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Objective
• Review Space Shuttle day-of-launch trajectory optimization operational

concepts
• Demonstrate how the Day-of-Launch Initialization-Load Update process, or

DOLILU, can improve launch probability three-fold
• Offer Shuttle DOLILU methodology for future launch vehicles to build on
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Background
• Space Shuttle is not certified to lift-off in all weather conditions
• Vehicle's trajectory is optimized to that day's wind and environmental

conditions
• Designed trajectory must be rigorously assessed to ensure crew and vehicle

safety, while accomplishing mission objectives
• DOLILU process results in a trajectory that protects vehicle structural margins

and maximizes performance given other factors
• Similarity will transition to future launch vehicles
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Since the environment (wind) changes, the DOLILU design and assessment
process is repeated every hour from about launch minus 6 hours to lift-off
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Jimsphere
-Radar tracked, no package
-Measures Wind Speed and Direction

High-Res
-G PS tracked, attached to clear Jimsphere
-Measures Wind Speed and Direction

Low-Res
• GPS tracked
-Measures Wind
Speedand
Direction
-Measures
Thermodynamic
d ata

Balloon Systems
• Shuttle makes use of weather balloon data on Day-of-Launch (DOL)

— Wind speed and direction from 0 to 58,000 ft.
— Thermodynamic atmosphere data (temperature, humidity, 	 0

density) from 0 to 100,000 ft
• Weather Balloons are released about 10 miles from the launch pads

by Air Force contractors
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Balloon Timeline
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DOLILU Design
• Shuttle first-stage is "Open-loop"; "Closed-loop" second-stage will fly itself to

a target

• DOLILU software optimizes the first-stage trajectory in order to minimize
vehicle structural loads and maximize abort capability

— Targets angle of attack (Alpha), angle of sideslip (Beta), and dynamic
pressure (Qbar)

— Targets staging conditions: altitude rate and optimum azimuth

• Design consists of two elements
— "Shaper" software uses a low pass filtered wind to obtain

• Initial pitch and yaw steering commands
• Throttle up and down table
• On-board wind table

— "Biaser" software uses the actual wind to fine-tune the pitch and yaw
command by centering the wind-induced Alpha and Beta spikes
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Now with a wind 3 '/2 hours later
In-Plane Wind
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Constraints: Alpha/Beta/Qbar
• "Q-Planes" constrain the flight

envelope to alleviate structural
concerns

• Each trajectory point is	 Mach

dispersed by the Root Sum
Square of wind persistence,
flight derived system
dispersions, and atmosphere
persistence (Qbar only)

• Limits are reduced for engine
out and gust effects

Alpha-Beta varies with Mach

Alpha-B
Margin

Alpha-Beta Slice or Plane

>

(deg)	 (deg)
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I + 71
X

Constraints: Structural Loads and Trajectory

• Structural Load Indicators (SLI) protect critical load points on the vehicle
— Each SLI is dispersed for the Root Sum Square of wind persistence,

system dispersions, and gust
• Trajectory System Rules protect staging limits, pitch/yaw/roll rates, Range

Safety limits, and throttle limits
• Trajectory Experience Rules assess attitude errors, angular accelerations,

SSME and SRB commanded positions, and on-board wind table

Aft 9T., n 2RITFD
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Wind Persistence

• Wind will continue to change after the final assessment
• Wind Persistence statistically accounts for the change on a

constraint caused by the wind
• Shuttle uses a statistical distribution using a minimum

marnin methodL
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MSFC Wind-Only Assessments

• Wind Shear Limits protect the Orbiter Tail
• Measurement Reasonableness Assessment ensures the balloon represents

the current environment
• Wind Change Redline Assessment ensures that no late-in-the-count large shift

in the wind might invalidate the design:

In-Plane Wind Example
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Ascent Performance Margin (APM)
• APM is remaining propellant in excess of that required to reach orbit
• DOL performance uncertainties influence pre-launch payload manifesting

• DOLILU designs tends to normalize APM which reduces in-flight dispersion
protection

Jan	 Feb	 Mar	 Apr	 May Jun	 Jul	 Aug	 Sep	 Oct	 Nov Dec
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Launch Probability
• With the DOLILU process, the probability of launch increases over an average

monthly wind design
• For example, what if Shuttle did not redesign on launch day, but used the

monthly average windlatmos design?
- In February, the launch probability would be reduced from 90% to -30%

Mean Wind Design
	 Beta	 DOLILU Design

0.8	 7.d	 1	 1.2	 1.4	 1.e	 1.8

0.6
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Summary

• Day-of-launch design and assessment is important because it increases the
probability of launch

• Winds always change and the Space Shuttle must have some means to
account for those changes

— Space Shuttle trajectory is redesigned on day-of-launch to minimize loads
while maximizing performance

— Many safety improvements and assessment refinements have been made
• The Shuttle concepts of operation can serve as a good basis for future NASA

vehicles
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