribution of deadlocks
detected at the three interaction levels.
Previous work (see Section 1) has found that
increasing values of t detect progressively fewer
faults, even in cases where combinatorial testing
performed no better than random tests.
Pairwise testing (t=2) often detected 70% to
more than 90% of faults, while 3-way tests found
roughly 10% to 20% of faults, and 4-way to 6
way tests typically detected less than 5%. This
distribution is essentially reversed for the
Simured testing (see Table 2), with 0%, 18%,
and 82% of deadlocks detected at t=2, 3, and 4
respectively. This result is not unexpected.
Faults can be triggered by combinations of any
of the variables in a program. Even though a
large set of variables may be directly or
indirectly involved in triggering deadlocks, the
set can be expected to be much smaller than the
total number of variables in a program. With
deadlocks occurring in roughly 2% of simulation
runs, larger test sets would be expected to
locate more deadlocks.

In addition to the "reverse" relationship between
deadlock detection and interaction strength,
another interesting finding was that pairwise
tests detected slightly fewer deadlocks than the
same number of random tests. Careful analysis
shows that there is in fact a combinatorial
explanation for this result, which we discuss in
the remainder of this section.

Because a significant percentage of events can
only be triggered by the interaction of two or more
variables, one consideration in comparing random
and combinatorial testing is the degree to which
random testing covers particular t-way
combinations. Any test set will also cover a
certain proportion of possible (t+1)-way, (t+2)-way,
etc. combinations as well. Tables 4 and 5
compare this coverage for the Simured test inputs.

We also analyzed the average percentage of t
way combinations covered by 100 randomly
generated test sets of the same size as at-way
covering array generated by IPOG, for various
combinations of k = number of variables and v =
number of values per variable. Table 6 shows the
combination coverage of an equivalent number of
randomly generated tests for t=2,3,4. For
example, row 2 shows that a covering array with
30 tests covers all 2-way combinations for 10
variables with 4 values each, but 30 randomly
generated tests cover only 84.6% of all 2-way
combinations.

The coverage provided by a covering array versus
a random test suite of the same size varies
considerably with different configurations. An
important practical consideration in comparing
combinatorial with random testing is the
effectiveness of the covering array generator.
Algorithms have a wide range in the size of
covering arrays they produce, but all are designed
to produce the smallest array possible that covers
all t-way combinations. It is not uncommon for the
better algorithms to produce arrays that are more
than 50% smaller than other algorithms.
Comparisons show that there is no uniformly
"best" covering array algorithm [10]. Algorithms
vary greatly in the size of combinatorial test suites
they produce, so the comparable random test
suites will also vary in the number of tests.
Random testing may produce results similar to
combinatorial tests produced by an algorithm that
generates a larger, sub-optimal covering array,
because the correspondingly larger random test
set has a greater probability of covering the t-way
combinations.

A covering array algorithm that produces a
compact array, Le., a minimal number of tests, for
t-way combinations may also include fewer (t+1)
way combinations because there are fewer tests.
Note that at t=2 (pairwise), an equal sized random
test set covers more 4-way and 5-way
combinations, which may explain why the random
tests detected more deadlocks than the t=2

87

tests or o com matlon coverage
2-way Tests 3-way Tests 4-way Tests

Valsl (POG IPOG IPOG
Var var Tests Ratio Tests Ratio Tests Ratio
10 2 10 1.80 20 3.05 42 3.57
10 4 30 4.83 151 6.05 657 3.43
10 6 66 5.80 532 3.73 3843 3.48
10 8 117 4.26 1214 4.46 12010 4.39
10 10 172 4.70 2367 4.94 29231 4.71
15 2 10 2.00 24 2.17 58 2.24
15 4 33 3.67 179 3.75 940 2.73
15 6 77 3.82 663 3.79 5243 3.26
15 8 125 4.41 1551 4.36 16554 3.66
15 10 199 4.72 3000 5.08 40233 3.97
20 2 12 1.92 27 2.59 66 2.12
20 4 37 3.78 209 2.98 1126 3.35
20 6 86 3.35 757 3.39 6291 2.99
20 8 142 4.44 1785 4.73 19882 3.00
20 10 215 4.78 3463 4.04 48374 3.25
25 2 12 2.83 30 2.33 74 2.35
25 4 39 3.08 233 3.39 1320 2.67
25 6 89 3.67 839 3.44 7126 2.75
25 8 148 5.71 1971 3.76 22529 2.72
25 10 229 4.50 3823 4.32 54856 3.50

Ratio Avg. 3.90 3.82 3.21

The analysis suggests two significant advantages
for combinatorial methods in simulations where
interactions between input variables are likely to
be important:

Now consider the size of a random test set
required to provide 100% combination coverage.
Table 7 gives the ratio of randomly generated
tests to combinatorial tests for the variable/value
combinations. For example, for 10 variables with
2 values each, random generation requires 1.80,
3.05, and 3.57 times as many tests as a covering
array to cover all combinations at t=2, 3, and 4
respectively. For most covering array algorithms,
the difficulty of finding tests with high coverage
increases as tests are generated. Thus even if a
randomly generated test set provides better than
99% of the coverage of an equal sized covering
array, it should not be concluded that only a few
more tests are needed for the random set to
provide 100% coverage. Table 7 shows that the
ratio of random to combinatorial test set size for
100% coverage exceeds 3 in most cases, with
average ratios of 3.9, 3.8, and 3.2 at t = 2, 3, and
4 respectively. In other words, using random tests
to obtain coverage of all t-way combinations
required more than three times as many tests as
were needed when using a covering array. Thus
combinatorial testing offers a significant efficiency
advantage over random testing if the goal is 100%
combination coverage.

Table 7: Ratio of random to combinatorial
f 100% b'

Table 6: Combination coverage of an
'It b f d t

Table 4: Combination coverage of
IPOG t t t

equlva en num er 0 ran om ests
Vals IPOG Rand (POG Rand IPOG Rand

I tests 2-way tests 3-way tests 4-way
Vars Var t=2 COVQ t=3 covg t=4 covg
10 2 10 94.1 20 94.3 42 93.2
10 4 30 84.6 151 90.6 657 92.3
10 6 66 85.6 532 91.6 3843 94.8
10 8 117 83.8 1214 90.6 12010 94.7
10 10 172 82.1 2367 90.6 29231 94.6
15 2 10 93.9 24 96.2 58 97.5
15 4 33 88.1 179 94.1 940 97.5
15 6 77 88.6 663 95.4 5243 98.2
15 8 125 86.1 1551 95.2 16554 98.2
15 10 199 86.4 3000 95.0 40233 98.2
20 2 12 96.5 27 97.3 66 98.6
20 4 37 90.9 209 96.2 1126 98.8
20 6 86 91.3 757 97.0 6291 99.2
20 8 142 91.3 1785 96.9 19882 99.2
20 10 215 88.4 3463 96.9 48374 99.2
25 2 12 95.9 30 98.5 74 99.2
25 4 39 92.1 233 97.5 1320 99.4
25 6 89 91.8 839 97.9 7126 99.6
25 8 148 90.3 1971 97.9 22529 99.6
25 10 229 90.0 3823 97.8 54856 99.6

-way es s
t 2-way 3-way 4-way 5-way Avg

2 1.00 .758 .429 .217 0.601
3 1.00 1.00 .924 .709 0.908
4 1.00 1.00 1.00 .974 0.994

,
size = 2-way 3-way 4-way 5-way Avg
t-way

2 .940 .735 .499 .306 0.620
3 1.00 .942 .917 .767 0.906
4 1.00 1.00 .965 .974 0.985

Table 5: Combination coverage random tests

covering array. Almost paradoxically, a sub
optimal algorithm that produces a larger
covering array may be more effective because
the larger array is statistically more likely to
include t+1, t+2, and higher degree interaction
tests as a byproduct of the test generation. This
result demonstrates that the smallest possible
array is not necessarily best for testing purposes
if higher strength interactions are not also
tested. It also suggests that covering array
generation algorithms that fill "don't care" values
(those for which all combinations have already
been covered) with random values may provide
better test results by covering a larger number of
t+1, t+2, and higher degree combinations.

88

Significantly fewer tests required to provide
100% combination coverage for a particular
interaction strength. Depending on problem
size, random generation requires approximately
2 to 6 times as many test inputs as a covering
array to cover all combinations (Table 7). While
random generation will cover a significant
portion of the data space, sometimes 99% or
more (Table 6), this may often not be adequate
in practice. The network simulation described in
previous sections illustrates that combinatorial
methods can detect rare interactions that may
be missed with an equal number of random
inputs.

Better coverage of higher strength interactions.
As shown in Table 4, a covering array for
interaction strength t is likely to provide better
coverage of t+1, t+2, etc. combinations than an
equal number of random tests. This
characteristic provides a greater chance of
detecting events triggered by rare combinations.

5. Conclusions

For the simulation program tested in this study,
pairwise tests detected slightly fewer deadlocks
than an equal number of random tests, but 4
way combinatorial testing produced better
results than an equal number of random tests.
Analyzing the random test sets suggests a
number of reasons for these results. Although
pairwise tests covered all 2-way combinations
and an equal number of random tests covered
fewer, the random tests covered more 4-way
and 5-way combinations, and thus had a greater
probability of triggering deadlocks that depended
on 4-way or 5-way interactions. However, the 4
way combinatorial tests covered significantly
more 4-way combinations (100% vs. 96%) and
also provided equal 5-way coverage compared
with the corresponding random test set, and
found more deadlocks as well.

This result demonstrated that the smallest
possible array is not necessarily best for testing
purposes if higher strength interactions are not
also tested. When using t-way combinatorial
testing, it can be helpful to evaluate the test set
for coverage of t+1 and higher interaction
strengths. Methods of combining combinatorial
and random tests may also be effective, as
proposed in [2], [1]. These results also suggest
that covering array algorithms may provide
better test results by filling "don't care" values

with random (rather than constant, sequential, or
other non-random) values.

Note: Reference to commercial products or trademarks
does not imply endorsement by NIST, nor that such
products are necessarily best suited to any purpose.

References

1. Bell, K.Z. and M.A. Vouk. On effectiveness of pairwise
methodology for testing network-centric software. Proc.
ITI Third IEEE Int Conf on Information & Communications
Technology, pages 221-235, Cairo, Egypt, Dec. 2005.

2. Bell, K.Z., Optimizing Effectiveness and Efficiency of
Software Testing: a Hybrid Approach, PhD Dissertation,
North Carolina State University, 2006.

3. Burr K., and W. Young, Combinatorial Test Techniques:
Table-Based Automation, Test Generation, and Test
Coverage, Int Conf on Software Testing, Analysis, and
Review (STAR), San Diego, CA, October, 1998

4. Burroughs, K., A. Jain, and R. L. Erickson. Improved
quality of protocol testing through techniques of
experimental design. In Proceedings of the IEEE Inti
Conf on Comm. (Supercomm/ICC'94), May 1-5, New
Orleans, Louisiana, USA. IEEE, May 1994, pp. 745-752

5. Cohen, D. M., S. R. Dalal, J. Parelius, G. C. Patton The
Combinatorial Design Approach to Automatic Test
Generation IEEE Software, 13, n. 5, pp. 83-87, Sept 1996

6. Dunietz, S., W. K. Ehrlich, B. D. Szablak, C. L. Mallows,
A lannino. Applying design of experiments to software
testing Proceedings of the IntI. Conf. on Software
Engineering, (ICSE '97), 1997, pp. 205-215, New York

7. Kuhn, D. R., D. Wallace, and A. Gallo, "Software Fault
Interactions and Implications for Software Testing," IEEE
Transactions Software Engineering, 30(6):418-421, 2004.

8. Kuhn, D. R. and V. Okun, "Pseudo-exhaustive Testing for
Software," Proceedings of 30th NASNIEEE Software
Engineering Workshop. pp. 153-158, 2006.

9. Kuhn, D.R., M.J. Reilly, An Investigation of the
Applicability of Design of Experiments to Software
Testing, 27th NASA/IEEE Software Eng. Workshop,
NASA Goddard Space Flight Center, 4-6 Dec. ,2002 .

10. Lei, Y., R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence,
"IPOG/IPOG-D: Efficient Test Generation for Multi-Way
Combinatorial Testing", Software Testing, Verification,
and Reliability. (Nov 29 2007,001: 10.1002/stvr.381)

11. Lei, Y., R. Kacker, D.R. Kuhn, V. Okun, J. Lawrence,
"IPOG - a General Strategy for t-way Testing", IEEE
Engineering of Computer Based Systems Conf, 2007.

12. Kobayashi, N., T. Tsuchiya, T. Kikuno, "Applicability of
Non-Specification Based Approaches to Logic Testing for
Software", Proc. 2001 International Conference on
Dependable Systems and Networks, IEEE, pp. 337 - 346.

13. Pardo, F., JSimured - Simulador de Redes de
Multicomputadores Paralelo, University of Valencia, May,
2005. http://simured.uv.es/doc/memoria.pdf

14. Pretschner, A, Tejeddine Mouelhi, Yves Le Traon.
Model Based Tests for Access Control Policies, 2008
International Conference on Software Testing,
Verification, and Validation pp. 338-347

15. Wallace, D. Rand D. R KUhn, "Failure Modes in Medical
Device Software: An Analysis of 15 Years of Recall Data,"
International Journal of Reliability, Quality and Safety
Engineering, 8(4):351-371, 2001.

16. Williams, AW., RL. Probert. A practical strategy for
testing pair-wise coverage of network interfaces The
Seventh International Symposium on Software Reliability
Engineering (ISSRE '96) p. 246

