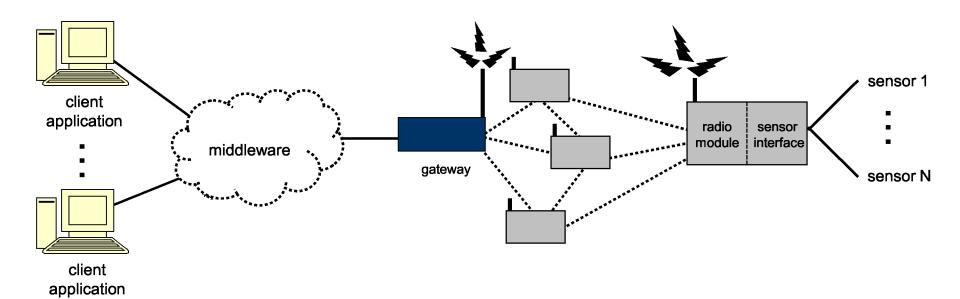


Avionic Systems Division

## CCSDS Wireless Working Group Spring 2010 Face-to-Face JSC Wireless Sensor Network Update

### Raymond Wagner, Ph.D.

May 3 – May 5, 2010

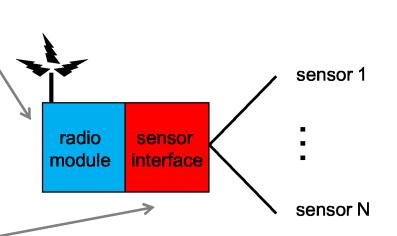



## Overview

- End-to-end WSN model under consideration
- Standards-based WSN philosophy
- Proposed developmental WSN architecture
- Coexistence tests (Zigbee, 802.11)
- Habitat Demonstration Unit infusion
- Bionet monitoring application development
- JSC node v.2 and ISA100.11a migration
- Ongoing standards evaluation work



# **General WSN Model**






## Vision for Standardized WSN Node

#### • Standards-based radio module:

- Common hardware for all applications
- Needs certification **only once**
- "plug and play" into existing network of sensors



#### • Application-specific sensor package:

- plug-in "daughter card" with all sensors, data acquisition and processing hardware
- treats radio module as modem
- can be swapped out to re-purpose existing hardware for new applications

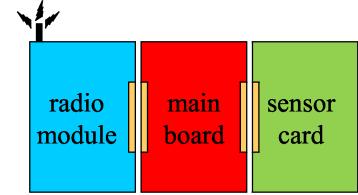
<u>NO NEED</u> to reinvent networking



## **JSC Sensor Node Architecture**

Sensor nodes composed of three basic components...

• radio module:


- COTS radio module implementing standardized WSN protocol; treated as WSN "modem" by main board

• main board:

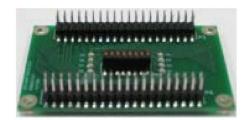
- contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code

#### •sensor card:

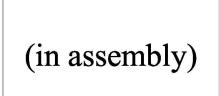
- contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application






# **JSC WSN Node v.1**

- EV2/EV4–produced WSN node:
  - DUST/RFM radio module with WirelessHART-variant protocol
  - TI MSP430 application processor
  - MicroSD card slot
  - separate power board (DC, AA)
  - 18 made so far, 20 more being assembled
- Sensor cards:






environmental (light, 3-axis accel., temp.)



prototype/debug



HDU: (10-channel 4-20 mA)



### 802.15.4, 2.4 GHz Operating Frequencies

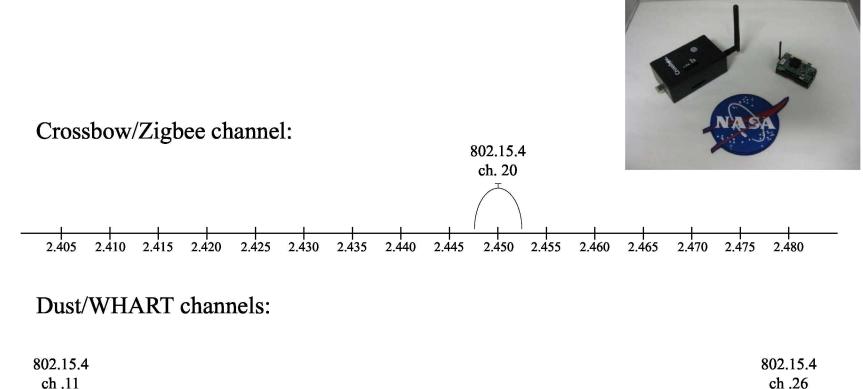


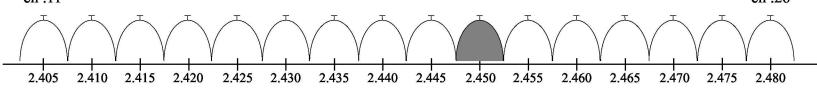


# **Throughput Tests**

- Dust/WirelessHART protocol
- 5-node mesh network
- 80B counter packets
- sealed in JSC Habitat Wireless Testbed




|       | 5<br>s/packet/nod<br>e | 10<br>s/packet/node | 20<br>s/packet/node |
|-------|------------------------|---------------------|---------------------|
| 12 h. | 98.04%                 | 99.30%              | 99.65%              |
| 24 h. |                        | 99.56%              |                     |
| 48 h. |                        | 99.53%              |                     |






# WirelessHART/Zigbee Coexistence

Avionic Systems Division NASA Johnson Space Center, Houston, Texas

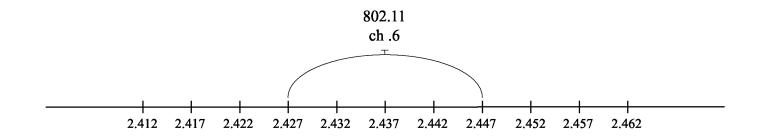




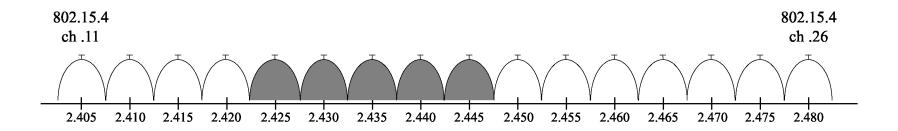
4/28/2010



## WirelessHART/Zigbee Coexistence Test Results


• 5 Crossbow nodes configured in star topology with 802.15.4 PHY and MAC (CSMA-CA); 5 Dust nodes

- two classes of packets sent: data (light, temp, humidity, 3-axis accel.), status
- data collected over 12 hrs.


|            | Crossbow/ZigBee   | Dust/WHART        |
|------------|-------------------|-------------------|
| rate       | 2 packets/5s/node | 1 packet/10s/node |
| throughput | 99.96%            | 99.31%            |



# WirelessHART/802.11 Coexistence



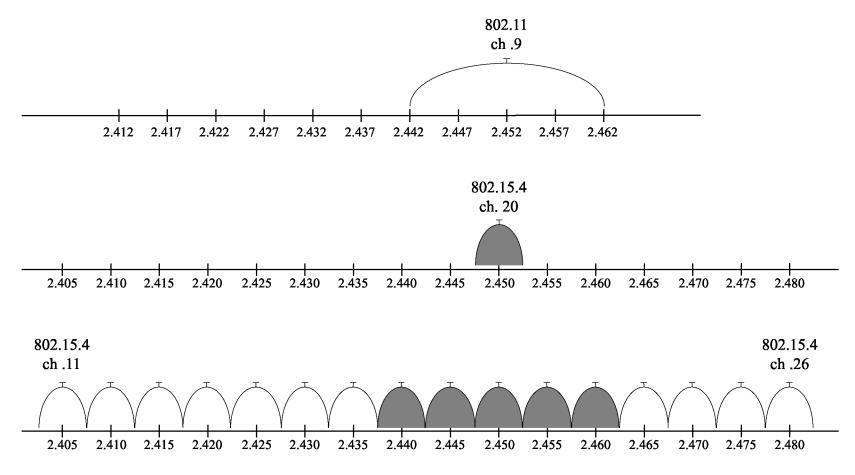
Avionic Systems Division NASA Johnson Space Center, Houston, Texas





## WirelessHART/802.11 Coexistence Test Results

- 5 dust nodes, 1 laptop (802.11g)
- data collected over 12 hrs.


|            | 802.11 g                 | Dust/WHART              |
|------------|--------------------------|-------------------------|
| rate       | ~10.28 Mb/s <sup>1</sup> | 1 packet (80B)/10s/node |
| throughput | TCP/IP                   | 83.93% <sup>2</sup>     |

<sup>1</sup> iperf TCP/IP flow, average over 12h.

<sup>2</sup> 16.07% of packets not delivered, but 15.53% of packets never sent per queuing rules



### WirelessHART/Zigbee/802.11 Coexistence



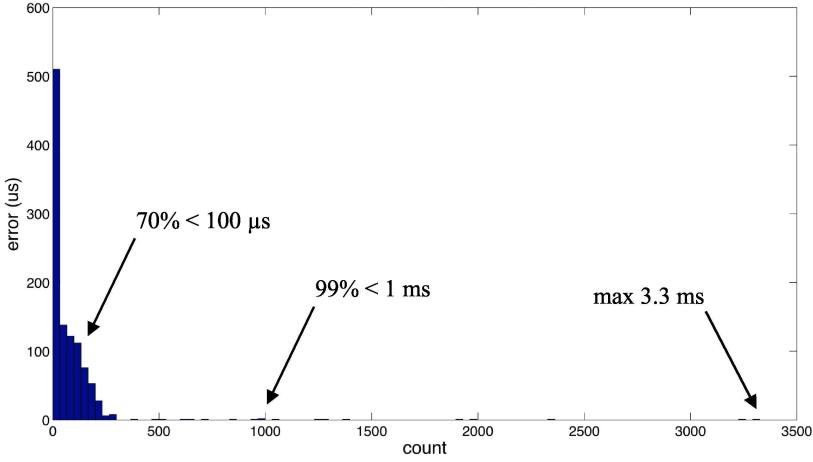


## WirelessHART/Zigbee/802.11 Coexistence Test Results

- 4 Dust nodes, 6 Crossbow nodes, 1 laptop (802.11g)
- data collected over 12 hrs.

|            | 802.11 g                 | <b>Crossbow/ZigBee</b> | Dust/WHART              |
|------------|--------------------------|------------------------|-------------------------|
| rate       | ~14.61 Mb/s <sup>1</sup> | 2 packets /5s/node     | 1 packet (80B)/10s/node |
| throughput | TCP/IP                   | 7.96% <sup>2</sup>     | 96.92% <sup>3</sup>     |

<sup>1</sup> iperf TCP/IP flow to laptop, average over 12h.


<sup>2</sup> no reports from Crossbow for last ~2 hrs; throughput prior assumed to be representative

<sup>3</sup> 3.08% of packets not delivered, but 2.51% of packets never sent per queuing rules



# **Timing Test Results** (Dust / WirelessHART)

Absolute Time Alignment Error (1 update every 10s for 3h)





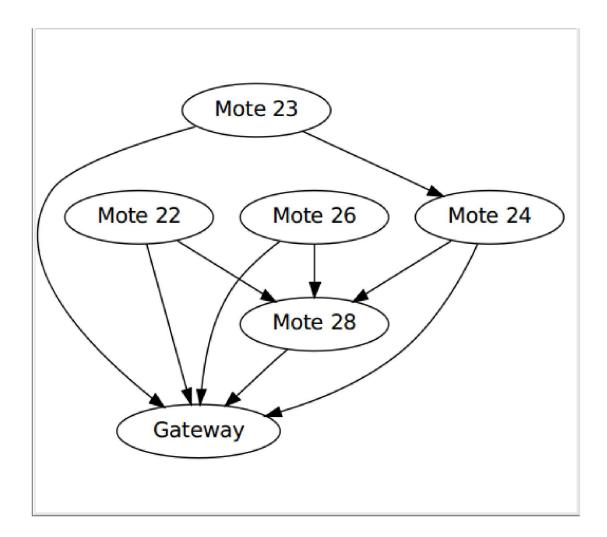
## Habitat Demonstration Unit (HDU)

#### HDU Participating in DesertRATS 2010 Exercises in August:

- 11 JSC Dust/WHART nodes providing wireless instrumentation
- Up to 10 channels of data gathered per node
  - temperature
  - humidity
  - differential pressure
- Requires coexistence with multiple wireless systems in an operational environment:
  - 802.11g
  - Tropos (extended-range .11n)

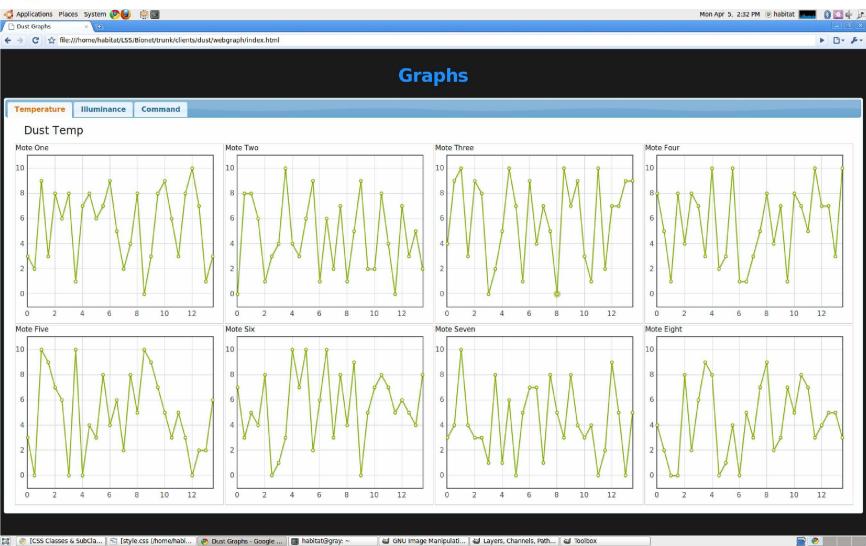





### WirelessHART/Tropos Coexistence Test Results

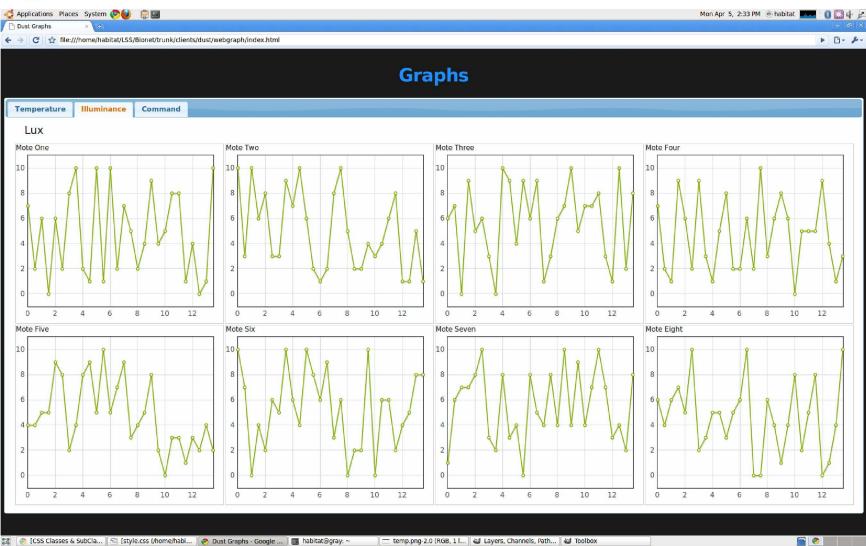
- 5 Dust/WirelessHART nodes
- data collected over 1 hr.

|            | Tropos     | Dust/WHART               |
|------------|------------|--------------------------|
| rate       | live video | 1 packet (80B) /20s/node |
| throughput | n/a        | 96.67%                   |




#### **Bionet Network Health Monitoring Application**






#### **Bionet Environmental Board Monitoring Application**





#### **Bionet Environmental Board Monitoring Application**





#### **Bionet Environmental Board Monitoring Application**

| n Applications Places System 📀 🥹 🌐 🔤                                       | Mon Apr 5, 2:33 PM 💿 habitat 💶 👔 🕼 🏚 |
|----------------------------------------------------------------------------|--------------------------------------|
| Dust Graphs × 🕑                                                            | - @ ×                                |
| C ☆ file:///home/habitat/LSS/Bionet/trunk/clients/dust/webgraph/index.html | ► D- ≁-                              |
| Graphs                                                                     |                                      |
| Temperature IIIuminance Command                                            |                                      |
| Command                                                                    |                                      |
| Mote One<br>Toggle                                                         |                                      |
| Mote Two Toggle                                                            |                                      |
| Mote Three Toggle                                                          |                                      |
| Mote Four<br>Toggle                                                        |                                      |
| Mote Five<br>Toggle                                                        |                                      |
| Mote Six Toggle                                                            |                                      |
| Mote Seven Toggle                                                          |                                      |
| Mote Eight<br>Toggle                                                       |                                      |
|                                                                            |                                      |



## JSC WSN Node v.2: ISA100.11a

#### Beginning work on ISA100.11a-enabled version of JSC WSN node:

- Integrating development kit hardware from Nivis with v.1 JSC WSN node for early validation
  - using current hardware (w/o Dust module) to validate Nivis implementation
  - gaining familiarity with capabilities of Nivis API's
- Planning development of 2<sup>nd</sup>-generation node:
  - attending Nivis integration kit workshop (April 2010)
  - allocating funds for hardware purchases, software development
  - folding lessons learned from v.1 node into v.2 node hardware design
- Studying ISA100.11a protocol in greater depth
  - mapping .11a process control language to more generic services, QoS levels



# **Publications, Talks**

- R. Wagner, "Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications", IEEE Aerospace Conference, March, 2010, Big Sky, MT.
- JSC Innovation Day 2010, April 28



# WSN Standards Forward Work

#### JSC lunar habitat mockup provides representative environment for WSN testing. Issues to continue investigating include:

- RF issues
  - Data delivery reliability resistance to multi-path, interference, noise
  - Data throughput rate
  - Interoperability assess impacts on 2.4 GHz 802.11 WLAN
- Power issues
  - Radio/networking component
    - Low power, full mesh networking
  - Sensing/processing component
    - Scheduled sensing
    - Event-driven sensing
- Application issues
  - Feasibility of sensing transient events
  - Usefulness of MAC-derived application time synchronization
- Protocol issues:
  - extending past ISA100.11a to future protocols ۰
  - incorporating DTN

