
61

Joint Composable Object Model and LVC Methodology

Richard Rheinsmith
Senior Enterprise Architect

Novonics Corporation
rrheinsmith@novonics.com

Jeffrey Wallace
Chief Technology Officer

Intelligent Integrations
jwallace@cots-lIc.com

Warren Bizub
Director, Joint Advanced Concepts

Joint Warfighting Center, USJFCOM
warren. bizub@jfcom.mil

Dr. Andy Ceranowicz
Technical lead,

Joint Semi-Automated Forces (JSAF)
Alion

Dannie Cutts
Senior Computer Scientist,

AEgis Technologies Group Inc

Dr. Edward T. Powell
Lead Architect Test and Training Enabling Architecture

SAle

Paul Gustavson
Chief Scientist

SimVentions, Inc

Robert Lutz
Principal Staff Scientist

Johns Hopkins University Applied Physics Laboratory

Terrell McCloud
Chief Architect Common

Training and Instrumentation Architecture (CTIA),
Lockheed Martin

62

Abstract. Within the Department of Defense, mUltiple architectures are created to serve and fulfill one or
several specific service or mission related LVC training goals. Multiple Object Models exist across and
within those architectures and it is there that those disparate object models are a major source of
interoperability problems when developing and constructing the training scenarios. The two most
commonly used architectures are; HLA and TENA, with DIS and CTIA following close behind in terms of
the number of users. Although these multiple architectures can share and exchange data the underlying
meta-models for runtime data exchange are quite different, requiring gateways/translators to bridge
between the different object model representations; while the Department of Defense's use of gateways
are generally effective in performing these functions, as the LVC environment increases so too does the
cost and complexity of these gateways. Coupled with the wide range of different object models across the
various user communities we increase the propensity for run time errors, increased programmer stop gap
measures during coordinated exercises, or failure of the system as a whole due to unknown or unforeseen
incompatibilities. The Joint Composable Object Model (JCOM) project was established under an M&S
Steering Committee (MSSC)-sponsored effort with oversight and control placed under the Joint Forces
Command J7 Advanced Concepts Program Directorate. The purpose of this paper is to address the initial
and the current progress that has been made in the following areas; the Conceptual Model Development
Format, the Common Object Model, the Architecture Neutral Data Exchange Model (ANDEM), and the
association methodology to allow the re-use of multiple architecture object models and the development of
the prototype persistent reusable library.

1. INTRODUCTION

One of the fundamental difficulties involved with
mixed architecture live, virtual, and constructive
environments is the coordination and correlation of
the data exchange models that enable state
sharing and interoperability. The Joint
Composable Object Model (JCOM) project was
chartered to address this problem, and its
progress to date is described in this paper. The
principal results are the design of an eight phase
process for data exchange model composition,
and the creation and integration of the
infrastructure required for its implementation. This
paper will cover: the JCOM concept of operation
including the composition process, application of
conceptual modeling, the Architecture Neutral
Data Exchange Model (ANDEM), and a discussion
of the enabling metadata.

A quick detour into terminology is needed at this
point to identify and define the key terms used in
this paper, as they are interpreted broadly in the
community. 'Data exchange model' (DEM) refers
to the structure of the data used to communicate
state and state changes between cooperating
simulations. We use OEM instead of the more
common term 'Object Model', such as the
Federation Object Model (FOM) used by the HLA,
to avoid confusion with software object models
which include functional aspects. The term 'object'
in distributed simulation originates from the fact
that many messages used in a OEM are updates
for the state of a real or simulated object such as
a person or vehicle.

As such, the term 'object' is used in LVC
environments in the common sense rather than

the software sense. Heavy use is made of the
term 'component' in the general sense, indicating
units that can be composed to create larger units,
essentially reusable piece parts. DEMs are
primarily composed of messages, and messages
are composed of attributes and all of these are
components of a OEM. Simulations are
components of LVC federations. The LVC and
distributed simulation community often refers to
messages as classes and allows the use of
inheritance to extend messages. We use
'conceptual models' to refer to abstractions of real
or synthetic worlds that we want to include in our
LVC environment. These abstractions include
entities, processes, events, and states. 'Model'
and 'representation' are used as equivalent terms;
thus 'data exchange model' is equivalent to 'data
exchange representation'.

In order to reuse OEMs efficiently, an easy way to
find and retrieve them is necessary. An intelligent,
searchable repository for DEMs must be built;
allowing many new DEMs to be composed from
existing ones. This should be a repository rather
than a registry, because for efficiency the engineer
should be able to retrieve the OEMs that match his
search criteria immediately as opposed to a
registry that tells him who to call to get the OEM.

This repository needs to contain the links between
conceptual models of the domain and data
exchange model components. Standard repository
development techniques employing simplistic
metadata descriptions are not sufficient to support
semantic, concept-based queries. While the
project intends to improve conventional metadata
description initially, for the long term it will rely on

63

the open standards, methods, and technologies
that have been developed for application areas
such as the Semantic Web to support
semantically rich repositories and queries.

The essence of the JCOM project is to show how
conceptual models of the domain can be used to
organize and select data exchange model
components which can be rapidly composed to
create new LVC environments for training,
experimentation, and other purposes. While this
approach can be used to augment current
federation building processes, only by leveraging
semantic technologies can long-term
breakthroughs in speed and accuracy of
composition be achieved.

The basic JCOM concept of operation is for
existing object models from the different LVC
interoperability architectures to be parsed into an
architecture neutral data exchange model format
and stored in a repository.

2. COMPOSITION PROCESS

In this compositional development environment,
LVC federation creation may be viewed as a
constructive activity. A simulation of the desired
functionality is composed from a set of existing
LVC components. The LVC components are
interfaced together via OEM components and the
composition process produces a composite OEM
that can connect all the LVC components required
to implement the desired composite LVC
federation.

In this Compositional Model of OEM development,
the Accumulation, Evaluation, and Adaptation
activities can be conceptually grouped into the
process of Reuse. Feedback occurs between the
Conceptualization and Reuse processes when
conceptualization is influenced by the availability
of components. This influence can be either in the
form of repartitioning within the parameters of the
original design, or of relaxing design constraints. If
no candidate artifacts are found to satisfy the
requirements, the designer may revise the
conceptualization under a different design strategy
to increase the opportunity for reuse, or may elect
to implement the needed component (Prieto-Diaz
1987).

Feedback also occurs between the Reuse and
Composition step when interface requirements
dictate certain adaptations that may not be
feasible with a particular artifact.

1 http://www.w3.org/2001/sw/

Standard development methodologies fail to
support the compositional development model in
three important ways. The compositional
development processes of Accumulation and
Evaluation are most tractable when object model
definitions are independent, but this is often not
the case. Most data and object modeling
approaches lack support for representing the
inter-object relationships that can capture this
dependence. They only support two kinds of inter
object references, inheritance (IS-A) and client
(HAS-A) relationships. From the standpoint of
reuse, this is insufficient, because coupled
components cannot be evaluated independently
and the accumulation and evaluation processes
take on a combinatorial aspect.

The second problem involves methodologies
based on class reuse. Class-level reuse often
occurs at too fine a granularity to be effective. It
has been noted by other researchers that the
advantages involved in reusing a component
increase super-linearly as the component grows in
size (Biggerstaff 1987). Thus a methodology that
allows the reuse of larger components is more
effective.

The third criticism of reuse support observes that
object-oriented design methodologies only offer
the developer syntactic support and only after the
conceptualization, accumulation, and evaluation
process has produced a candidate object for
adaptation. Object-oriented methodologies offer
this support through inheritance allowing the
developer to "design by difference," adapting a
chosen component through inheriting the
candidate object into another class and
specialiZing its structure. However, there is
considerable intellectual challenge in the
compositional processes of conceptualization,
accumulation, and evaluation which need support.

This type of inheritance makes object and data
model maintenance and evolution harder because
the inheritance relationships violate the semantic
model of the system. In recognition of the fact that
object-level approaches are inherently insufficient
to facilitate large-scale improvements in reuse,
researchers have begun to look at higher-level
abstractions and compositions; in the object
oriented community, these abstractions are
referred to as design patterns and frameworks
(Johnson 1988, Gamma et al. 1994, Whitehurst
1997), while non-object oriented systems research
refers to these abstractions as reusable
architectures.

64

To begin development some method is needed to
capture a conceptual model description that
represents the training objectives in a format that
can be algorithmically processed to support
discovery and selection. The Joint Capability
Areas (JCA) and Mission Essential Task List
(METL) are good resources for building these
conceptual models. Discovery and selection
require that the DEM components (DEMCs)
represented in ANDEM and stored in the
repository are indexed by the same conceptual
models that are employed to describe the training
or experimentation tasks. A search mechanism
that is capable of utilizing the conceptual model's
semantically rich metadata developed in Phase
One is required to match up the training objectives
to the DEMCs.

Composition requires the ability to qUickly and
easily manipulate the inheritance and composition
relationships of and between DEMCs is important.
The ability to merge the graph structure
representation underlying the DEMC is required, in
addition to the ability to join, and potentially re
label the schemas of the DEMCs. This activity and
capability is at the core of object and data
exchange model composition.

Implementation of new OMCs/DEMs requires the
ability to create new artifacts. As such, authoring
and editing tools such as those commonly found in
standard data modeling or object modeling tool
environments would be desirable. The issue is the
integration of such a capability into this
composition environment and process. Typically
such tools are stand alone and have limited import
and export capabilities that permit the
interoperation with other tools and processes. The
principle capability required for the expansion
process is the ability to quickly and easily send
new and adapted DEMCs back into the repository
to fulfill future task or mission requirements. The
final phase of adding architecture specific
information requires the ability to manipulate and
augment the ANDEM data structures in a flexible
manner.

The notion of an end-to-end Integrated
Development Environment (IDE) for an object
model composition process needs to be
developed. Support tools, such as Protege,
GraphML, and Xerlin (for XML editing) should be
combined through open source IDEs, which
provide the necessary flexibility, through plug in
creation and implementation.

3. CONCEPTUAL MODELING

What this means for the war-fighter: Rapid and
efficient federated simulation development.
Current technologies require considerable time to
create a complex multi-architecture training and
experimentation environment. As a result, a few
established federated LVC environments are
relied upon, where users are forced to make do
with what exists, which means their requirements
are not necessarily met. Conceptual modeling
has been found to be a key part of the Object
Model composition process. Conceptual modeling
describes what is to be represented, the
assumptions limiting those representations, and
other capabilities needed to satisfy the user's
requirements (IEEE P1730). In general, the
conceptual model must identify the distinct entities
or phenomena involved in the mission thread
under consideration. It must also identify the
actions of entities and the collaborative actions or
activities that take place between them. These
actors and common behavioral patterns are
captured in a machine understandable form
capable of triggering a semantic search.

Without a structured method for conceptual
modeling, automating, or even semi-automating,
the process of mapping between training and
experimental objectives and the OEMs supporting
them is challenging. As such, the ad-hoc
processes for building federations will continue. In
addition, the problem of finding and integrating
LVC environment resources is made more difficult
by the presence of multiple LVC integration
architectures. There are frequently separate
assets, SUbject matter experts (SMEs), OEMs,
and repositories. Conceptual models are
necessary to organize all these resources under a
uniform schema that allows reuse independent of
interoperability affiliation. Conceptual modeling
can also help the LVC community to move away
from the specialized terminology of M&S to that of
the War fighter and live ranges. This will make
M&S more understandable and useful to the War
fighter.

Typically upfront conceptual modeling and
analysis is limited and sometimes non-existent.
Defining the scope of a project; understanding
requirements and the way forward - pairing with
what is needed to what is to be built and used is
critical. Projects are often limited in applying
conceptual modeling because of
budget/personnel/resource constraints. Another
obstacle is that using Object Model design for
discussing capabilities with stakeholders may be
"too big of a leap". Without knowing where to go
"to mine" (defining / integrating) reusable

65

conceptual models each project is left with the
overwhelming task of defining everything from
scratch.. Contracts rarely include contractual
obligations to support Conceptual Model
development, delivery and reuse. All these
problems can be helped with the creation of a
structured methodology for reusable conceptual
modeling and sharing conceptual models can
make better use of limited resources for
conceptual model development. In general,
Conceptual Modeling needs to be emphasized
more fundamentally as an activity that not only
assists in implementation, but also helps
programmatic judgment.

In the initial phase of the JCOM project techniques
such as the Object Modeling Groups (OMGs)
Unified Modeling Language (UML) were employed
to represent the conceptual models of a sampling
of authoritative mission threads that could
realistically be required as a part of a training
exercise, experiment, or test and evaluation event.
Additionally the Base Object Model (BOM)
template specification (which employs UML
sequence and activity diagrams) has been studied
as an example of conceptual modeling. Some of
the questions considered are:

• How do we extract the "piece parts" of existing
object models that correspond to conceptual
model components?

• How do we define the mapping from a
conceptual model component to a
corresponding object model component?

• How do we compose whole object models
from a set of object model components?

Conceptual models for the JCOM effort have been
captured using sequence diagrams The sequence
diagrams provide the opportunity to identify
common patterns, where these patterns can be
extracted and potentially reused. Using the
sequence diagram an entire mission thread can
be examined and understood at the high level.
The sequence can then be reviewed and
decomposed to further explore the layers of sub
patterns that compose the mission thread. As the
mission thread is further decomposed, the
patterns may expose more details and variations
such breadth of entity types (e.g. HQ at the
mission thread layer includes Division, Brigade,
and Company at the lower sub-pattern layers).

In addition to capturing the patterns of interplay,
the conceptual model also identify types of
conceptual entities required and their states
providing a means to understand entity behavior
that would need to be represented by a system or
simulation. For example, in our original pattern of

interplay, three conceptual entities were identified:
Target, Observer, and HQ. For the Observer,
there are three states associated to this entity:
Observe, Decide, and Communicate. These are
states are reflected in the figure above.

4. ARCHITECTURE NEUTRAL DATA
EXCHANGE MODEL

What this means for the war-fighter: The
effective and efficient reusing of multiple
architecture products regardless of service,
component, or development tool. The
independent format allows mapping any
interoperability architecture OEM to a common
language. Once mapped, it will support reuse in
multiple interoperability environments.

The question is not whether one object model can
be mapped to another. The use of gateways to
bridge the multiple LVC architectures is prima
facie evidence that architecture specific OEMs can
be mapped to each other. That problem is
solvable by developers familiar with the models
involved. The problem at hand is to accelerate and
automate as much of the mapping process as
possible. There is strong agreement that an
Architecture Neutral Data Exchange Model
(ANDEM) format for data exchange models can
simplify the problem both for humans and
machines. Humans can handle the problem for
specific federations since the number of OMs that
need to be translated between in a particular
exercise environment is small. However, once the
general problem is attempted, the large number of
potential OMs necessitates a many to one
approach rather than a many to many approach.

To create the ANDEM, JCOM started with the goal
of extracting a single data exchange metamodel
from the metamodels for TENA, HLA, DIS, and
CTIA. This metamodel should be able to express
the same data exchange capabilities as any
TENA, HLA, or DIS object model. In the process
there was disagreement as to whether ANDEM
should be the intersection or union of these
architecture specific metamodels. The intersection
produces abstraction which is necessary for
recognizing equivalence between different data
exchange. For example, if transmission reliability
were a necessary parameter of ANDEM, then
there would never be equivalence between any
HLA FOM component that uses reliable data
transfer and the DIS Protocol Data Units - even
though they may describe exactly the same world
state.

66

architectures and are orthogonal to the common
core.

Figure 2 depicts the Architecture Neutral Data
Exchange Model (ANDEM) core metamodel. As
stated previously the goal is to create a structure
into which all of the constructs present in the four
major LVe architectures can map into. This
includes the three variations of HLA, the 1.3NG,

_. -
I .- ~.:=-:==~~: ..- ---=..",.

In_.

............, .,---.",.........__..~.
~=.:-,....=="~:...~.:..
tt..~.........................,.._.

_I;;:,
~ r AarI_

g-e-. _:---c.or.t;;~.,....-;........
~:aom..n.,,

j T i r' i (O~I;:::--.) i TCO:"1oIM
v---r_

mIT
f_rs_mc_ Trsn...mc.... 1 Enumer.uon Com....xTv... 1-

1:---'--'- I I ib-
••~1---'" -,...r T~lI!....m._ _....

r~_----Im-
~-- EKe. -- Im- Ute_

-~
c_ _.

. ..-.
Loce.' ~rstIon -.......

I~~J.......,·' .. _m_
...e:a.-t1-..-...'...._m_o-...uon ---....
~... :.....".,.....-

However, once equivalence between two data
exchange models has been established, there is
the requirement for synthesis and implementation,
which cannot be automated without capturing the
specific implementation options of each protocol.
Thus it was decided that in addition to the
ANDEM, an architecture specific extension, or
appendix, would need to be kept for each data
model for use in building the translation between
the formats.
Yet, even
then it was
not easy to
separate the
conceptual
pieces from
the
implementati
on pieces.

r Fund.,...,.,.,Tv... I

i i T i r~UnaJD_ r;ou;;-"""'n-.,.T_ rFIoat32 Ch_

f F_ IItrfnall_.nlr
u,.- IIU'nt181fU'nt32l1u'.....1I ,.- If 'nt18 II 'nt32 I ."_ I

The central feature of the ANDEM metamodel is
the notion of a Class, which is the fundamental
unit of representation. This concept exists in all
four LVe architectures. The notion of inheritance
is also present, even though it is not strictly
present in all four, as is composition by inclusion
(HAS-A relationships). The data exchange model
being in several separate files is a construct that
presently exists only in HLA Evolved and TENA.
The notion is central enough that it is included in
the ANDEM core metamodel, as such a construct
would be difficult to retrofit.

The class construct has two sub-types, the
persistent class and the transient class. The

Figure 1. ANDEM Concept of Operation

Figure 1 illustrates the concept of operation of the
Architecture Neutral Data Exchange Model
(ANDEM). The ANDEM core represents the
constructs that are common between each of the
Lve architectures plus those constructs that
materially affect a useful metamodel structure.
This means including constructs that are not
shared by all of the LVe architectures. The
ANDEM architecture specific extensions represent
those constructs that are unique to one of the LVe

Figure 2. ANDEM Metamodel Prototype

IEEE 1516, and HLA Evolved. For example, the
current ANDEM includes primitive data types,
which lies in the intersection of all our three
prototypical data exchange metamodels. Another
question that arose was whether Live Architecture
/ Data models are adequately represented in the
current set of the four Lve architectures under
consideration.

67

distinction is made between classes that represent
entities whose state persists over time (e.g., a
platform or a sensor) and those that do not, such
as weapon firing events or communication. The
main feature of both types of classes is the ability
to contain other classes or an attribute. As is
indicated in the figure above the attribute construct
has four variations: Enumerations, fundamental
type, Vector type, and Complex types

The specialization of the fundamental type is
standard across all of the LVC architectures.
Notice that the vector type is configured to
accommodate a single type of any attribute.
Strictly speaking, the construct is not present in all
of the architectures but its inclusion here is most
natural.

5. METADATA AND COMPOSABILITY
SERVICES What this means for the war
fighter: A simple but robust method for
categorizing everything from a handgun to the
newest air superiority jet.

Making previously created artifacts easy to find
and retrievable should help alleviate
reimplementation due to the common expedient of
"I can't find it so I'll just create a new one". In
conjunction with a structured conceptual model
and rapid reuse of multiple architectures in the
LVC community, this technology will allow
commanders at all levels to better understand and
apply their tools.

There is agreement that ontologies as metadata,
and related tools to create and maintain them offer
great promise for the future in terms of
composability support. Ontologies enable
reduction in ambiguity of specification, and will
reduce the current labor intensive processes
required to create data exchange models. They
will also permit and facilitate archiving and
maintaining interoperability knowledge that is
typically lost, or kept only by original designers.

6. SUMMARY

This papers summarizes the JCOM project, along
with the strategy and supporting technologies
needed to achieve those goals. JCOM is
considered just the first step in a longer and more
extensive process to promote convergence and
improve LVC interoperability. While object
modeling is just one aspect of the broader LVC
interoperability problem, the products and lessons
learned from this project will provide a solid
foundation for follow-on initiatives.

Questions or comments related to the conduct
of this effort may be directed to the JCOM
Program Manager, Mr. Warren Bizub
(warren.bizub@jfcom.mil).

ACKNOWLEDGEMENTS

The authors thank Barbara and Jaclyn Hannibal
for their support in the editing, graphics arts, and
production support of this paper.

REFERENCES

Biggerstaff, Ted J. and Charles Richter.
Reusability framework, assessment and
directions. IEEE Software, 4(3):41-49, March
1987.

Daniel Elenius, et ai, 2007. "Purpose-Aware
Reasoning about Interoperability of
Heterogeneous Training Systems," In the
Proceedings of the 2007 International Semantic
Web Conference, Semantic Web Science
Association, Busan, Korea, August 20, 2007

Gamma, Erich, et aI., 1994. Design Patterns:
Elements of Reusable Object-Oriented Software,
Addison-Wesley.

IEEE P1730, "Distributed Simulation Engineering
and Execution Process", IEEE Draft
Recommended Practice (V3) , 2009.

Johnson, Ralph and Brian Foote. Designing
reusable classes. Journal of Object-Oriented
Programming, 1(2):22-35, June 1988.

Prieto-Diaz, Reuben and Peter Freeman.
Classifying software for reusability. IEEE
Software, 4(1):6-16, January 1987.

Sowa, John, 2000. KnOWledge representation:
logical, philosophical, and computational
foundations, MIT Press.

Tolk, Andreas et aI., 2008. "Implied Ontological
Representation within the Levels of Conceptual
Interoperability Model," Intelligent Decision
Technologies, lOS Press, Vol 2, Number 1, 2008.

Wallace, Jeffrey and Barbara Hannibal, 2008.
"Software and Hardware System Integration and
Intelligent Automation using Ontology-based
Knowledge Representation Technology," In the
Proceedings of the 2008 International Conference
on Arlificiallntelligence, World Academy of
Sciences, Las Vegas, NV, July 14-16.

68

Whitehurst, R. Alan, 1997. "Using IMPORT to
Implement Complex Behaviors in Simulations," In
the Proceedings of the 1997 Object-Oriented

Simulation Conference, The Society for Computer
Simulation, Phoenix, AZ, January 12-15,1997.

