UNIVERSIDAD POLITÉCNICA DE MADRID E.T.S. de Ingenieros Aeronáuticos

GLOBAL INSTABILITY OF LAMINAR SEPARATION BUBBLES

PI: Vassilis Theofilis Ph.D. Student: Daniel Rodriguez PM: Douglas Smith AFOSR Grant: FA8655-06-1-3066

Introduction and Background

UNIVERSIDAD POLITÉCNICA DE MADRID

COMMON WISDOM ON LSB

- Separation under adverse pressure gradient
- Reversed flow region enclosed
 Shear layer
- Turbulent strong mixing forces re-attachment

(Horton 1968)

A MORE RECENT VIEW

• Two different classes of eigenmodes:

Global mode

208

24.08.2009

Th, Hein & Dallmann Phil. Trans. R. Soc. Lond. A (2000) 358: 3229-3246

LPT FLOWS – THE (SL) WAKE MODE

• Amplification of the wake mode gives rise to the 2D timeperiodic basic state

UNIVERSIDAD POLITÉCNICA DE MADRID

LPT FLOWS – THE BUBBLE MODE

The bubble mode is stronger damped than the wake mode is

24.08.2009

Abdessemed, Sherwin, Th, JFM (2009) 628: 57-83

A UNIFYING PERSPECTIVE

THE GLOBAL MODE OF LSB

 The struture of the amplitude functions of the minimally damped global eigenmode of the LPT blade... spanwise w(x,y)

> W 0.03 0.02 - 0.01 - 0 0.01

> > 0.15

0.03

0.01

0.0

0.00

0.05

>

... is analogous to that on the flat-plate and the NACA 0012 aerofoil

UNIVERSIDAD POLITÉCNICA DE MADRID

GLOBAL INSTABILITY OF LSB

Configuration	Authors	Methodology
Airfoils	Gaster (1964)	-
APG flat plate BL	Hammond & Redekopp (1998)	Absolute/Convective instability analysis
-//-	Theofilis (1998, 1999) Theofilis, Hein & Dallmann (2000)	BiGlobal instability analysis
Backward- and forward-facing steps	Barkley, Gomes, Henderson (2001) Marquet et al. (2006) Marino & Luchini (2009)	BiGlobal instability analysis, DNS
Low Pressure Turbine blades	Abdessemed, Sherwin & Theofilis (2004; 2006; 2009)	BiGlobal analysis, DNS
Shock / Boundary-Layer Interaction	Boin, Robinet (2004; 2007)	BiGlobal instability analysis, DNS
NACA Airfoils at AoA	Theofilis, Barkley & Sherwin (2002) Crouch et al. (2007; 2009)	BiGlobal instability analysis, DNS
Rounded open cavity, S-shaped duct	Hoepffner et al. (2007), Akervik et al. (2007), Marquet et al. (2008)	BiGlobal instability analysis, DNS
Bump-induced separation	Ehrenstein et al. (2007)	BiGlobal instability analysis, DNS
Low Pressure Turbine Cascade	Brear & Hodson (2004)	Experiment
Iced Airfoil	Jacobs & Bragg (2006)	Experiment

GLOBAL INSTABILITY & FLOW TOPOLOGY – 1998

• Dallmann's conjecture on the topological flowfield changes due to the global mode

GLOBAL INSTABILITY & FLOW TOPOLOGY – 1999

• Amplification of the global mode leads to threedimensionalization of the primary reattachment line in 3d...

...while it leaves the primary separation line unaffected

24.08.2009

Th, IUTAM Laminar-turbulent transition V, Sedona (1999) 663-668

The present contributions

OUTLINE

Incompressible Flow

- Some numerics on the direct/adjoint EVP
- U-separation on a flat-plate
- Stall cells on a NACA0015 airfoil
- Receptivity and Sensitivity of LSB on a flat plate

Compressible Flow

- The Howarth/Briley bubble in subsonic flow
- Shock/Boundary-Layer Interaction (SBLI) on a semi-infinite plate at Mach 2
- SBLI on a 45° wedge

Focus on the (stationary, self-excited) global mode alone

Numerical considerations

MASSIVELY PARALLEL SOLUTION OF THE EVP

- Ten years later...
 - Incoming TS waves at the inflow boundary (besides the homogeneous Dirichlet BCs used in THD)
 - 400x100 points per spatial direction used to resolve the amplitude function of the eigenmodes
 (as opposed to 60x40 in THD)
 - 25k CPU hrs (= 25 hrs x 1000 procs) per wavenumber (as opposed to 24 CPU hrs serial computing time on a single processor in THD)

...permit solving substantially larger (but not all) problems,

 on Mare Nostrum at BSC and (the Petaflop) Blue-Gene/P at FZJ (but Jürgen Seidel finally got access to DoD HPC machines)

Classification of global modes of LSB flow

GLOBAL MODES IN LSB FLOW ON A FLAT PLATE

Case: Re_{δ^*} =500 at inflow, Re_{δ^*} =700 at outflow, **Separation Bubble Boundary conditions: Dirichlet** at inflow & Extrapolation at outflow

Rodríguez & Th AIAA 2008-4148

TYPICAL FLAT-PLATE GLOBAL EIGENSPECTRUM

- Composed of discrete and continuous branches
- Focus discussion on two traveling (and the leading stationary) global eigenmodes

Comparison of traveling modes with OSE

- Extract "spatial amplification" from successive peaks of the (2d) global eigenfunction;
- Run a spatial OSE at successive downstream locations;
- Compare

UNIVERSIDAD POLITÉCNICA DE MADRID

Extracting physics out of eigenspectra: • U-separation on a flat plate

"U-SHAPED SEPARATION" – 1984

FIG. 17: Perspective view of the free streamsurface sheets and wall streamlines of simple U-shaped separation

UNIVERSIDAD POLITÉCNICA DE MADRID

SCHOOL OF AERONAUTICS

U-SEPARATION

For example, Fig. 6 shows a three-dimensional separation pattern that has been classified as a U separation (Perry and Hornung¹⁷). The flow field has been obtained by solving the Navier–Stokes equations locally (see Perry and Chong¹⁸) using a third-order Taylor series expansion, and assuming that the flow pattern is symmetrical (i.e., \dot{x}_1 and \dot{x}_3 are as-

TYPICAL FLAT-PLATE GLOBAL EIGENSPECTRUM

- Composed of discrete and continuous branches
- Focus on (two traveling and) the leading stationary global eigenmode

Critical Points of (BF + ε A)

- Reconstruct a composite flowfield, using the steady basic state and the leading global eigenmode
- Identify critical points and their nature

Critical Points of ($BF + \varepsilon S$)

Critical point analysis of composite flow

Eigenvalue spectrum

BF + ε (Global Mode)

24.08.2009

Rodríguez & Th J Fluid Mech (2009 - submitted)

UNIVERSIDAD POLITÉCNICA DE MADRID

SCHOOL OF AERONAUTICS

U – SEPARATION

Present computations

Bippes (198?)

UNIVERSIDAD POLITÉCNICA DE MADRID

23

Extracting physics out of eigenspectra: • Stall Cells on an Airfoil

UNIVERSIDAD POLITÉCNICA DE MADRID

SCHOOL OF AERONAUTICS

STALL CELLS ON AIRFOILS

TYPICAL RESULTS ON A STALLED AIRFOIL

Critical point analysis of composite flow

Eigenvalue spectrum

Leading stationary eigenmode

UNIVERSIDAD POLITÉCNICA DE MADRID

Critical Points of (BF + ε GlobalMode)

• Stall-cells appear on the airfoil, as result of linear modal amplification of the leading stationary global mode

Flow Control of LSB

SENSITIVITY OF LSB

 The kernel of the direct/adjoint coupling (Luchini 2003) permits identifying the region of maximal feedback region...

- ... it coincides with the primary recirculation center
- (a result not unexpected, really)

RECEPTIVITY OF LSB ON A FLAT-PLATE

 Solution of the adjoint eigenvalue problem permits identifying the maximally receptive region (dominant streamwise velocity perturbation)

- ... it coincides with the primary separation line
- NB. Analysis is meaningful due to homogeneous Dirichlet BCs imposed upstream (direct) / downstream (adjoint) EVP

WHAT CAN THIS KNOWLEDGE DO FOR US?

 Predict the actuator placement without prior knowledge (or ad-hoc assumptions)

Hill AIAA 1992-0067; Giannetti, Luchini JFM (2007)

34

239

Compressibility effects – subsonic flow

MACH # EFFECT ON HOWARTH/BRILEY LSB

• Linear pressure increase (compressible) v linear deceleration (incompressible) in the free-stream

- No major differences in integral quantities have been found, ie.
- Quantitative but no qualitative differences of instability results
- Work in progress, in collaboration with Stanford U.

36

241

Compressibility effects – supersonic flow

SHOCK / BOUNDARY-LAYER INTERACTION

• Typical LES result at $Re_{\delta} = 10k$

- Origin of unsteadiness?
- Origin of spanwise periodic structures ?

38

SBLI & 45° COMPRESSION CORNER – BFs

- Basic states obtained by high-order accurate, low-diffusion WENO schemes (Ekaterinaris)
- Flat plate leading edge included at upstream end of both domains
- Finite-angle wedge in compression corner (no triple-deck)
- Both flows at 5000 < Re_L < 20000, Ma = 2 and 2.5
- Unsteadiness identified by DNS at Re_L≈ 25k

GLOBAL "MODES"

- Compressible BiGlobal EVP solved at $5000 < Re_{L} < 20000$ by
 - Spectral collocation (SBLI on flat plate)
 - Immersed boundary (45° compression corner)
- Entire BF domain considered shocks not treated (≠ Crouch)
- Qualitatively reasonable results,...

- ...but spectra are not converged (despite very large resolutions)
- Work in progress, in collaboration with with Patras U.

Rodriguez, Valero, Ekaterinaris, Th IUTAM Laminar-Turbulent Transition Stockholm (2009)

SUMMARY (I/II)

- In the last 3 years, global linear instability of LSB has been revisited, using state-of-the-art hardware and algorithms
- Eigenspectra of LSB flows have been understood and classified in branches of known and newly-discovered eigenmodes
- Major achievements:
 - World-largest numerical solutions of global eigenvalue problems are routinely performed
 - Key aerodynamic phenomena have been explained via critical point theory, applied to our global mode results
- Theoretical foundation for control of LSB flows has been laid

SUMMARY (II / II)

- Global mode of LSB at the origin of observable phenomena
 - U-separation on semi-infinite plate
 - Stall cells on (stalled) airfoil
- Receptivity/Sensitivity/AFC feasible (practical?) via
 - Adjoint EVP solution
 - Direct/adjoint coupling (the Crete connection)
- Minor effect of compressibility on global instability in the subsonic compressible regime
- Global instability analysis of LSB in realistic supersonic flows apparently quite some way down the horizon

(Saric joke # 431: "an imaginary, ever-receding line")

FUTURE CHALLENGES AND WORK DIRECTIONS

- From a physical (and theoretical) point of view
 - Continue with the <u>analysis</u> of EVP results
 - Instability analysis of <u>turbulent flows</u> (obtain EVP spectra of 2.5D flows)
 - Embed instability analysis into (AFC) <u>flow control</u> concepts (for 2.5D flows)
 - Extend global instability tools in <u>3D flows</u>
- From a numerical point of view
 - Devise new algorithms for the <u>efficient parallel</u> solution of (massive) eigenvalue problems

ALTER.

Thank You

GLOBAL FLOW INSTABILITY AND CONTROL IV

Crete, Greece, Sept 28 - Oct 2, 2009

ADDITIONAL MATERIAL

BASIC LSB FLOW ON A FLAT PLATE

Boundary Layer transformation:

$$\xi = \frac{x}{L} \qquad \eta = y \sqrt{\frac{U_e}{\nu x}} \quad \longrightarrow \quad$$

$$\Psi = \sqrt{U_e \nu x} f(\xi, \eta)$$

Separated states recovery:

- Reyhner and Flügge-Lotz approximation
- Displacement thickness imposed

COMPARISON WITH TEMPORAL OSE

Basic Flow: Artificial parallel Blasius **Mack's Case**: Re = 580, α = 0.179 (Mack JFM 1976) **Streamwise extension**: L = 10 x 2 π / α **Periodic boundary conditions**

FURTHER COMPARISONS WITH TEMPORAL OSE

Basic Flow: Artificial parallel Blasius **Mack's Case:** Re = 580, α = 0.179 (Mack JFM 1976) **Streamwise extension:** L = 10 x 2 π / α

Boundary conditions:

X Periodicity - Fourier

- + Periodicity -Chebyshev
- O Robin inflow & outflow

Robin inflow &Extrapolation outflow

COMPARISONS WITH SPATIAL OSE

Case: Re_{δ^*} =500 at inflow, Re_{δ^*} =700 at outflow

Analysis 1:

- Basic Flow: Artificial parallel Blasius
- Boundary conditions: Robin* at inflow & outflow

Analysis 2:

- Basic Flow: Artificial parallel Blasius
- Boundary conditions: Robin* at inflow & extrapolation at outflow

Analysis 3:

- Basic Flow: Real Blasius boundary layer
- Boundary conditions: Robin* at inflow & extrapolation at outflow
- * Robin boundary condition of Ehrenstein & Gallaire JFM 2005:

$$\frac{\partial \hat{\mathbf{q}}}{\partial x} = i \left(\alpha_{r,0} + \frac{\partial \alpha_r}{\partial \omega_r} (\omega_0) \cdot (\omega - \omega_0) \right) \hat{\mathbf{q}}$$

FURTHER COMPARISONS WITH SPATIAL OSE

Case: Re_{δ^*} =500 at inflow, Re_{δ^*} =700 at outflow **Robin boundary condition evaluated at:** $\omega_0 = 0.13$

Analysis:

- X Parallel Blasius, Robin + Robin
- 2 + Parallel Blasius, Robin + Extrapolation
- 3 O Real Blasius, Robin + Extrapolation

PUBLICATIONS

Journals

• [J-4] Rodríguez, D., Theofilis, V. 2009 Massively Parallel Numerical Solution of the Bi-Global Linear Instability Eigenvalue Problem Usina Dense Linear Algebra AIAA Journal, accepted for publication, DOI: 10.2514/1.42714

• [J-3] Kitsios, V., Rodríguez, D., Theofilis, V., Ooi, A., Soria, J. 2009 BiGlobal stability analysis in curvilinear coordinates of massively separated lifting bodies. Journal of Computational Physics, accepted for publication, DOI: 10.1016/j.jcp.2009.06.011

• [J-2] Rodríguez, D., Theofilis, V. 2009 On the birth of stall-cells on airfoils. Theoretical and Computational Fluid Dynamics (accepted for publication). • [J-1] Rodríguez, D., Theofilis, V. 2009 Structural changes induced by global linear instability of laminar separation bubbles, Journal of Fluid Mechanics (submitted for publication).

Book Chapters

• IB-21 Theofilis, V. 2009 Role of instability theory in flow control. In Fundamentals and Applications of Modern Flow Control (Joslin RD, Miller D, eds.) ISBN 978-1-56347-938-0, AIAA Progress in Astronautics and Aeronautics, vol. 231, pp. 73-114.

 [B-1] de Vicente, J., Rodríguez, D., González, L. Theofilis, V. 2008. High-order numerical methods for BiGlobal flow instability analysis and control. In Associação Brasileira de Ciências Mecânicas, Volume 6 tomo 2: Turbulência. 6ª Escola de Primavera em Transição e Turbulência, Univ. São Paulo, Sao Carlos, 22-26 Sept. 2008, (M. Teixeira Mendonca, M. Faraco de Medeiros, eds.), pp. 1-123.

Conferences

• [C-8] Rodriguez, D., Ekaterinaris, J., Valero, E., Theofilis, V. 2009 On receptivity and modal linear instability of laminar separation bubbles at all speeds. Seventh IUTAM Symposium on Laminar-Turbulent Transition, Stockholm, Sweden, June 23-26, 2009. Springer (to appear).

 IC-71 Theofilis, V. Rodríguez, D. 2009 Global Linear Instability on Laminar Separation Bubbles – revisited: U-separation and the Birth of Stall Cells on Airfoils. CEAS/KATnet II Conference on Key Aerodynamic Technologies, Bremen, Germany, May 12-14, 2009. 12pp. ISBN 978-3-00-027782-5.

• [C-6] Kitsios, V., Rodriguez, D., Theofilis, V., Ooi, A., Soria, J. 2008. BiGlobal instability analysis of turbulent flow over an airfoil at an angle of attack layer. AIAA 38th Fluid Dynamics Conference And Exhibit, Seattle, June 23-26, 2008. AIAA Paper 2008-4384.

• [C-5] Rodriguez, D., Theofilis, V. 2008 On instability and structural sensitivity of incompressible laminar separation bubbles in a flat-plate boundary layer. AIAA 38th Fluid Dynamics Conference And Exhibit, Seattle, June 23-26, 2008 AIAA Paper 2008-4148

• [C-4] Valero, E., Theofilis, V. 2008 Compressibility Effects in Howarth's Separation Bubble on a Flat Plate. AIAA 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 7-10, 2008, AIAA Paper 2008-0593.

 IC-31 Rodriguez, D., Theofilis, V. 2008 Massively Parallel Numerical Solution of the BiGlobal Linear Instability Eigenvalue Problem. AIAA 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 7-10, 2008. AIAA Paper 2008-0594.

• [C-2] Theofilis, V. 2007 On instability properties of incompressible laminar separation bubbles on a flat plate prior to shedding. AIAA 45th Aerospace Sciences Meeting, Reno, NV, Jan 8-11, 2007. AIAA Paper 2007-0540.

• [C-1] Theofilis, V. 2007 Global instability and control of laminar separation bubbles: Theoretical background, basic ow documentation, algorithmic developments and validation. IUTAM Symposium on Unsteady Separated Flows and their Control. Corfu, Greece, June 18-22, 2007. Springer (to appear). ISBN: 978-1-4020-9897-0.

19.08.2009

Rodriguez, Valero, Ekaterinaris, Th IUTAM Laminar-Turbulent Transition Stockholm (2009)

TECHNICAL EXCHANGES

- U of Arizona
 - Theofilis Visiting/Adjunct Professor since 08
 - Rodríguez visited in 08, will return in 09 (one month)
 - Joint publications in preparation with
 - Tumin (on characterization of eigenspectra)
 - Fasel (on global instability of 3d bubble flows)
- Stanford U
 - Joint publication in preparation with
 - Marxen (on laminar separation bubbles)
- U of Patras
 - Provision of 2d shock-induced laminar separated basic flows
 - Joint publication (IUTAM 2009) with
 - Ekaterinaris (on preliminary global instability analyses)