
SpaceOps 2010 Abstract Form
Do not extend beyond this one page.
Do not change font size (11).
Text-based symbols are OK, but embed fonts
Graphics are not OK.
Read the Author’s Kit for more details.

Tell us your presentation preferences:
Add only Y for Yes in the brackets [], N’s are not needed. We encourage
flexibility - both oral and poster forums have their strengths. See website.

- I can present in either oral or poster sessions []

- I will only present in an Oral Session [Y]

- I will only present in a Poster Session []

- I would like an ePoster Session because my topic suits that forum []

Keywords: (add keywords that describe your topic)
Architecture, data systems, message standards

- If selected as a poster presenter, I will consider a request to switch to
an oral presentation to cover for a withdrawn oral presenter []

Your Abstract Title: (Should be the same as your online submission and your future manuscript title – 12 word limit)
Message Bus Architectures – Simplicity in the Right Places
Your Author list: (each author’s name and affiliation)
Dan Smith, NASA Goddard Space Flight Center, Greenbelt, Maryland

Your Abstract text:
NOTE: This presentation is intended to complement, and draw contrasts to, a paper being submitted by Nestor

Peccia from ESA on the advantages of a Service Oriented Architecture. It is hoped that the two papers may be

presented as a pair with a combined question/answer period at the end.

There will always be a new “latest and greatest” architecture for satellite ground systems. This paper discusses the use of

a proven message-oriented-middleware (MOM) architecture and the strengths it brings to these mission critical systems.

Service Oriented Architectures (SOA) are part of the latest trend in advanced system design and are generally considered

more powerful than the MOM approach. A MOM vs SOA discussion can highlight capabilities supported or enabled by

the underlying architecture and can identify benefits of MOMs and SOAs when applied to differing sets of mission

requirements or evaluation criteria.

NASA’s Goddard Space Flight Center (GSFC) has been developing a message oriented architecture since 2001 and has

been operating satellites with the system since 2005. The Goddard Mission Services Evolution Center (GMSEC)

architecture is now being applied outside of NASA/GSFC and is being used for systems other than satellite control. The

GMSEC concept involves a mature Applications Programming Interface (API), a messaging middleware, and a set of

defined message specifications. Instead of building GMSEC software components to meet detailed satellite control

functional requirements, the GMSEC concept is to encourage component providers and innovators to adapt their existing

products to match the GMSEC interfaces. This open approach has resulted in dozens of commercial products being made

“GMSEC compatible”. These “plug and play” components cover a wide range of functionality from most of the control

center product vendors. In fact, the GMSEC effort has not involved development of any core software applications for

telemetry decommutation, command generation, or data trending – these functions are met by existing applications.

Key areas of interest for evaluating system capabilities will vary by user. Some of the important considerations for the

GMSEC approach relate to the following:

a. Time to deploy

b. Selection of available products

c. Role of the COTS providers

d. Ability to work with legacy systems

e. Technology infusion over time

f. Handling of enterprise and cyber security requirements

g. Use of Standards

Although the status of the GMSEC system implementations will be presented, the primary purpose of the paper is to

highlight the benefits and enabling capabilities of the architectural approach and where the MOM and SOA approaches

may each have their place in advanced satellite ground system developments.

[Submittal of final paper contingent on NASA review and approval.]

1

American Institute of Aeronautics and Astronautics

Message Bus Architectures – Simplicity in the Right Places

Dan Smith
1

National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland, USA

There will always be a new “latest and greatest” architecture for satellite ground systems.

This paper discusses the use of a proven message-oriented middleware (MOM) architecture

using publish/subscribe functions and the strengths it brings to these mission critical

systems. An even newer approach gaining popularity is Service Oriented Architectures

(SOAs). SOAs are generally considered more powerful than the MOM approach and

address many mission-critical system challenges. A MOM vs SOA discussion can highlight

capabilities supported or enabled by the underlying architecture and can identify benefits of

MOMs and SOAs when applied to differing sets of mission requirements or evaluation

criteria.

Nomenclature

API = Application Programming Interface

CCSDS = Consultative Committee for Space Data Systems

COTS = Commercial Off-the-Shelf

GMSEC = Goddard Mission services Evolution Center

GSFC = Goddard Space Flight Center

MOC = Mission Operations Center

MOM = Message Oriented Middleware

NASA = National Aeronautics and Space Administration

SOA = Service Oriented Architecture

I. Introduction

t seems that new approaches for software system architecting and development are popularized every couple years

and the pace seems to be increasing. We’ve come a long way since all of the satellite control center software was

written in assembly language and entered on punch cards. We’ve used FORTRAN, Ada, C/C++, and JAVA. We’ve

practiced Structured Design and Analysis and Object Oriented Programming. We’ve tried different approaches to

networking, socket connections, software reuse, use of commercial products, and product lines. Today we talk about

frameworks, virtualization, and clouds.

Many of the new trends of the past several years deal with frameworks. With a framework approach, a software

system is developed to support many of the core functions of a system or software component. Functional

components can then be more simply developed, integrated, and reused. Message-Oriented Middleware (MOM)

systems and Service Oriented Architectures (SOAs) are two framework approaches that can be compared and

contrasted in the context of mission-critical operations centers for satellite control.

A Message-Oriented Middleware reference architecture is in use at NASA’s Goddard Space Flight Center

(GSFC) and has proven very successful where it is applied. Part of its success is based on how it matches up to the

1 GMSEC Project Manager, Software Engineering Division, MS580, 8800 Greenbelt Rd, Greenbelt, MD 20771 USA

I

2

American Institute of Aeronautics and Astronautics

specific challenges at GSFC. After several years of use, it is clear that MOMs present a highly beneficial approach

to meeting GSFC mission operations center requirements, but also that it is not the best approach for all

applications. This paper describes the GSFC MOM and its benefits, and looks at SOAs as a potential alternative or

supplemental approach.

A. The NASA Goddard Space Flight Center Environment

 NASA GSFC [Fig. 1] manages about 30 scientific satellites at any time, mostly in low-earth orbit. One half of

these are typically controlled from the GSFC facilities in Greenbelt, Maryland, USA and the others are at various

Universities across the United States. On-orbit life varies from a couple of months to ten years or more.

The GSFC satellite missions are typically

individually funded and have their own dedicated control

centers. In only a few cases are multiple satellites

managed by a shared team, although the long-term plan

is to move towards multi-mission control centers.

The large number of satellite missions at GSFC

provides a rapid technology cycle for trying to advance

new ideas, but also has led to a large collection of

different products collected over a period of many years

through the development of many mission control

centers. Although much of the software is often reused,

there is no single software suite used by all of the

missions. Commercial Off-the-Shelf products from

multiple vendors are also being used to differing degrees

on different missions.

B. SOA Concepts

Service Oriented Architecture frameworks [Fig. 2] emphasize the use of functional services to simplify the

development and integration of software components.

There is no single definition of Service Oriented Architecture. In general terms within this paper, SOA refers to

an architecture in which functional

capabilities are implemented as services

available to other components within the

system or made available for external

access. Through well defined interface

agreements, service provider components

can implement a capability at the request

of a service consumer and provide

actions or data in response to the request.

Common needs of functional

components, such as security checks,

access to the current time, and data

archiving may be implemented as core

services that are utilized by many of the

larger services in the system.

Figure 1. NASA’s Goddard Space Flight Center

controls many of NASA’s unmanned scientific

satellites.

Service

History

Service

Configuration

C
onfig

ura
tio

n in
te

rr
ogat

io
n

H
is

to
ry

 p
opula

tio
n

H
is

to
ry

 o
bse

rv
at

io
n

Ser
vic

e
in

vo
ca

tio
n

Service Consumer

Service Provider

Ser
vic

e
re

sp
onse

Figure 2. Service Oriented Architecture. The SOA model as defined in

the CCSDS Spacecraft Monitor and Control documentation
1
.

3

American Institute of Aeronautics and Astronautics

The SOA model is very powerful in its ability to integrate many components into a common environment with

consistent policy guidelines for each component in the system. A service registry is used to identify available

services, service details, and their locations. Through use of the registry, service components can be easily

distributed or even moved and new services can join the system at any time.

C. MOM Concepts

Message-oriented middleware frameworks [Fig. 3] emphasize the data messages themselves and the power of

publish/subscribe message distribution. Whereas in service-oriented systems service providers and service

consumers are coupled through defined interfaces and functional operations calls, in a MOM the applications

interact with the messaging system.

With a publish/subscribe system, an application posts messages to the message bus without knowledge of which

applications require it. An application may publish a log message indicating that a certain problem occurred at a

specific time. The publishing application does not need to know that there are many software components that have

subscribed to log messages. One may ask for log messages to drive text display pages, one to create a message

archive, and one to raise an alarm or e-mail someone with an indication of the problem. Still another application

may have subscribed to all of the log messages to drive an automated response system to try and resolve the issue.

New applications can be added that subscribe to the same messages without any new configuration or interaction

with the publishing component.

Similarly, if an application is interested in alarm messages “from anywhere in the system”, a single subscription

to log messages on the bus is all that is needed. There is no need to place service requests with each application with

the potential of reporting an alarm message.

As many applications are added to the software bus, the power of the publish/subscribe approach increases

further. If a new application is added which may generate alarm messages, no changes and no new service calls are

needed in those applications monitoring all of the system alarms.

With the MOM, other interaction patterns, including Prompt-Response or Point-to-Point, can also be

implemented.

TLM/CMD

Systems

Message Bus via API

Situational
Tools

Test
Tools

Monitoring
Tools

Automation
Tools

Publish/Subscribe via Message Oriented Middleware

Components publish messages
without knowledge of users.

Components subscribe to messages
without knowledge of originators.

Messages have standard format.

A

DCB E

Basic Publish /Subscribe Framework Concept

Figure 3. Pub/Sub Framework. With publish/subscribe frameworks, applications integrate with the message

bus. This approach is applicable to many system applications.

4

American Institute of Aeronautics and Astronautics

II. The NASA “GMSEC” MOM Architecture

A. Background

Several challenges emerged in the 1990’s from GSFC’s approach of having each mission responsible for

development of its own mission operations center. Innovation was slowed as each budget-constrained mission

worked to meet only its own requirements and to minimize additional system enhancements. Studies, designs and

implementations efforts were often repeated for each new mission. COTS product lines were typically not even

considered because they had never been integrated with other GSFC products.

Common approaches to large system development were adding to the problems. Each software component

required direct communications paths with each other component with which it shared data. Although this “socket

connection” design solved some of the system-wide miseries of the earlier “shared common” approach, it made it

very difficult to add, replace, or modify components as the system grew and became more complex. At the time, the

concept of frameworks and middlewares were gaining acceptance in other industries [Fig. 4], but were not generally

accepted for satellite control centers.

The problems with the traditional approach were made worse with the increased cost pressures of the late 1990’s

and the outlook for a healthy set of planned missions. The decision was made in 2001 to begin development on

reference architecture for future missions. The new paradigm would represent a significant change from the previous

approach of integrating selected components to create mission-unique systems. The new architecture, named the

Goddard Mission Services Evolution Center (GMSEC) ground system, became operational in 2005 and has

supported many missions at GSFC since that time
2
.

GMSEC is not trying to select the “best of breed” component in each functional area. The GMSEC team is not

trying to compare COTS products against each other or against a heritage system. Instead, the architecture allows

the user to select the most appropriate products based on functional need or personal preference and easily integrate

them into a ground system. Keeping this responsibility with the mission teams has greatly increased the acceptability

of the GMSEC approach.

The GMSEC framework has also been applied recently in other areas, including the NASA GSFC Flight

Dynamics Facility, and is a core part of evaluation labs at locations outside of NASA GSFC.

Figure 4. Advances in Development Approaches. Framework architectures provide benefits over previous

approaches to satellite mission control center development.

Traditional Design

Socket Connections
Current Advanced Designs

Middleware Connections

API and Middleware

Shared
Global

Common

Shared

Commons
Process

Process

Process

Process

Process

Process

Shared Commons

(1970’s -1980’s)

5

American Institute of Aeronautics and Astronautics

D. Driving Goals of the Framework

Goals of the new GMSEC framework were discussed and documented prior to selection of an underlying

technology or design. The primary goals addressed the key challenges recognized in how mission control centers at

GSFC were designed at the time and the need to accommodate many new missions and new operations approaches

in the near future. The goal in 2001 was to develop a system which could be used for mission development efforts

for up to the next 10 years. Four key goals were identified:

1. Reduce system deployment time for new missions. The framework should allow for simplified

integration of the many software components utilized in a mission operations center. It was further decided that

the simplified integration goal would focus on large component granularity – such as a full telemetry and

command system, planning system, trending system, etc. The goal was not to focus on widget-level, or small

routine level integration; although it could be a side-benefit.

2. Allow for the increased use of COTS and GOTS components. GSFC could no longer afford to build all

of its software from scratch when multiple commercial products were available. Often, the COTS products were

advancing at a faster rate than the similar in-house products. However, the issue of vendor lock-in was a major

concern. Products from different vendors would need to be used in the same system and it should be assumed

that one product may need to be replaced for another sometime during the mission life. A key metric derived

from goal #1, above, would be the time needed for a COTS product to be integrated into a GMSEC-based

system.

3. Allow for the infusion of new components over time. This goal addressed two key challenges facing

GSFC missions. First, it was very hard to add new capabilities to well-established systems. With tightly-coupled

software components, it was hard to make significant changes are integrate a major new component. The easiest

approach, therefore, was to work with the original system functionality and make only the most critical changes

over the life of the system. Secondly, when a new software component or significant update was implemented

for a given mission, it was very difficult to then apply that same change to any of the other mission systems.

4. Enable new capabilities and operations concepts. The framework should provide a growth path to

increased levels of automation and the ability to combine status information from multiple components (now

termed “situational awareness”). In addition, GSFC was anticipating the need for new operations concepts,

including multi-mission control centers, constellations of satellites, distributed operations (possibly split between

the GSFC campus and a university), etc.

E. GSFC MOM Architecture Concepts

Key technical aspects of the GMSEC

architecture are the publish/subscribe message

bus, the Applications Programming Interface,

the use of standard message formats, and the

ability to integrate both existing functional

software components and new components with

capabilities enabled by the architecture itself

[Fig. 5]. Each of system attributes are described

below.

1. The Message Bus and API

The GMSEC Architecture uses a

middleware message bus (sometimes called an

Figure 5. GMSEC Framework. Multiple middleware choices

are accessed through the GMSEC API.

TLM/CMD

Systems

Planning &

Scheduling

Front-Ends,

Simulators

Analysis &

Trending

Flight

Dynamics

Message Bus via API

Situational

Tools

Test

Tools

Monitoring

Tools

Automation

Tools

TLM/CMD

Systems

Planning &

Scheduling

Front-Ends,

Simulators

Analysis &

Trending

Flight

Dynamics

Message Bus via API (w/ multiple middleware product choices)

Situational

Tools

Situational

Tools

Test

Tools

Test

Tools

Monitoring

Tools

Monitoring

Tools

Automation

Tools

Automation

Tools

Cross-Cutting Components

GMSEC-Compliant COTS and GOTS Products

NASA’s GMSEC Framework

6

American Institute of Aeronautics and Astronautics

information bus or software bus) for inter-process and inter-node communication. The middleware keeps track of

where processes are located and which process requires the data when it is published to the bus.

The message bus provides publish/subscribe message passing mechanisms. Applications “publish” messages to

the bus. Each message contains a subject name and the normal message contents. The subject name, for GMSEC

applications, indicates the mission, originating node, type of message, etc. Applications that need the data

“subscribe” to the pertinent subject name(s) and the middleware delivers the messages which match the subscribe

request.

Although the publish/subscribe message patterns are common to many different middleware products, each

product uses its own proprietary message structure for passing the data on the bus. The commercial middleware

products are therefore not compatible with each other and applications are normally written to match the specific

middleware package selected for the system development effort. The GMSEC API normalizes the basic capabilities

of multiple middleware products so they each appear the same to the applications software. In this way, a change to

the middleware product does not require a change to the applications software and vendor lock-in is avoided for the

underlying middleware. This middleware flexibility allows for product swapping if necessary, but also allows for

low-cost middleware to be used for development, high-reliability and high-performance middleware to be used for

operations and small-footprint middleware to be used for flight – all with the same functional behavior.

The GMSEC API provides

isolation between the applications

programs and the underlying

messaging software. As discussed

above, any of several different

middleware packages can be used

without modifying the applications. In

addition, the API supports multiple

languages, operating systems and

platforms [Fig. 6]. It normalizes the

behavior of the middleware while

allowing access to special functions or

capabilities of individual middleware

products.

2. Standard Message Formats

GMSEC standard messages meet the needs of the key interfaces for mission control applications. Additional

messages may be created as needed. A subject name is specified with each message published via the API. The

subject is used for routing to the subscribing applications and contains information including the mission identifiers,

nodes, message type (e.g., telemetry), etc. The messages themselves include a common header used by all messages

followed by a message-specific body. The message header contains some of the same subject information, but also

includes time stamps and more details on the message type. The body of the message may contain a telemetry frame

or packet, a text message, user directive, archive request, etc. Data from multiple missions can be on the bus at the

same time and distinguished by different values in the header fields
3
.

All of the message formats are defined in the GMSEC Message Specification Document. Vendors match their

product interfaces to those in the document and make calls to the API to receive or send messages. Individual

interface control documents between components are not needed, although the behavior of coordinating processes

should be documented.

Figure 6. Layered Architecture. Multiple operating systems,

middleware choices, and languages increase the flexibility of the

framework.

Telemetry & Command Automation Flight Dynamics

Planning Monitoring Simulations Trending Analysis

TLM Frame Log Heartbeat Request/Reply Product-Ready

Mnemonic Value Device Status Comp-to-Comp Xfer

GMSEC Applications Programming Interface

C C++ JAVA Perl Python

TIBCO SmartsocketsGSFC Bus IBM Websphere NDDS

Windows Solaris Linux

Components

GMSEC Messages

GMSEC API

Middleware

Operating Systems

7

American Institute of Aeronautics and Astronautics

3. Compliant Components

The use of common interface message formats allows many different products of the same functional domain

area to be integrated. By having choices in each functional area, missions can avoid vendor lock-in and can select

each component based on its own merits (functional, technical, cost, etc.). Components can be as major as telemetry

and command systems or planning systems or as small as performance monitoring tools.

An “adapter” approach is used for the existing in-house or commercial components. The adapter is a piece of

software which works like an API-to-API interface and converts from the existing package’s interfaces to the

GMSEC interfaces. Because the GMSEC interfaces were developed with knowledge of many COTS interface

definitions, this adaptation has been proven to go very quickly (from a day to about 2 weeks).

Each major component is required to meet certain standards to be considered “GMSEC compliant”:

 It must meet its functional requirements; although verification responsibility is with the missions

 It should publish a heartbeat message on a periodic basis

 It should publish status/log messages to indicate an action has taken place or an event has occurred

 It should allow user directives for the component’s control to be received over the message bus

These simple rules can yield very powerful results and enable new types of cross-cutting functional components.

The heartbeats allow for system monitoring, configuration displays and automated failovers. The log messages

across multiple tools provide a new level of situational awareness. Allowing directives to be sent to any component

allows for scripting and, combined with situational awareness, provides new levels of reactive system automation.

F. Status, Benefits and Weaknesses

The GMSEC framework has been used for both new and reengineered mission operations control centers at

NASA GSFC since 2005. The first three missions each used a different telemetry and command system product, but

they used the same automation tools and alert system. This flexibility proved that a core goal of the effort had been

met. In addition, there has been cost reduction in the operations effort as automation has allowed for the elimination

of off-shift support. Observed benefits have included the following:

1. Automation for cost and risk reduction is the #1 selling point

2. Most commercial command and control products are now GMSEC compatible – increasing choices for the

missions

3. Significant reduction in integration time

4. Components added/upgraded without impacting existing system; can support parallel testing

5. Ideal for using multiple small distributed development teams/vendors

6. New concepts emerging for small independent components that integrate with the bus and provide

immediate benefits

7. Standard message approach provides collaboration possibilities with other organizations

8. Enables new approach for maintenance of very long-term systems

9. Basic framework is applicable for systems other than satellite mission control

Although the initial goals for GMSEC have been met and the benefits proven to be far reaching, there are some capabilities

now being requested or considered for which the message approach does not provide a simple solution. A common approach to

security (authentication and encryption) is a challenge when mixing products and maintaining the desired flexibility and

integration simplicity. Also, GMSEC has been tailored to the needs of the independent control center environment. Enterprise

communications, where controlled data sets are shared with selected other external systems needs to be done without the wide-

open and higher-bandwidth simplicity of the publish/subscribe paradigm. All of these limitations can be overcome, but it may

require making the message-oriented approach look more like a point-to-point or service oriented system in places.

8

American Institute of Aeronautics and Astronautics

III. What is the Best Framework Approach?

There have been very successful mission control center development efforts for decades. Clearly, there is no

single way to architect these mission critical systems. Given multiple powerful choices today, which one should be

selected? The answer probably depends on a number of key factors, and there still may not be a single “best”

answer.

A. It may depend on your organizational characteristics and goals

Although the GMSEC design team selected 4 key goals, the goals had to be addressed within the context of the

NASA GSFC requirements, culture and organization:

 Risk Averse. NASA, although technologically advanced, is also very risk averse. Any new approach

must be fully vetted and proven, at least in other mission critical environments, prior to applications to

satellite control. The “newest and greatest” possible approaches are often avoided for this reason.

 Data driven. Much of the work of satellite control systems is triggered by the receipt of data – often

satellite telemetry or system alarm messages. MOMs are ideas for dealing with data-driven systems.

The concept of putting data streams from multiple satellites on the message bus and having the user

software select which streams to monitor was part of the GMSEC plan.

 Very short to very long duration missions. NASA GSFC flies missions that may only last a couple of

months, others may last ten years or more. The system architecture must be resilient enough to adapt to

changes over a long period of time and yet simple enough to accommodate the very short-term low-cost

missions.

 The framework is not for a single system. NASA manages dozens of space missions. Any investment

in a framework must be able to accommodate many different uses over a long period of time. This is

one reason that GMSEC allows for the swapping out of middleware systems and the choices for

functional components.

 Not from Scratch. If the software is designed and built from scratch, one has total control over the

partitioning of the system and the creation of functional services. For NASA, the goal was to take

advantage of existing products with minimal effort. In many cases, products can not be easily

decomposed to their service level granularity.

 Not ready for “one size fits all”. Some organizations have realized great benefits from using common

software for many missions. The range of missions and the culture at NASA GSFC make this difficult.

The framework design had to accommodate a wide range of possible applications.

Additionally, there are other considerations or goals that may be important when considering which architecture

to implement:

 Availability of trained workforce. Some approaches are so new or so unique that finding or training a

staff for long-term support may not be practical.

 Distributed nature of the environment. Different approaches may be more conducive to distributed

processing and communications. SOAs are generally considered better for remote service-based

applications. MOMs work very well for some cases of splitting operations between two sites.

 Selection of available products. Simple approaches can be taken where specific products support

functional areas. If, however, there will be many choices for a given function, a level of flexibility is

9

American Institute of Aeronautics and Astronautics

needed. Very specific service definitions may not be sufficiently flexible to accommodate the beneficial

features of a wide variety of similar products.

 Handling of enterprise and cyber security requirements. Special effort may be needed to address

system interoperability and security where missions involve partnerships, remote interaction, or

enterprise-level communications. Data filtering flow control, authentication, encryption and bit-level

message agreements may all be required.

 Standards, policies, and common practices. By adhering to standards, development efforts can be

simplified, systems made more flexible, and a broader set of support or applications software may be

available. Standards may be at the lowest communications level, may be at the message format level, or

may even involve the definition of specific services or capability sets. Similarly in-house policies may

limit certain communications or security choices. Following common practices, although not defined as

formal standards, often simplifies the total effort and can increase the acceptance level of the design

choices.

B. It may be that many approaches can work

Although the MOM approach has been successful at NASA GSFC, it is not the only approach used. Most of the

older missions at GSFC utilize a pre-framework approach involving socket connections between components.

Although most components were developed at GSFC, there is some use of COTS products. In general, this approach

has worked well, partially due to the small number of key interfaces. The approach, however, is recognized at being

week in areas that the MOM approach is strong, including maximizing reuse, situational awareness, automation, and

multi-mission support.

Web services have been discussed extensively for use within GSFC. A primary data system could process

telemetry and post data to a server where it could be accessed in a number of ways via web services. Cultural and

security issues have prevented the widespread use of this approach for remote access to the data. This approach,

however, has merits within the boundaries of the control center, without ever being exposed to the web. Still, it is

not in common use at GSFC and would require redesigning major components for which there are no driving

concerns.

C. It may be that one approach is best only in some areas

SOAs probably are discussed most often as a solid framework architecture to consider. SOAs are ideal for

packaging major functions such as flight dynamics or remote data access and smaller services can be defined for

common functions such as time and archiving. The use of a dynamic registry allows for the introduction of new

services or the redistribution of existing ones. Although powerful in some applications (i.e. new applications

showing up for stock market analysis), most control center systems are tightly controlled and the registry flexibility

is not needed or desired.

Hybrid systems, with MOM, SOA, and Socket approaches selectively used to their best advantage may be the

best solution as the capabilities of satellite control centers are advanced and expanded. MOMs are idea for localized

component integration, situational awareness, and event-driven automation. SOAs are great for hiding the

implementation of remote functional systems, and socket connections work well for passing data within individual

components. For interconnecting remote systems to share data, direct network connections and file transfers

between systems may continue to provide the most control.

10

American Institute of Aeronautics and Astronautics

IV. Evaluation of NASA’s Framework Selection

NASA’s GMSEC architecture is very well suited to the requirements, environment, and culture of NASA GSFC.

The message oriented middleware is ideally suited to data-driven systems. The emphasis on COTS product

choices and standardized interface messages has led to a system which simplifies integration and allows for the user

to select from many different products in the same functional area. With all components reporting status and

publishing values on the message bus, new situational awareness tools and automation approaches have been

developed.

For NASA GSFC, the ability to products from many different vendors and from the broad set of GSFC-

developed software has been very beneficial. It reinforces the idea that different missions may have different needs

and also that different operations teams may have differing preferences. To some, this is also a drawback. The

concept of common solutions and operations approaches as a way to lower cost and increase consistency across

missions and teams is also compelling.

At the point in time that the GMSEC architecture was developed, it probably was “a best solution”. Although

planned for ten years of useful life, the message oriented approach shows no sign of needing replacement. Instead,

the potential of the approach is still being developed. At the same time, however, analysis is continuing on how to

best address the new challenges brought on by enterprise data sharing and cyber security requirements. It may be

that an architecture based solely on a MOM architecture will not address all of the new requirements being placed

on the systems.

V. Conclusion

For where it has been applied at NASA GSFC, a message-oriented middleware framework for mission control

center development has proven very successful. As a relatively simple concept, publish/subscribe messaging is

ideally suited to the data-driven nature of satellite control and the easy integration of existing or commercial

products. At the same time, it is also clear that successful systems can be developed around SOA architectures and

that the service concept may even add value to the MOM approach, helping to meet requirements involving remote

access and enterprise data exchange. However, both MOM and SOA approaches may be replaced by whatever “new

and better” methodology or approach is next to gain popularity. Already, clouds and virtualization appear to be

ready to change how we think about system design and integration.

References

1Mission Operations Service Framework—Reference Model. Draft Recommendation for Space Data System Standards,

CCSDS 000.0-R-0. Red Book. Issue 1. Washington, D.C.: CCSDS, April 2009.

2Smith, D., Bristow, J., Wilmot, J., “A Successful Component Architecture for Interoperable and Evolvable Ground Data

Systems”, AIAA Space Ops 2006 Conference, Rome, Italy.

3Madden, M., Cary, E. Jr., Esposito, T., Parker, J., Bradley, D., “Lessons Learned from Engineering a Multi-Mission

Satellite Operations Center”, IEEE Aerospace Conference, Big Sky Montana, 2006.

4Smith, D., Grubb, T., Esper J., “Linking and Combining Distributed Operations facilities Using NASA’s “GMSEC”

Systems Architecture”. AIAA Space Ops 2008 Conference, Heidelberg, Germany.

