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Abstract

The Refined Zigzag Theory (RZT) for homogeneous, laminated
composite, and sandwich plates is revisited to offer a fresh insight into
its frrndarnental assumptions and practical possibilities. The theory is
introduced from a multi-scale formalism starting with the inplane
displacement field expressed as a superposition of coarse and fine
contributions. The coarse displacement field is that of first-order shear-
deformation theory, whereas the fine displacement ,field has a piecewise-
linear zigzag distribution through the thickness. The resulting (cinematic
field provides a more realistic representation of the deformation states of
transverse-shear-flexible plates than other similar theories. The
condition of limiting homogeneity of transverse-shear properties is
proposed and yields four distinct sets of zigzag functions. Analytic
solutions for highly heterogeneous sandwich plates undergoing
elastostatic deformations are used to identify the best perforrning zigzag
functions. Unlike previously used methods, which often result in
anomalous conditions and nonphysical solutions, the present theory does
not rely on transverse-shear-stress equilibrium constraints. For all
material systems, there are no requirements for use of transverse-shear
correction factors to yield accurate results. To model homogeneous
plates with the frill power of zigzag kinematics, infinitesimall y small
perturbations in the transverse shear properties are derived, thus
enabling highly accurate predictions of homogeneous plate behavior
without the use of shear correction factors. The RZT predictive
capabilities to model highly heterogeneous sandwich plates are
critically assessed, demonstrating its superior efficiency, accuracy, and
a wide range of applicability. The present theory, which is derived from
the virtual work principle, is well-suited for developing computationally
efficient C°-continuous finite elements, and is thus appropriate for the
analysis and design of high performance load-bearing aerospace
structures.

Nomenclature

a	 lateral dimension of a square plate
CO	 a continuous function of (xl ,x2 ) coordinates whose first-order

derivatives are discontinuous along finite element interfaces

Cu and Cc.	 intersections of the cylindrical edge surfaces (Su , SU ) with the

middle surface S„ t where displacements and traction resultants

are prescribed, respectively
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CO
Z a continuous function of z coordinate whose first-order

derivative is discontinuous along material-layer interfaces
Ck) and QP9 1 inplane and transverse shear elastic stiffness coefficients for the

loth layer
E1(k) Young's moduli of the loth layer

(k)	 (k)
> a , and cgla , ea	 g

a	 ^
transverse shear piecewise constant functions

G., G,,, Ca , and Cla weighted-average, laminate-dependent transverse shear constants

— ii shear moduli of the k-th layer

2h total plate (laminate) thickness

2 h (k) thickness of the loth material layer

k 2 shear correction factor for First-order Shear Deformation Theory

(FSDT)

N number of material layers through the plate thickness

q applied transverse pressure [force!length2]

S,,, reference middle plane of the laminate

sill	 SC parts of the cylindrical edge surface of the laminate where

displacements and tractions are prescribed, 	 respectively

S(k) transverse-shear compliance coefficients

s, n unit outward tangential and normal vectors to the mid-plane

boundary

(T , TZ ,T_) prescribed inplane and transverse shear tractions

(U1	 , uzk) ,u_) inplane and transverse components of the displacement vector in

the kth material layer

ua(C) coarse kinematic description

U (k) fine kinematic description

u `"'e central transverse displacement averaged across plate thickness

ul , 611 , and ZlZ normalized inplane displacement, normal stress, and transverse

shear stress

(u, v, w, Bl, 021 yi,, yr2 ) kinematic variables of the refined zigzag plate theory

(XI , x2 ) reference coordinates with axes positioned in the middle plane of

plate

Z thickness coordinate axis
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Z(k)	 thickness coordinate of the interface between the kth and (k + 1)

layers

a	 subscript (a =1,2)

ya average transverse shear strains

I 1 transverse shear strain function corresponding to cylindrical

bending problem
J variational operator

c1	
( • ) a partial differentiation

C (k) small, dimensionless piecewise constant function
k)

_C1
(	 £ (k	 y (	y(	 y(k))
(	 ,	

)
(k	 ,

k)
(	 ,

k)
(	 ,	 ( strains in the loth layery

^(k) dimensionless thickness coordinates of the k-th material layer

eat ) piecewise constant bending rotation

O(k) the angle between the principal material direction xi and the

xl axis, formed by the right-hand rule

,u (k)	 dimensionless piecewise constant function

V(k)	 Poisson ratios of the k~th layer

(6ii ) 622 ) ,z1z ) ,zzz ) ,zlz	 stresses in the loth layer

Oa( k )	 zigzag functions in the loth layer

Oa (k) dimensionless inplane displacements along the interface between

the k-th and (k + 1) layers

yia	 amplitude functions of zigzag displacements
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1. Introduction

Advances in composites technology over the past four decades spurred an ever increasing use of
composite materials in civilian and military aircraft, aerospace vehicles, naval and civil structures.
Application of composite materials leads to lightweight structures that offer high-performance and long-
term durability and reliability. The newest state-of-the-art civilian aircraft, the Boeing 787, is fifty percent
composite and uses carbon-epoxy materials for its fuselage, wings, and many load-bearing components.

Stress-analysis methods based on classical assumptions, which suppress the transverse shear and
normal effects, have significant limitations particularly when applied to multilayered composites
undergoing bending and transverse shear deformations. Load-bearing thick-section composites and
sandwich structures can exhibit significant deformations due to transverse shear and thickness-stretch
effects, especially in regions of stress concentration and when undergoing high-frequency responses.
Many structural theories of first and higher order and their finite element implementations have been
developed. The most widely used finite elements for plate and shell bending are those based on First-
order Shear-Deformation Theory (FSDT) [1-4], because of their computational efficiency and relatively
wide range of applicability. Nevertheless, it is well recognized that such models have the tendency to
underestimate the inplane strains and stresses, particularly in highly heterogeneous and thick composite
and sandwich laminates, and overestimate natural frequencies of relatively high-frequency vibration
modes [5-8]. Moreover, FSDT's accuracy is related to the use of shear correction factors that are material
lay-up dependent. Higher-order theories, that take into account transverse shear deformability [8], are
more accurate than FSDT and normally do not require shear correction factors. Theories based on the
equivalent-single-laver assumption [9-12] also offer reduced computational complexity; however, they
fail to model the zigzag-shaped cross-sectional distortion typical of heterogeneous laminates. Laver-wise
theories [13, 14] have quasi-three-dimensional predictive capabilities; however, the computational effort
is excessively great for most practical applications. To model sandwich laminates with sufficient accuracy
commonly requires application of special sandwich theories to account for a zigzag-shaped, through-the-
thickness distribution of inplane displacements and strains, at the expense of a much higher modeling and
kinematic complexity [15-17]. Alternatively, three-dimensional finite element models are used to analyze
relatively small structural regions of interest, and these are often coupled with two-dimensional
discretizations to achieve smaller and computationally feasible models. Computational methods for
nonlinear progressive failure analysis commonly employ cohesive elements and ply-by-ply
discretizations, resulting in exceedingly intensive computations, particularly when large structures are
analyzed [18, 19].

Zigzag theories pioneered by Di Sciuva, both in linear [20-23] and in cubic versions [24, 25], may be
considered as a good compromise between adequate accuracy and low computational cost. The key idea

is to add a piecewise-linear, zigzag-shaped (i.e., C? -continuous) contribution to a globally linear or cubic

through-the-thickness distribution of the inplane displacements. The superposed zigzag kinematics are
determined in such a way as to satisfy equilibrium of the transverse shear stresses through the laminate
thickness, as required by the theory of elasticity. The formulation results in a fixed number of kinematic
unknowns, equal to that of FSDT, which does not depend on the number of layers. These theories often
yield response predictions comparable to those of layer-wise theories; however, various flaws inherent in
these theories have prevented their acceptance in practical applications.
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Averill [26] recognized two major drawbacks that plague many previously mentioned zigzag theories:

(i) Cr -continuous functions are required to approximate the deflection variable within the finite element

framework — the type of approximations that are especially undesirable for plate and shell finite elements,
and (ii) transverse shear stresses calculated from constitutive equations vanish erroneously along clamped
boundaries.

Building on the observations of Averill [26], Tessler et. al. presented [27-31 ] a Refined Zigzag Theory
(RZT) that augments FSDT with a novel zigzag representation of the inplane displacements. The
kinematic field does not require enforcement of transverse-shear-stress continuity to yield accurate
results. Both drawbacks of the original zigzag theories are overcome because: (i) only first derivatives of

the kinematic unknowns are present in the definition of the strain field, thus leading to C O -continuous

shape functions for beam and plate finite elements [32-35], and (ii) all field equations (i.e., equilibrium
equations, constitutive equations, boundary conditions, and strain-displacement relations) are consistently
derived from the virtual work principle without engendering any transverse-shear-force anomalies. Since
the transverse shear forces are fully consistent with respect to the physical and variational requirements,
they do not vanish erroneously along clamped boundaries. Furthermore, the theory has been demonstrated
to yield consistently superior results over a wide range of aspect ratios and material systems, including
thick laminates with a high degree of transverse shear flexibility, anisotropy, and heterogeneity.

In this paper, the Refined Zigzag Theory [30] is revisited to reexamine its fundamental assumptions
and to explore new modeling possibilities. In Section 2, the theory is introduced from a multi-scale
formalism. The kinematic field is represented as a superposition of coarse and fine kinematic
descriptions, where the coarse kinematics are those of FSDT and the fine kinematics are represented by

piecewise C-0 -continuous zigzag functions through the thickness. The definition of the zigzag functions is

further refined by assuming that the coarse kinematics form the average laminate response only, whereas
the fine kinematics represent a perturbation from the average response. The strain-displacement equations
and constitutive relations are presented in Section 3. In Section 4, the zigzag functions are defined in
terms of layer-level thickness coordinates. The methodology for determining the zigzag functions from
the transverse-shear constitutive relations is reviewed following the approach in [30]. Then, a new
perspective, based on the concept of Inviting homogeneity, is proposed for the determination of zigzag
functions. This new methodology permits four distinct sets of zigzag functions to be obtained, one of
which is coincident with the form derived in [30]. The concept of limiting homogeneity, is further invoked
for the purpose of modeling homogeneous plates with the full power of zigzag kinematics. Analytic
results for homogeneous orthotropic plates and highly heterogeneous sandwich laminates are presented in
Section 5 to demonstrate RZT's wide range of applicability.

2. Kinematics description

Consider a multilayered composite plate of uniform thickness 2h composed of perfectly bonded
orthotropic layers (or laminae) as shown in Figure 1. Points of the plate are located by the orthogonal

Cartesian coordinates (xr, xz, z) . The ordered pair (xr, xz) E S,,, denotes the inplane coordinates, where

S,,, represents the set of points given by the intersection of the plate with the plane z = 0, referred to

herein as the middle reference plane (or midplane). The symbol z E [ -h, h] denotes the domain of the

through-the-thickness coordinate, with z = 0 identifying the plate's midplane. The plate is subjected to a
5



normal-pressure loading, q(xl , x,) , applied at the midplane, S,,,, that is defined as positive when acting

in the positive z direction. In addition, a traction vector, (Tl , T„ T_) , is prescribed on S, C S, where S

denotes the total cylindrical -edge surface. On the remaining part of the edge surface, S„ e S,

displacement restraints are imposed (or prescribed). The sections of the plate edge are related by

S, v S„ = S and Sa n S„ = 0 . Moreover, the curves CQ = S6 n S,,, and C„ = S„ n S,,, define the two

parts of the total perimeter C = C, v C„ surrounding the midplane region, S,,,. Finally, it is presumed

that small-strain assumptions are valid, and that body and inertial forces are negligible.

The deformation of a plate subjected to applied loading and boundary restraints can be described by

the displacement vector in terms of its Cartesian components as u ° (tiik) ,zi?k) ,u k) ) . Using a multi-scale

formalism, the material point at (XI ,x2 ,z) situated within the kth material layer — which could be a ply

or a fraction of a ply thickness, if the ply is further discretized through the thickness — is undergoing the

displacement that may be expressed as a superposition of a coarse kinematic description u; ( ,, ) and a fine

kinematic description u ^ f) (i =1, 2, z) , i.e.,

uak)(xl, x2 Z)= ua(,) (xl''x2'Z)+",(f)(xl'x2'Z) (a=1, 2)

Zl(k)(XI,x2,Z)=Zl_(^)(xl x2 Z)+U(k))(XI,X2'Z)	
(1)

where the superscript (k) (k =1,... N, where N denotes the total number of material layers through the

plate thickness) indicates that a quantity is dependent upon the kth layer constitutive properties; whereas,
in the ensuing discussion, the subscript (k) defines quantities corresponding to the interface between the

k and (k+ 1) layers. The kth layer thickness is defined in the range [Z(k_1) , z(k) ] (see Figure 1).

To describe the coarse kinematics, first-order shear deformation theory (FSDT) can be used, in which
case

ul(')(xl'x?'Z) _—U(xl,x2)+Z 91(X1Ix2)

u2(,) (XI ,x2I Z) = v(xl ,x2 )+Z 02 (XI ,x2)

U: (XI , x, ,Z) — W(xlIX2)
	

(2)

where it and v represent the uniform through -the-thickness displacements in the x l and x2 coordinate

directions, respectively; e, and e2 represent average bending rotations of the transverse normal about the

positive x2 and the negative xi directions, respectively, and they contribute to the linear distributions

through the thickness; and iv is the coarse or average description of transverse deflection.

The fine kinematic description with the resolution on the scale of the kth material layer is represented

by the piecewise-continuous functions ua^ f) . In general, the addition of the fine kinematic description
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adds 3 x (N + 1) independent variables. If this generality of the fine description is maintained, then Eq.

(1) would represent what is commonly known as a layer-wise theory, where the number of unknown
kinematic variables (or modes) is proportional to the number of material or inatheinatical layers that are
modeled within such a theory. One way to simplify the fine kinematic description is first to represent the

fine kinematics in terms of separable functions of the inplane (x1 , x2 ) and transverse (z) coordinates,

and then impose a set of interfacial constraint conditions, with this general strategy leading to what is
commonly known as a zigzag formulation (e.g., see Di Sciuva [20]). For many years it has been widely
accepted that such interface constraint conditions should necessarily be conditions of perfect equilibrium
of the transverse shear stresses along the layer interfaces. Whereas from the mechanics perspective the
stress equilibrium needs to be perfectly satisfied, the limited kinematic freedom associated with the
relatively simple displacements assumed a priori often lead to an over constraining of the kinematic field
and subsequent pathological conditions and anomalies within the resulting theory.

In Tessler et al. [30], the fine displacement description is assumed as

ua(f) (xt' x21 z ) = '0ak) (z ) Y`a (xt 1 x2 )

U(k)
:(f)(X11 x21 z) = 0	

(3)

allowing only for the inplane displacements to have a fine description, where0((k) (z) are piecewise-

continuous throu gh-the-thickness zigzag functions that stem from laminate heterogeneity, and V, (XI, x2)

are independent functions that may be interpreted as the amplitudes of the zigzag displacements. In its

simplest form, as proposed by Tessler et al. [30], 0 ( ) (z) are piecewise linear, C°-continuous functions

through the thickness, having discontinuous thickness-derivatives 0,' ,k) (z) at the layer interfaces.

The refined zigzag theory of Tessler et al. [30] has seven kinematic variables (modes) regardless of the
number of material layers through the thickness, with the kinematic field described by the orthogonal
components of the displacement vector as

uik) (xt ,x2 ,z) = "(xt, x2) +z Bi(xi, x2) + q̂ (z)W1(x1 ,x2)

u(2k) (xt, x2, z) =v(xt, x2) +z B2(xi, x2) +
02 

(z) w2(xi,x2)

u - (XI , X2 , Z)  - W(x1IX2)
	

(4)

During applied loading the material fiber, which prior to deformation is straight and perpendicular to the

reference midplane, deforms and rotates about the xa axes. The rotations, henceforth denoted as eaT)
are given as



q
t t t tt ?t

71

9z  , y^,	
Ti

^lt
.S'

I7

-xz

^v
Hi 'PI

1 
N^

^TZ

Vi

T,

h

h

X^z

(a)	 (b)
Figure 1. (a) General plate notation, and (b) lamination notation.

U(k) = Ba 
( xl> x2) + Oak? ( Z ) Vla (xlI x2) = O T)	 (5)

where, henceforward, (•) a = a(•) / Ox, denotes a partial derivative with respect to the midplane

coordinate, x,. In Eqs. (5), O(k) are piecewise constant, and Ba ( xl , x2 ) and V, (xl , x2 ) are uniform

with respect to the z coordinate; therefore, each material layer rotates in a piecewise constant manner

described by the rotations Bak) . Integrating Eqs. (5) over the laminate thickness and dividing by the total

thickness gives the average rotations

2h f^^^ BaT' dz=Ba ( xt, x2) - 
Zh

^
hh

^ak^ ( z ) dz ) yra(xt , x2)	 (6)

If the average rotations about the xl and x2 axes of the initially normal fiber are represented by the

coarse rotations Ba ( XI , x2 ) only (as in Di Sciuva et al_ [31]), then the following integral must vanish

identically

li	 k

f_h ^a ^	 (7)(z)dz=0 

Integration of Eq. (7) results in the requirement that the top (surface) and bottom values of the respective
zigzag functions are equal, i.e.,

^hhOa^) (z)dz — O,aN) (h)—Oat> (—h) = 0	 (7.1)
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A special case of Eq. (7.1) and a particularly convenient choice is to select the top and bottom values of
the zigzag functions to vanish identically

0al'(—h) 	 (h) =0
	

(8)

The above homogeneity conditions of the zigzag functions also imply that surface displacements are only
defined in terns of the coarse variables, i.e.,

ujk)(x1,x2, ±h) =11 (xl ,x2) ±h 01(xl,x2)

u2k) (xl,x2, ±h)= v(xl,x2) ±h 82(xl,x2)	
(9)

3. Strain-displacement and constitutive relations

The inplane and transverse shear strains derived from linear strain-displacement relations are

sll) =1..1l+ZBll+^(k)yr11 	 (10.1)

s (kk) = 117 + z82,2 + 02' Vf2 2	 (10.2)

712 = 11 2 + V,l + Z(81,2 + 02,1) + ^i^k ^ X1,2 + 
O

2(k) V2,1	 (10.3)

Yazd =Wa+Ba+ ^a,: a (a = 1,2)	 (10.4)

The zigzag-function property given by Eq. (7) ensures that the average transverse shear strains are those
which correspond to FSDT (a coarse description), i.e.,

1	 h

Ya 2
	 7ak)dZ = YV 

a + ea

The generalized Hooke's law for the kth orthotropic material layer, whose principal material directions are

arbitrary with respect to the reference coordinates 
(XI, 

x2 ) E S. , is expressed as

611

(k)
C11	 C12	 C16	

0	 0
(k)

£11

(k)

622 C12	 C22	 C26	 0	 0 922

T12 — C16	 C26	 C66	 0
/^0

Y12

T2 _ 0	 0	 0	 Q22	 Q12 72=

Tl _ O	 O	 0	
Q12	 Q11 Ylz

(12)

(11)
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011(2) 011
 (Z) x

a

0. (11

h

k=2 xx

h

where C—'ii(') and Q^1k) are the transformed elastic-stiffness coefficients referred to the (xl,x2,z)

coordinate system, relative to the stress condition that ignores the transverse normal stress. To aid

in subsequent discussions, expressions for Qtk) are given in terms of their principal transverse-shear

moduli, G13 ) and G23 ) , and an angle e(k) (the angle between the principal material direction x' and the

xt axis, formed by the right-hand rule)

Ql1) — cos' (H (k) ) G13
)

+	 sin  (B (k) ) G23); Q1	 k) — sin(B (k) ) COS(B(k) ) (t-() — G2 ) )^
(12.1)

Qz2' — cos' (0 ) ) G23> + sin' (B^k^ ) G13 .

4. Zigzag functions and transverse shear constitutive relations

The refined zigzag fiinctions (or zigzag displacements) of the present theory are defined by piecewise

linear, CO -continuous functions (i.e., CO -continuous functions through the laminate thickness.) For

convenience, the zigzag functions Oak) (z) (a =1, 2) , which have units of length, are defined in terms of

their respective layer-interface values 0a(i) (i = 0,1,..., N) (see Figure 2 depicting the notation for a

three-layered laminate).

Z

/`Vul) (Z)

(a) Layer notation	 (b) Zigzag functions 0ak)(z)

Figure 2. Notation for a three-layered laminate and( k) (z) zigzag functions defined in terms

of interface displacements Oa(k)
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For the kth material layer located in the range [z(k-1) , z(k) ] , the zigzag functions are given as

Oak) - 2 (I - ^(k)) 0, (k-1) + 2 (1 + ^ (k) )0,(k)	 (13)

^(k) [(z — z(k-1) ) l h (k) —1] E [-1,1] (k =1,..., N)	 (14)

with the first layer beginning at z(o) = -h , the last N th layer ending at z(N) = h , and the k th layer

ending at z(k) = z(k-1) +2h (k) , where 2h (k) denotes the k th layer thickness.

Evaluating Eqs. (13) at the layer interfaces gives rise to the definitions of the interface displacements

Oa(k-1) = Y'ak) (^ (k) - -1)	 0,(k) = 
0,11 ( (k) = 1)	 (15)

where, according to Eq. (8) , the top and bottom interfacial displacements are set to vanish

Oa (0) = 0. (N) = 0	 (16)

Differentiating Eqs. (13) with respect to the z coordinate yields the piecewise-constant functions

,I/(k) -
	 I	 ,/	 ,	 17/

k Oa(k) -'f'a(k-1))	 ( )
2h() 

Straightforward algebraic manipulations provide the alternative forms for O
ak) (z) in terms of ^ak^ (z)

O (k) _ O'
(k) (z - z	 ) +	 18a	 a,_	 (k-1)	 1(k-1)	 ( )

4.1 Zigzag function selection according to Tessler et al. [301

The approach in [30] begins by expressing the transverse shear stresses in the following form

^(k)	 (k)	 ^{(k) 	
0Z1-	 -

 [Q11 Q12
	 Y1 - V1 + I + `P1._	 +	

19.1

	

Q12 Q22	 Y2 - Vf2	
u 1	 V2	 ( 19-1)T' -	 0	 1 + ^,zk)

or alternatively as



	

(k)	 (k)

71:	 Q11 Q12	 Y1 V 

72=	 Q12 Q22 1 ^)2  — w2
(19.2)

(k) Q22)

	

+ 11) (1+ (k ) )	 1	 / + (k) (1+ O) Q12Q._	 (k)	 (k) V 1	 Q22	 02,_	 ^2
Q12 Ql 1	 1

In Eqs. (19.2), the second and third stress vectors include, as their normalization (or scaling) factors,

coefficients Qa ) (1 + 0(`) ) (a =1, 2) involving their respective zigzag functions. If the normalization

factors are selected to be constant for all material layers, i.e.,

Qaa) (1+ 0, .  k-) ) = G.	 (20)

where Ga are yet undetermined constants, then solving Eqs. (20) for 0(1-? results in

0, (k) = G / Q(k) —1	 (21)a,_	 a	 as

Substituting Eqs. (21) into Eqs. (7) reveals that the G. constants represent some weighted-average

transverse-shear stiffness coefficients of a laminate, given by

	

I	 dz	 1	 I N h(k)	 1	
( )Ga	

2h h Qaa) 	h k=1 Qaa)	
22

Using Eqs. (17), all interfacial displacements are readily determined in terms of O(k) as

Oa(k) = Oa(k-1) + 2h 
(k) 

O'(kz	 (23.1)

Accounting for the homogeneous boundary conditions, Eqs. (16), the interfacial displacements are further
simplified as

k

Oa(k) — ^2h(' ) 0,(")z
	

(23?)

i=1

With O(ak) and Ga fully defined by Eqs. (21) and (22), the definitions of the zigzag functions given by

Eqs. (18) are complete. Invoking Eqs. (10.4) and (22), piecewi se- constant distributions of the transverse
shear strains are maintained and are given as
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Yaks=W	 Q, + Ba +
 	

^k)	
— 1 Va

h k=1 Qaa

^k) N h(k) -1

(24)

Note that the present methodology for deriving the zigzag functions is purely constitutive-based; in
contrast to the previous zigzag models, there exist no kinematic constraints. In [30], extensive analytical
studies for simply supported and clamped laminated composite and sandwich plates have been carried out
and have demonstrated superior modeling capabilities of this theory.

4.2 Homogeneous limit methodology for zigzag function selection

In what follows a new methodology for obtaining suitable zigzag functions is examined. The approach
exploits an intrinsic property of zigzag functions referred to herein as the homogeneous limit property. It

is postulated that a zigzag function 0a
k) (a= 1,2;k=1,...,N) has a non-vanishing distribution

provided that the layer-wise transverse shear properties on the xa cross-sections are different, i.e., when

the material layers are heterogeneous with respect to their transverse shear properties. The converse of
this property is that under the homogeneous limit defined as

Qaa --^ Ga	 (25)

where Ga, are the constant transverse-shear moduli corresponding to the xa planes (i.e., the planes

normal to the xa coordinate axes), the zigzag functions are required to vanish in a limiting sense under

all admissible deformations, i.e.,

0ak> (Z) 0 if Qaa> —> Ga	 (26)

The homogeneous limit conditions, Eq. (25), also imply that all material layers have the same angular

orientation, B(k) . It immediately follows from Eq. (26) that O(ak) also vanish in a limiting sense (refer to

Eqs. (18)), i.e.,

0ak) —> O 7fQaa^ —> Ga	 (27)

Moreover, the limiting conditions described by Eqs. (26) and (27) guarantee that all interior interfacial
displacements of the zigzag functions must vanish in a limiting sense as the laminate approaches its
homogeneous limit

0, (j) —> O (i =1,...,N - 1)	 (28)

whereas the exterior (bottom and top) interfacial displacements have been set to zero explicitly in Eq.

(16). Rewriting Eq. (25) by moving Ga to the left-hand side of the equation, and then dividing by Q(u)

or by Ga, , gives two sets of dimensionless functions labeled as g(ak) and gla)
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(gak) > 91a
) ) — ( Ga I Qaa) — 1 , Q, ,) I GIa — 1)	 (29)

where, for expediency, Ga has been renamed as GI,, in the definition of g (k) . It can be seen that g(k)
and g (k) have the same characteristics as Oak? ; specifically, (1) these functions are dimensionless,

piecewise -constant and dependent upon the kth layer's transverse shear stiffnesses, and (2) each of these

functions vanishes in a limiting sense under the homogeneous limit, Eq. (25). Therefore, either g(ak) and

	

gl)	 ^ak>can be considered to represent

	

a 	 and thus complete the definition of the zigzag functions.

Specifically:

• Ga method

Exploring the possibility of gak) to represent ^a,z and setting

O(k ) = g (k) = G / Q(k) — 1Ce,z	 a	 a	 as

it is observed that Eqs. (21) and (30) are identical. Moreover, by invoking Eq. (7), the definition for Ga

given by Eq. (22) is obtained.

• GIa method

When g (k) , given by Eq. (29), is taken as a representation for O(k ) , there resultsja

/,j(k) _ (k) = Q(k) / G — 1	 (3 1)^"a,z — gIa	 as	 Ia

Substituting this expression into Eq. (7) yields yet another set of weighted-average constants

1 N

GIa — —^, h(k) Qaa 	 (32)
h k=t

and, consequently, with the use of Eqs. (13) and (23?), another set of zigzag functions is obtained.

Note that Ga and GIa represent two different weighted-average transverse shear properties of a

laminate. In both cases, however, there exists dependence on the principal transverse shear moduli of each

individual layer as well as their orientation angles B(k) .

Alternatively, the homogeneous-limit strategy can be applied by examining the transverse-shear
compliance coefficients instead of the stiffness coefficients. Hooke's relations for the k-th material layer

(30)
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in terms of the transformed compliance coefficients that relate the transverse shear strains to their
conjugate stresses may be written as

(k) (k)

71: S11 S12 zl:

^(k)

72 'S12 S22 Z2=

(33)

Therefore, the homogeneous-limit conditions for 0a
4-
_ ) and the compliance coefficients corresponding to

the xa planes maybe written

O'ak) -> 0 if Saa) _> Ca	 (34)

Following the procedure outlined in Eqs. (28)-(32), two additional functions can be considered to

represent Oak) , i.e.,

(cake	 Cruz) = ( Ca / Saar — 1 	 Saa^ l Cra — 1)	 (35)

The two additional possible representations for the zigzag functions are

• Ca method

Herein cake is set to represent ^akz ,i.e.,

Yak= = Ca	 ak e = C I Saal - 1	 (36)

Substituting Eq. (36) into Eq. (7) yields

1 N h(k) —1

Ca	
)

_^	 (37)=

h k=1 Sa(
k
a

• C" method

Letting c. ,) to represent 01( k) , there results

0".Z = Clad — Saa' CIce — 1 	 (38)

Substituting Eq. (38) into Eq. (7) yields
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C — 1 j h (k) S (k)	 39, —	 as	 ('h k=1

where it is noted that Ca and Cla are two different weighted-average laminate constants for a given

laminate. For the special case of a diagonal compliance/stiffness matrix representing all layers

(Qi2 )
 = 0 ), such as in a cross-ply laminate whose principal material directions are aligned with the

Cartesian plate coordinates, it can be readily verified that

(Ca , C,,) = (G,-,' , G,- 1 ) and ( Cake	 Clad - ( CIa^ I ga	 (40)

The four zigzag -function methods are summarized in Table 1. In Section 5, these methods are
examined quantitatively by way of analytic solutions for simply supported sandwich plates.

Table 1: Zigzag function definitions

Homogeneous Weighted-average Zigzag-function derivatives Interfacial
limit method constants (k) displacements

1 __

va

N(k)	
-1I	 h

— 1 gak) Ca / Qaa) -I

h	 )(k)
Z_aak=1

GIa	 j h (k) Qaâ 91a) - Qaa)	 Gla - 1

k=1
k

0	
_	 20) 0`'

)a (k)	 a,z

3 I	 N h(k)	 - 1 C(k) = C	 S (k) - I

t=1

Ca = (k)h k=1 Saa
a a	 as

4 ^'	 —_ 1 
N 

h (k)S (k)
Ia

Cla) = Sag,) / Clc	 —1

h	
as

k=1

4.3 Modeling homogeneous plates with the full power of zigzag kinematics

When modeling homogeneous plates or laminated plates with the same transverse shear stiffnesses on
the planes of rectilinear orthotropy, the refined zigzag theory can be successfully applied by invoking the
homogeneous limit property. To achieve accurate predictions for homogeneous plates without the use of
shear correction factors, the differences in the layer transverse shear moduli can be made arbitrarily small,
with such an approach taking the full advantage of zigzag kinematics. A judicious choice of small
perturbations to describe nearly homogeneous transverse shear properties over the plate's thickness can
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lead to remarkably accurate predictions, achieving parabolic shear strain and stress distributions that are
consistent with elasticity theory predictions for homogeneous plates. Moreover, the approach yields
accurate nonlinear inplane strains and stresses when modeling thick plates. By contrast, the use of purely
homogeneous transverse shear properties would result in the vanishing of the zigzag functions and would
lead to the exclusively coarse theory, known as FSDT; where, for homogeneous plates, the kinematic
assumptions give rise to constant through-the-thickness transverse shear strains and stresses and linear
enplane strains and stresses, thus requiring a shear correction factor to compensate, in an average sense,
for the lack of the parabolic transverse shear distributions.

The approach is demonstrated by using the refined zigzag theory based on the G. method (see Table

1). For simplicity and clarity of the discussion, a laminated plate whose principal axes of rectilinear

orthotropy are coincident with the xi and xz plate axes (thus Qi i = Gi k) , Qzz ) = Gz3) , Qiz = 0) is

considered; further, cylindrical bending about the xz axis is considered so that the response quantities are

functions of only the xl and z coordinates. Using Eq. (10.4), the refined zigzag theory yields the

following expression for the transverse shear strain

YW =Yl(xl) 
l+ (k) Vf1(xl)

)/l (Xi )

It is then assumed that the material layers have sli ghtly different shear moduli from a constant value G13

G13 ) = G13 (1 + 
£

(k)) (k =1,..., N)	 (42)

where s (k) - sCC (k) << I with ,u (k) = 0(1) denoting a dimensionless piecewise-constant function and s

an arbitrarily small scalar. Substituting Eq. (42) into Eqs. (22) and using Eq.(21) yields

( k ) = _	 (k)G, = G13 and O, ,Z	 a,u

Note that both yr, (x,) and Y, (x,) have the same functional form in terms of x l ; also, for this nearly

homogeneous case their magnitudes are respectively 0(s-1 ) and 0(1) . Therefore, the ratio of the two

functions appearing in Eq. (41) is simply a large constant

yf, (x,) = G(s-1 )	 (44)

Yl (xl )

Accounting for Eqs. (43) and (44) yields the transverse shear strain of the form

717 — Y1 (Xi )(1-CCI^k>)	 (45)

where c is a dimensionless constant and (1— c,u (k) ) represents a piecewise constant thickness

distribution of the transverse shear strain.

(41)

(43)
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A parabolic transverse shear distribution is a good approximation for homogeneous plates that range
from moderately thick to thin plates. Therefore, for the cylindrical bending problem considered herein a
parabolic distribution of the transverse shear strain may be expressed as

	

H	 Z-

 ' )
Yi_ = r i (xi) I-- ,	 (46)

where the F,(xl ) function is determined from a given boundary value problem.

The function ,u(k) in Eq. (45) can now be determined in such a way as to allow (1— c,u(k) ) to

approximate a parabolic distribution given by Eq. (46) in an average sense. Thus, the average shear strain

across the kth layer resulting from Eq. (46) is set to correspond to (1— c,u (k) ) , i.e.,

2	 2	 2

	

1	 ^k' 1— 
z	

dz =1— z
(k_i) + z(k) ± z(k_t)z(k) _ 

1— c,u (k)	 (47)
2h (k) 	 h 2 	3h-	

—

from which

22
^ (k) _	 Z(k-t) + Z(k) + 

Z(k-1)Z(k)	
(48)

3c h 2	 h2	 h2

and, finally,

IL z
£ (k) = S 

Z(k I) + Z( k) + Z(k-1)Z(k) 
<< 1	 (49)

h 	 h`	 h2

where the constant 3c has been absorbed into an arbitrarily small scalar s << 1.

A similar analysis of cylindrical bending about the x 2 results in the expressions for the

G23 ) transverse shear moduli

G23) = G23 (1+6 (k) )
	

(50)

where £ (k) is the same as that given in Eq. (49).

Equations (42), (49) and (50) provide the slightly perturbed transverse-shear-modulus distributions
through the thickness, for the purpose of achieving a homogeneous plate in a limiting sense as the small

parameter £ (k) diminishes to zero and the number of discretized layers N becomes sufficiently large.
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4.4 Remarks on equilibrium equations, boundary conditions, and FEM approximations

The plate equilibrium equations and consistent boundary conditions are derived in [30] from the
virtual work principle, resulting in a system of seven second-order partial differential equilibrium
equations in terms of the seven kinematic variables, thus constituting a 14"'-order theory. The number of
kinematic variables within this theory is fixed at seven and does not depend on the number of discretized
layers; hence the computational effort is practically the same for any number N. From the computational
perspective of finite element approximations, C°-continuous kinematic functions can be used because the
strain measures are represented by partial derivatives not exceeding first order.

5. Example problems and results

Analytic solutions for simply supported square laminates are used to examine the predictive capability
of the four variants of the present Refined Zigzag Theory (RZT). The plate is defined on the domain

xr E [0, a], x2 E [0, a], z E [ —h, h] and is subjected to the sinusoidal transverse loading

q = qo sin (lrxr / a) sin (TCx2 /a).  The analytic solutions for uniaxial, cross-ply, and angle-ply laminates

are derived in [30]. The first set of example problems examines the modeling of thin, moderately thick,
and thick homogeneous orthotropic plates using the perturbed transverse-shear approach. Then, results for
a highly heterogeneous and anisotropic angle-ply antisymmetric sandwich laminate are critically
examined. The numerical and graphical results that follow include results of the four variants of RZT and
several other theories that are used for comparison purposes; the results are labeled as:

3D Elasticity:	 Three-dimensional elasticity solutions using procedures developed by Pagano
[36] for cross-ply multilayered plates and by Noor and Burton [37] for angle-ply
antisymmetric laminates.

FSDT:	 First-order Shear Deformation Theory; shear correction factor k 2 = 5/6.

Reddy:	 Third-order equivalent single-layer theory by Reddy [9].

Zigzag (D):	 Di Sciuva theory [23].

RZT (Ga ):	 Refined zigzag theory based on the Ga method (refer to Table 1).

RZT ( Ga ; N):	 Refined zigzag theory based on the G. method modeling a homogeneous plate

with Ndiscretized layers through the thickness (refer to Figures 3-5).

RZT (Gla ):	 Refined zigzag theory based on the Gla method (refer to Table 1).

RZT ( Ca ):	 Refined zigzag theory based on the Ca method (refer to Table 1).

RZT (C,,,, ):	 Refined zigzag theory based on the CIa method (refer to Table 1).
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In Figures 3-8, the through-the-thickness distributions correspond to the normalized displacement and
stresses, given as

ui = (104 Dii /goa 4 ) uik)(0,a/2,z), 6„ =((2h) 2 1g oa 2 ) 6„)(a/2,a/2,z), and

z^_ _ (2h^goa) z,' (O, a / 2, z) .

5.1 Homogeneous orthotropic plates

The ability of RZT to model homogeneous orthotropic plates using the perturbed transverse-shear
approach is demonstrated subsequently. The plate is made of a carbon-epoxy material with the

mechanical properties given by Young's moduli EI k) = 1.579 x 102 GPa, EZk) = E(” =9.584 GPa, Poisson

ratios v12 = v13 =0.32, v23^=0.49, and shear moduli G,z ,= G,3)=593 0 GPa, and G2k)=3.227 GPa. For

this homogeneous, orthotropic plate the principal material directions are aligned with the plate coordinate
axes.

The four variants of RZT, when applied to the carbon-epoxy (homogeneous and orthotropic) plates of

various span-to-thickness ratios (a/2h=5, 10, and 100), showed close agreement, with RZT (Ga ) and

RZT (C,,, ) producing slightly superior results. For this reason, subsequent discussions concerning

homogeneous plates focus exclusively on RZT (Ga ) that was originally introduced in [30]. The perturbed

transverse-shear approach is assessed by fixing the small scalar at s =10
-5

 while studying the plate's

response by increasing the number of the discretized layers, N.

Results are shown for the maximum values of three response quantities in Table 2. These results
include the central transverse displacement (deflection), which is averaged across the thickness,

ZIT'e (a / 2, a / 2) , the central inplane stress on the top surface, 6iJ a / 2, a / 2, h) , and the edge

transverse-shear stress at the midplane, z0 (0, a / 2, 0) . The results are normalized with respect to the

corresponding solutions of three-dimensional elasticity theory. The response quantities are seen to
converge from below as N is increased from 1 to 64. The special case of N = 1 corresponds to FSDT

( k2 =1), i.e., the zigzag functions are identically zero in this case. For a thin plate (a/2h=100), the

deflection and inplane stress match the exact solution very closely for all values of N, whereas the
transverse shear stress converges to the exact solution of three-dimensional elasticity theory as N is
increased. For moderately thick (a/2h=10) and thick (a,%2h=5) plates, all quantities converge to slightly
greater values that exceed those of three-dimensional elasticity. The converged results corresponding to

RZT (G,; N=64) were also compared with Reddy's third-order theory and both theories were found to be

in close agreement. In both cases, the slightly over estimated results for thick plates may be attributed to
the lack of transverse normal flexibility in these theories.
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Table 2. Deflection, inplane stress, and transverse shear stress as a function of the number of
discretization layers, N, for homogeneous orthotropic plates (a/2h=5, 10, and 100); results correspond to

RZT (G,,; A) and are normalized with respect to three-dimensional elasticity solutions.

N a/2h=5 a/2h=10 a/2h=100

me
1l_

h
611

0
7l_

ave
11_

h
611

0
71_

mle
1l_

h
611

0
7l_

1 0.948 0.870 0.591 0.976 0.964 0.565 1.000 1.000 0.556

4 1.002 0.972 0.946 0.999 0.993 0.925 1.000 1.000 0.917

16 .	 - I1.015 1.025 1.009 1.005 1.003 1.000 1.000 0.995

64 1.026 1.017 1.030 1.009 1.006 1.008 1.000 1.000 1.000

Normalized through-the-thickness distributions for the 11 1 , c-711 ,  and zl _ response quantities,

corresponding to a thick orthotropic plate (a/2h=5), are depicted in Figures 3 -5. The special case of N=1
shows a linear variation through the thickness that matches that of FSDT. As N is increased, a nonlinear
distribution is achieved (Figure 3 (a)). A close comparison of the nonlinear, converged solution to the
corresponding solutions of three-dimensional elasticity and Reddy's third-order theory is shown in Figure
3 (b). For this thick orthotropic plate, Reddy's theory is perfectly applicable and its predictions are in

very close agreement with RZT (G,,; N=64).  In Figures 4 and 5, similar comparisons are provided for the

inplane stress, 611 , and transverse shear stress, T-1 , distributions. Of particular interest is the

convergence of transverse shear stress; both RZT (G,; N=64) and Reddy's parabolic stresses slightly

over estimate the maximum value at the midplane; however, RZT (G,; N=64) is slightly closer to the

three-dimensional elasticity solution. An additional study of thinner homogeneous orthotropic plates
reveals that all three theories achieve full agreement, demonstrating correct linear distributions for the
inplane displacements and stresses and a parabolic variation of the transverse shear stress through the
thickness (not shown).

These results demonstrate that RZT is perfectly suited for predicting accurate parabolic transverse
shear stresses, in a piecewise-constant fashion; hence no shear correction factors are required to model
homogenous plates. Moreover, for thick plates, accurate nonlinear inplane displacements and stresses
consistent with three-dimensional elasticity are obtained in a piecewise-linear fashion. Recall that,
similarly, no shear correction factors are needed for heterogeneous composite and sandwich laminates, as
discussed in [30].
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5.2 Assessment of four zigzag function methods for heterogeneous laminates

This section focuses on the assessment of the four variants of RZT presented in Section 4. The
selected laminate has a high degree of material heterogeneity and anisotropy and is the most challenging
of the many laminates examined in [30]. The laminate is an angle-ply, antisymmetric, thick sandwich
plate with the aspect ratio a/2h=5. The five-layer sandwich has two stiff carbon-epoxy face sheets and a
thick and very compliant PVC core. The normalized lamina-thickness distribution, hrk'/h, starting from the
first layer, is given by (0.0510.0510.8/0.05/0.05); the corresponding lamina orientation angles are (30'/-
45°/0°/45°,1-30°); the material distribution is given by (CIC/PICIC), where the labels C and P correspond to
the carbon-epoxy and PVC materials, respectively. The PVC material is modeled as an isotropic material

with Young's modulus E=1.040 x 10 -1 GPa and Poisson ratio v=0.3. The mechanical properties of the
carbon-epoxy plies (material C) are the same as those reported in Section 5.1.

Comparisons of results for the center deflection, which is normalized with respect to the three-
dimensional elasticity solution, are presented in Table 3. The results are obtained from FSDT, Reddy's
third-order theory, Di Sciuva's zigzag theory, and the four variants of RZT. The results demonstrate that

RZT ( Ga ) and RZT ( CI, ) underestimate the deflection by less than 0.1 %, compared to 12% by RZT

(G,,) and RZT (Ca ). By comparison, FSDT underestimates the deflection by about 92%, and Reddy

and Di Sciuva theories underestimate the deflection by about 62% and 10%, respectively. Note that Di
Sciuva's solution is only approximate, due to the presence of angle plies in this laminate (refer to [30] for
further details). Also, FSDT's deflection is expected to improve by employing lamination-appropriate
shear correction factors.

Table 3. Center deflection nonnalized with respect to three-dimensional elasticity solution for angle-ply,
sandwich laminate (a/2h=5).

Normalized center deflection, 1vCenter(Theory) / 11"CenteWD Elasticity)

FSDT Reddy RZT (Ca ) RZT (GIQ,) Di Sciuva RZT (Ga ) RZT (Cla )

0.075 0.382 0.879 0.882 0.902 0.999 0.999
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Figure 3. Through-thickness distribution of inplane displacement for a homogeneous orthotropic plate
(a/2h=5).
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Figure 4. Through-thickness distribution of inplane stress for a homogeneous orthotropic plate (a/2h=5).
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Figure 5. Through-thickness distribution of transverse shear stress for a homogeneous orthotropic plate
(a/2h=5).

Figures 6-8 demonstrate through-the-thickness distributions for the - , - 1 , and z l _ quantities for the

sandwich laminate where, for comparison, three-dimensional elasticity and Reddy theories are used.

Figure 6 shows that RZT ( Ga,) and RZT (C,,, ) yield superior zr l displacement predictions and, as

expected, FSDT and Reddy theories are the least accurate. Figures 7 and 8 depict the inplane stress, 611,

and transverse shear stress, zl_ , distributions, respectively, where the comparisons are narrowed to the

best performing zigzag theories, RZT (Ga ) and RZT ( CIa ), and Reddy's third-order theory. For both

stress components, RZT (Ga ) and RZT (CI, ) produce highly accurate results. By comparison, Reddy's

theory underestimates the maximum inplane stress by about 50% (Figure 7(b)), and over estimates the
maximum transverse shear stress by a factor of 20 (Figure 8(b)); this latter result is typical for a higher-
order theory applied to a sandwich analysis. Furthermore, a close examination of the transverse shear

stress in the face sheets (Figure 8(a)) indicates that although both the RZT (Ga ) and RZT ( CIa )

predictions are nearly equally accurate, RZT (Cl, ) solutions in the face sheets are slightly superior.

Integration of three-dimensional elasticity equilibrium equations, while invoking RZT's inplane stresses,
produces highly accurate, continuous through-the-thickness, transverse shear stresses (not shown; for
details refer to [30]).
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Figure 6. Through-thickness distribution of inplane displacement for an angle-ply, antisymmetric,
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Figure 8. Through-thickness distribution of transverse-shear stress for an angle-ply, antisymmetric,
sandwich laminate (a/2h=5).

6. Conclusions

The Refined Zigzag Theory (RZT) has been reformulated from a multi-scale perspective and produced
superior results over a wide range of material systems and plate aspect ratios. Four sets of zigzag
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functions, derived from the condition of limiting homogeneity of transverse-shear properties, provide
viable modeling alternatives; however, only two sets of these functions guarantee superior predictions.
For all material systems, there are no requirements for shear correction factors to yield accurate results.
This variationally consistent theory, derived from the virtual work principle, requires simple C°-
continuous kinematic approximations for developing computationally efficient finite elements.

To model homogeneous plates effectively using the full power of zigzag kinematics, a multilayered
modeling approach that employs infinitesimally perturbed transverse-shear stiffness properties has been
demonstrated. The methodology permits excellent predictions of all response quantities and does not
increase the computational effort since the number of kinematic variables remains unchanged.

Results of analytic solutions have been presented which reveal that RZT is a hi ghly accurate theory
over a wide range of span-to-thickness ratios and material systems, including very challenging sandwich
plates that exhibit a high degree of transverse-shear flexibility, anisotropy, and heterogeneity. The theory
is therefore ideally suited for large-scale finite element analyses and can be successfully used for
designing high-performance homogeneous, laminated composite, and sandwich aerospace structures.
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