Active Flow Control Stator

with Coanda Surface

DESIGN OF A LOW SOLIDITY FLOW-CONTROL STATOR WITH COANDA SURFACE IN A HIGH SPEED COMPRESSOR

Guendogdu, Vorreiter, Seume

Prof. Dr. Seume

Institute of Turbomachinery and Fluid Dynamics

AFC Stator with			
Coanda Surface			

0 Introduction

Introduction:

- Active Flow Control increases the permissible aerodynamic loading
- Curved surface near the trailing edge ("Coanda surface")
 - \succ increases turning → higher pressure ratio
 - > controls boundary layer separation \rightarrow increased surge margin

Objective:

Reduce the number of vanes or compressor stages.

Constraints:

- 1. In a real compressor, the vane must still function entirely without blowing.
- 2. Maintain the flow exit angle of the reference stator despite the resulting increase in stator loading.

1 Test Facility

2 Concept

3 Aerodynamic Design

4 Mechanical Design

5 Experimental Results

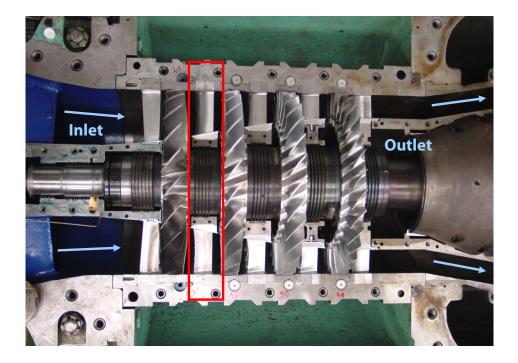
6 Conclusions

102	Leibniz Universität Hannover

Guendogdu, Vorreiter, Seume 20 August 2009

slide 2 / 18

Compressor test rig at TFD **Performance Data**


AFC Stator with Coanda Surface

0 Introduction

1 Test Facility

2 Concept

- 3 Aerodynamic Design
- 4 Mechanical Design
- 5 Experimental Results
- 6 Conclusions

102	Leibniz Universität Hannover

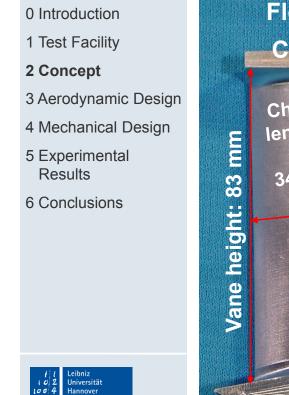
Guendogdu, Vorreiter, Seume 20 August 2009

slide 3 / 18

Design speed	17100 rpm	Power
Mass flow	7.81 kg/s	Flow coe
Total pressure ratio	2.75	Loading ?
Isentropic efficiency	90.5%	Reynolds

Power	950 kW
Flow coefficient 1st stage	0.71
Loading 1st stage	0.44
Reynolds number (stator 1)	4 x 10 ⁵

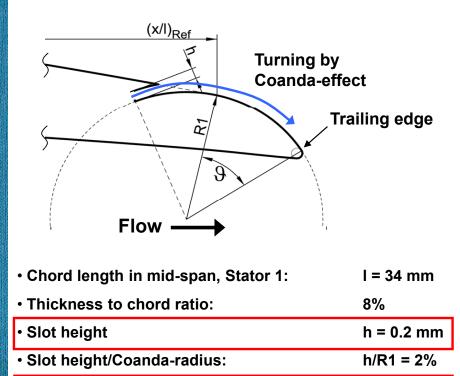
420



Concept and Design of the Coanda Stator

AFC Stator with Coanda Surface

Definition of the Coanda Surface at the Trailing Edge


Coanda-radius:

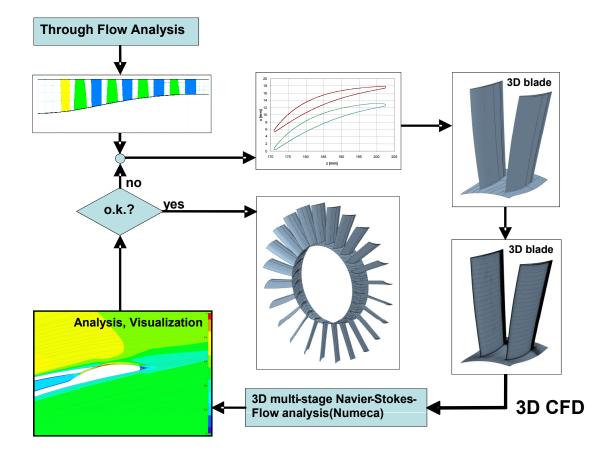
Guendogdu, Vorreiter, Seume 20 August 2009

slide 4 / 18

R1 = 10 mm

Concept and Design of the Coanda Stator

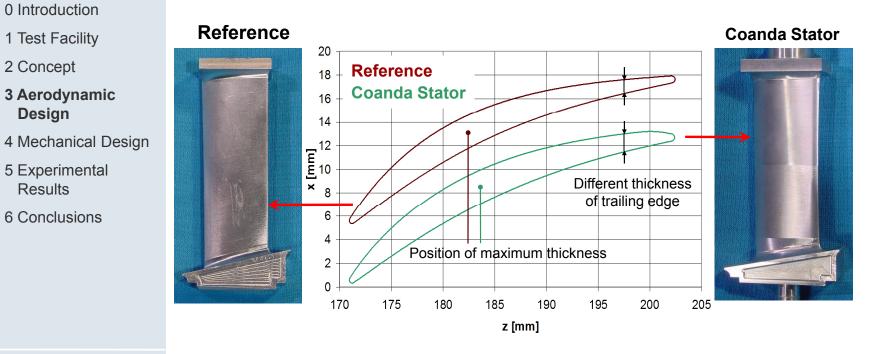
AFC Stator with Coanda Surface


- 0 Introduction
- 1 Test Facility
- 2 Concept
- 3 Aerodynamic Design
- 4 Mechanical Design
- 5 Experimental Results
- 6 Conclusions

l l Leibniz l o 2 Universität l o 4 Hannover

Guendogdu, Vorreiter, Seume 20 August 2009

slide 5 / 18



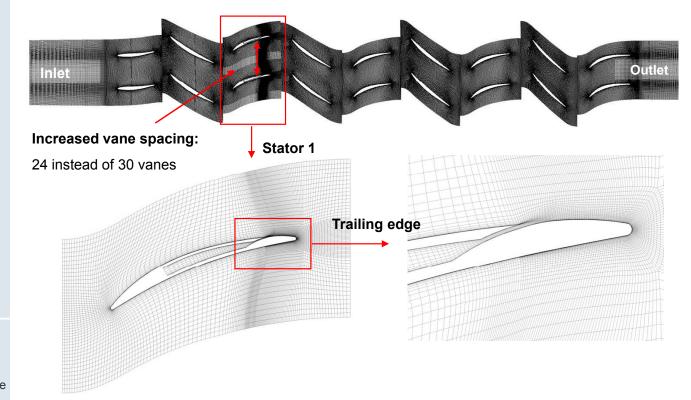
Concept and Design of the Coanda Stator

AFC Stator with Coanda Surface

Profile Section in Mid-Span: Reference and Coanda Stator

Guendogdu, Vorreiter, Seume 20 August 2009

slide 6 / 18



3D CFD Simulations

AFC Stator with Coanda Surface

- 0 Introduction
- 1 Test Facility
- 2 Concept
- 3 Aerodynamic Design
- 4 Mechanical Design
- 5 Experimental Results
- 6 Conclusions

Guendogdu, Vorreiter, Seume 20 August 2009

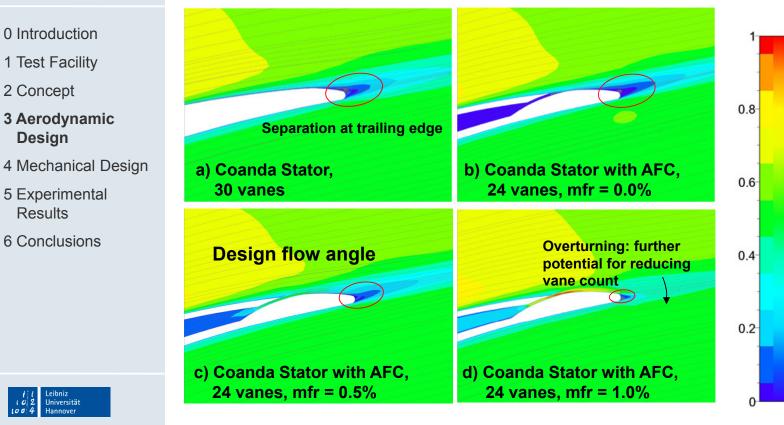
slide 7 / 18

l l Leibniz l o 2 Universität l o o 4 Hannover

0 Introduction

1 Test Facility

2 Concept


Design

Results

6 Conclusions

3D CFD Simulations

AFC Stator with Coanda Surface

Mach Number Distribution around Trailing Edge at Mid-Span

Absolute Mach Number

424

NASA/CP-2010-216112

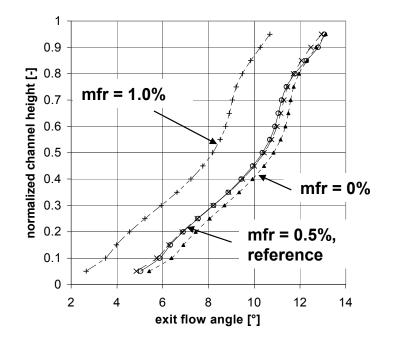
l l Leibniz i o 2 Universität 1004 Hannover

slide 8 / 18

Guendogdu, Vorreiter, Seume 20 August 2009

Blowing rate: mass flow ratio (mfr) = jet flow / main flow

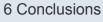
3D CFD Simulations

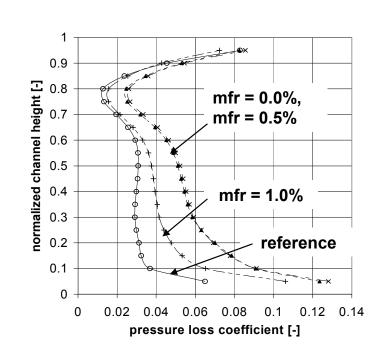

AFC Stator with Coanda Surface

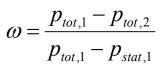
- 0 Introduction
- 1 Test Facility
- 2 Concept
- 3 Aerodynamic Design
- 4 Mechanical Design
- 5 Experimental Results
- 6 Conclusions

Guendogdu, Vorreiter, Seume 20 August 2009 slide 9 / 18

Radial Distribution of the Exit Flow Angle


→ Reduction of Compressor Stages


3D CFD Simulations


AFC Stator with Coanda Surface

Results

Note:

momentum of injected flow not accounted for

Reduction of Losses \rightarrow Higher Efficiency

Radial Distribution of Total Pressure Loss Coefficient

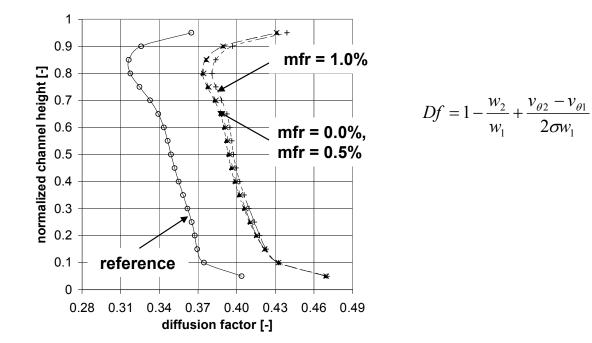
Guendogdu, Vorreiter, Seume 20 August 2009 slide 10 / 18

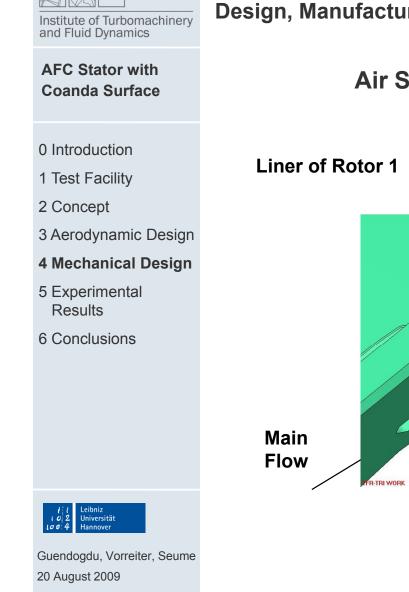
426

3D CFD Simulations

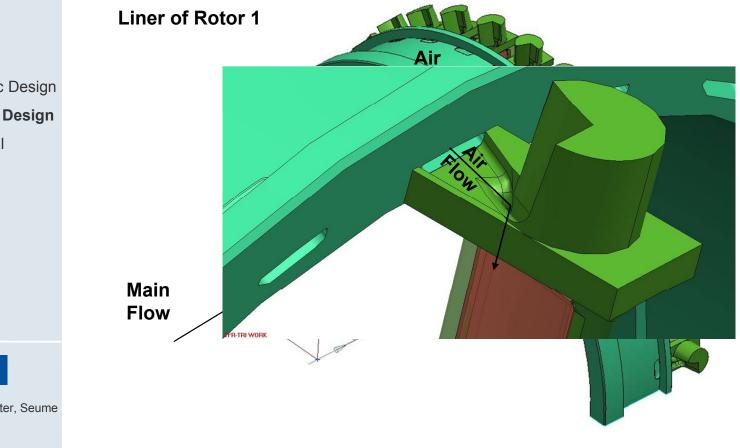
AFC Stator with Coanda Surface

0 Introduction 1 Test Facility 2 Concept 3 Aerodynamic Design 4 Mechanical Design 5 Experimental


- Results
- 6 Conclusions



slide 11 / 18



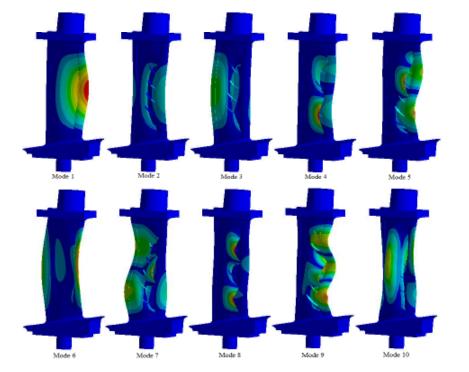
Increased Permissible Aerodynamic Loading by 13% at the Design Point → Better Part Load Performance?

Design, Manufacture and Integration in Compressor

Air Supply for Flow Control Stator

slide 12 / 18

Design, Manufacture and Integration in Compressor


AFC Stator with Coanda Surface

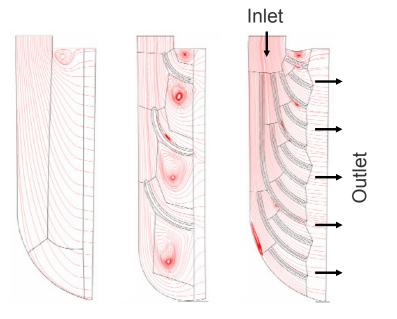
- 0 Introduction
- 1 Test Facility
- 2 Concept
- 3 Aerodynamic Design
- **4 Mechanical Design**
- 5 Experimental Results
- 6 Conclusions

Guendogdu, Vorreiter, Seume 20 August 2009 slide 13 / 18

FEM-Modal Analysis of Coanda Stator

Design, Manufacture and Integration in Compressor

AFC Stator with Coanda Surface


- 0 Introduction
- 1 Test Facility
- 2 Concept
- 3 Aerodynamic Design
- **4 Mechanical Design**
- 5 Experimental Results
- 6 Conclusions

Guendogdu, Vorreiter, Seume 20 August 2009

slide 14 / 18

Iterative Design of Plenum in Coanda Stator

Aerodynamics: loss-minimized flow in plenum of Coanda stator

Design, Manufacture and Integration in Compressor

Coanda Stator

AFC Stator with Coanda Surface

- 0 Introduction
- 1 Test Facility
- 2 Concept
- 3 Aerodynamic Design
- 4 Mechanical Design
- 5 Experimental Results
- 6 Conclusions

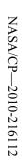
- Two parts: vane body and cover
- Laser welded: low warpage; durable and leak-proof
- · Seamless surface: finish after welding

Guendogdu, Vorreiter, Seume 20 August 2009 slide 15 / 18

Design, Manufacture and Integration in Compressor


AFC Stator with Coanda Surface

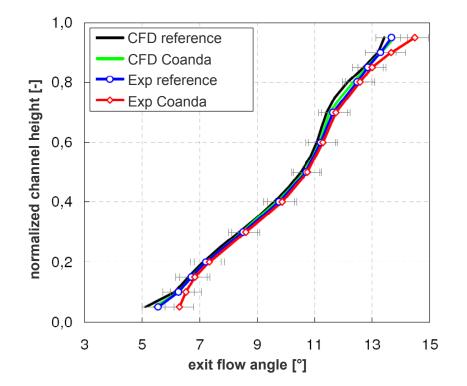
- 0 Introduction
- 1 Test Facility
- 2 Concept
- 3 Aerodynamic Design
- 4 Mechanical Design
- 5 Experimental Results
- 6 Conclusions



Guendogdu, Vorreiter, Seume 20 August 2009 slide 16 / 18

Coanda Stator in First Stage of Compressor

No change of geometry except for Coanda Stator



Experimental Results

AFC Stator with Coanda Surface

- 0 Introduction
- 1 Test Facility
- 2 Concept
- 3 Aerodynamic Design
- 4 Mechanical Design
- 5 Experimental Results
- 6 Conclusions

Guendogdu, Vorreiter, Seume 20 August 2009

slide 17 / 18

Conclusions

- AFC Stator with Coanda Surface
- 0 Introduction
- 1 Test Facility
- 2 Concept
- 3 Aerodynamic Design
- 4 Mechanical Design
- 5 Experimental Results

Guendogdu, Vorreiter, Seume 20 August 2009 slide 18 / 18

- Turning of the Coanda-surface augmented by blowing
 - → Higher stage pressure ratio
- > 0.5% of Compressor Inlet Mass Flow are sufficient to reduce vane count by 20%
 - → Reduced number of stages, reduced weight, lower investment cost possible
- Aerodynamic performance confirmed for aerodynamic design point
 - → Increased Permissible Aerodynamic Loading by 13%