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The AFRL High Impact Technologies Research
Turbine (HIT RT)

Meanline Design Parameters: HIT RT

PR 3.75 total-total
Reaction 49.5%
Flow Coefficient 0.71
Work Coefficient  2.11
ANZ (in? rpm?) 573 x108 (Engine)

1V 1B 2V
Turning 77° 116° 11°
Myt 0.88 1.30 0.89
Airfoil Count: 23 46 23
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/ Unsteadiness due to Downstream Interaction is _
s Dominated by First Harmonic of Vane Passing

1B Suction Side, Percent Signal Power
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Iterative Turbine-Design Loop
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Turbine Design And Analysis System : Created
to Enable Design of the HIT Research Turbine

\

* 1D: Turbine size and velocity triangles were
set with a 1D meanline code (HuberLine, FTT)

 2D: Airfoil-section design, analysis, and
optimization was conducted in MATLAB
»  HuberFolil (FTT) profile algorithm
»  GUI-based flowfield interrogation
»  Optimization via SQP, genetic
algorithms, and DoE

* 4D: Time-resolved 3D analysis
»  DSP-based convergence-
monitoring and unsteady post-
processing
»  Enables investigation of unsteady
shock interactions and instrumentation
design for code validation

* Arange of solvers are integrated with the
system:
»  Corsair (Dorney, NASA MSFC)
»  LEO (Ni, Aerodynamic Solutions, Inc.)
»  MBFLO (Davis, UCDavis)
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Cascade Experiments are Underway to Validate

Design and Analysis Tools

P/ Ptin

Ho

Transonic Cascade: HIT RT 1B, Midspan Loadings at Design Incidence
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Match to predictions gives confidence
that the source of 1B-2V interaction is
controllable via aerodynamic shaping.
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1 // HIT RT Blade was Re-Designed in an Attempt

; to Reduce Levels of Unsteadiness at 46E

) Airfoil Geometry and Loading

Fil= Edit ‘“iew Insert Tools Desktop ‘Window Help - .. L DeSign—Space exploration WaS
D& L|ARANE | E 0E =50 .
= - performed to equalize strengths

Design lteration #3 Ps.ex Dist. = 2,338 psia ; Loss =6.889 % .

BN | 1 — of the double-shock pair.

2r . .

« Peak-to-peak circumferential
ol distortion in exit static pressure
= 3 was reduced of order 25%.
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_,_'_ Parameter Comparison

Iteration : 1 3

TED : 0.0450 0.0431

TEW : 5.1562 3.3191

Fl TEWF : 0.4516 0.5951
k‘ UnCvrtrn : 0.0440 -2.0191
i L3F : 0.4706 0.5080
L3R : 0.1506 0.2573

L4 : 0.1000 0.1445

T

"HITRT.  LowdP 1B
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Radial Distance (in)

“Small Decrease in 46E Unsteadiness Despite
~25% Reduction in Peak-to-Peak Ps Variation

1B Suction Side, DFT Magnitude, Percent Pt
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Additional Means to Reduce 1B-2V Interaction:
Steady 2V Blowing and 3D Vane Shaping

Present Situation
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2V With Blowing

Bowed 2V

« 2V geometry leads to shock reflections for
vaned contra-rotating turbines.

* These arise because induced-flow
components due to moving shocks must
be cancelled at no-slip surfaces.

* Injection of a small amount of flow equal
and opposite the induced velocity should
reduce the strength of reflected shocks.

* Bowing of the 2V should affect
unsteadiness levels on the 1B surface.

Reverse-

HIT RT 2V Bowed 2V
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N / Reverse-Bowed 2V Leads to a Significant
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Change in Distribution of 46E Unsteadiness

1B Suction Side, DFT Magnitude, Percent Pt
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'Bowed 2V Also Leads to a Significant Change
in Distribution of 46E Unsteadiness

1B Suction Side, DFT Magnitude, Percent Pt

inlet

3
131 4B6E 13 46E
25
1257 12.5¢
5 2z
8 12t 8 12t
G S
o 11.5 ]
a ]
S 115 T 115
o o
a o
o 49 o
117 117
05
1051 1051
2 2.5 3 3.5 4 45 2 25 3 35 4 4.5
Axial Distance (in) Axial Distance (in)

HIT RT Bowed 2V



CIT912-010T—dD/VSVN

(8%

Radial Distance (in)

>

N / Small Decrease in 46E Unsteadiness Due to
Steady Blowing on 2V Pressure Side

3

1B Suction Side, DFT Magnitude, Percent Pt
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CIT912-010T—dD/VSVN

Iy

Radial Distance (in)

4

«¢» Increasing Mass Flow

N / Reduction in 46E Unsteadiness Increases with

1B Suction Side, DFT Magnitude, Percent Pt
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«¢» Increasing Mass Flow

/ Reduction in 46E Unsteadiness Increases with

1B Suction Side, DFT Magnitude, Percent Pt
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«¢» Increasing Mass Flow

/ Reduction in 46E Unsteadiness Increases with

1B Suction Side, DFT Magnitude, Percent Pt
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N / A Combination of 2V Pressure-Side Blowing
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and 2V Bow Looks Promising

1B Suction Side, DFT Magnitude, Percent Pt
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IT RT is Intended to Assess 1B-2V
nsteady Interaction in Great Detail
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~ Design Stagger

2 . ’ 25 “Buttons” for
Airfoil Re-
Stagger

2V

Endwalls :
80 Kulites

5 Airfoils :

100 Kulites

Airfoils - I
75 Kulites

» Variable Stagger 2V (x10% A45 variation)
» Also enables the investigation of vane asymmetry > :
and re-stagger to reduce unsteady loading Full-Scale Testing in Turbine
» Vane-row clocking to affect phase of unsteadiness Research Facility, Spring 2010
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Summary

 HPT blade unsteadiness in the presence of a downstream vane
consistent with contra-rotation is characterized by strong interaction
at the first harmonic of downstream vane passing.

* An existing stage-and-one-half transonic turbine rig design was used
as a baseline to investigate means of reducing such a blade-vane
interaction.

* Methods assessed included:
» Aerodynamic shaping of HPT blades
» 3D stacking of the downstream vane
» Steady pressure-side blowing

« Of the methods assessed, a combination of vane bowing and steady
pressure-side blowing produced the most favorable result.

* Transonic turbine experiments are planned to assess predictive
accuracy for the baseline turbine and any design improvements.





