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Abstract

A concise method has been formulated for identifying a set of forces needed to constrain
the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when
it is subject to motion constraints described by nonholonomic equations that are inherently
nonlinear in velocity. An expression in vector form is obtained for each force; a direction is
determined, together with the point of application. This result is a consequence of expressing
constraint equations in terms of dot products of vectors rather than in the usual way, which
is entirely in terms of scalars and matrices. The constraint forces in vector form are used
together with two new analytical approaches for deriving equations governing motion of a
system subject to such constraints. If constraint forces are of interest they can be brought into
evidence in explicit dynamical equations by employing the well-known nonholonomic partial
velocities associated with Kane’s method; if they are not of interest, equations can be formed
instead with the aid of vectors introduced here as nonholonomic partial accelerations. When
the analyst requires only the latter, smaller set of equations, they can be formed directly;
it is not necessary to expend the labor to form the former, larger set first and subsequently
perform matrix multiplications.
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1. Introduction

Motion constraints imposed on a mechanical system are described with nonholonomic
(nonintegrable) constraint equations, whereas configuration constraints are expressed with
holonomic constraint equations. Two examples of motion constraints with which the reader
may be familiar are the condition of rolling, which is the absence of slipping, and the restric-
tion on velocity imposed by a sharp-edged blade. These constraints are sometimes described
with equations written in the matrix form au -+ 3 = 0, where u is a column matrix of motion
variables uq, ..., u,. Motion variables, also referred to as generalized speeds, are in general
linear combinations of the time derivatives of generalized coordinates, ¢, ..., ¢,. The distin-
guishing feature of such equations is that they are linear in the motion variables. However,
one may consider motion constraints that must be described by relationships that are inher-
ently nonlinear in the motion variables, having the form f(qi,...,qn,u1, ..., up,t) = 0. In
Ref. [1] Bajodah et al. review some of the literature dealing with nonlinear nonholonomic
constraint equations and consider it important to study them because they can arise in
connection with servo-constraints or program constraints when a control system enters the
picture. As explained in Refs. [2] and [3], such constraints are enforced by application of
control forces as opposed to the forces present when bodies and particles come into contact
with one another, as is the case with classical, passive constraints.

Golubev states in Ref. [4] that, as of yet, there is no example of a passive mechanical
device that can compel a motion constraint described by an equation that is nonlinear in
velocity. Roberson and Schwertassek note in Ref. [5] that all known motion constraints im-
posed on purely mechanical systems can be expressed with relationships that are linear in
velocity variables. Unfortunately, the relationships in such situations are often artificially
teased into nonlinear forms to create contrived examples used to illustrate a proposed pro-
cedure. For instance, a nonlinear equation is devised in Ref. [6] to describe the constraint
imposed on a rolling disk. The well-known Appell-Hamel mechanism is studied and dis-
cussed, for example, in Refs. [1] and [7] — [12]. It is recognized in Refs. [1] and [8] — [12]
that the constraints imposed on this mechanical system can be expressed with linear rela-
tionships, but despite this the mechanism is used in Refs. [1], [11], and [12] to demonstrate

the application of methods for dealing with nonlinear nonholonomic constraint equations.



In Refs. [13] and [14], Zekovich offers several examples of passive mechanical systems in
which the constraints are described with nonlinear nonholonomic constraint equations. In
what follows it is shown that the associated constraints can in fact be expressed with linear
nonholonomic equations. Another example studied in Refs. [8], [15], [16], and [17] involves
a device proposed by Benenti in Ref. [18]. However, a purely mechanical system is involved
and therefore, according to the observations in Refs. [4] and [5], the nonlinear nonholonomic
equation used to describe the constraint must be regarded as contrived.

Whenever a motion constraint can be expressed entirely with linear nonholonomic con-
straint equations, it should be dealt with accordingly. Any number of approaches can be
used to deal with the equations in their linear form; the exercise of cajoling such equations
into a nonlinear appearance serves no useful purpose. The new approaches contained in this
paper, and the examples of their application, are concerned strictly with inherently nonlinear
nonholonomic constraint equations.

The literature contains several instances of motion constraints described by nonholonomic
equations that are inherently nonlinear in velocity. Perhaps the simplest case, provided by
Golubev in Ref. [4], involves a single particle P that is subject to a uniform gravitational
field and moves in a vertical plane fixed in an inertial reference frame N. The magnitude of
the velocity Yv ¥ of Pin N is to remain constant. The particle thus constrained serves as a
model of a robot manipulator tip used to spray-paint a wall or polish a surface. Variations of
this problem are studied in Refs. [19]-[21]. A familiar example proposed by Appell, in which
P moves in three dimensions, is discussed in Refs. [7], [15], [19], [22], and [23]. Special cases
of Appell’s problem are examined in Refs. [20] and [24]. Control of an inverted pendulum
constitutes an example studied in Refs. [15] and [16]. A thin rigid rod moves in a vertical
plane in the presence of a uniform gravitational field, with the lower end of the rod always
in contact with a horizontal line. The system is referred to as Marle’s servomechanism; as
proposed in Ref. [7], an actuator controls the horizontal displacement of the rod’s lower end
according to some control law in order to keep the rod vertical. An earlier paper by Huston
and Passerello (Ref. [25]) considers the more general case of balancing a pole whose lower
end remains in contact with a horizontal plane, while the pole is otherwise free to move in
the space above the horizontal plane.

The forthcoming developments in this paper are carried out for the most part in terms



of vectors. These quantities are used also in expressing the main results, and discussing the
contributions of the work. By vector we mean a basis-independent quantity having direction
and magnitude, such as position, velocity, acceleration, or force, involved in the application
of elementary principles of dynamics to study motion taking place in three-dimensional
space. Other examples of a vector include partial velocities and partial angular velocities
associated with advanced principles of dynamics. We do not mean a row or column matrix
whose elements consist of three basis-dependent scalar measure numbers of a vector. Nor do
we have in mind a matrix containing more than three scalar elements, such as a collection of
generalized forces, or a row or column matrix considered from the viewpoint of linear algebra
to belong to an n-dimensional tangent space, orthogonal space, etc.

In Ref. [26], a comprehensive, consistent, and concise method is established for identifying
a set of forces needed to constrain the behavior of a mechanical system modeled as a set of
particles and rigid bodies. The method is exercised in Ref. [27] with an example involving a
configuration constraint, and a motion constraint expressed with an equation that is linear
in velocity. The purpose of this paper is to apply the method to constraints described by
nonholonomic equations that are inherently nonlinear in velocity. (It is to be understood
that the term “velocity,” used in the general case of a system of particles, subsumes “angular
velocity” in the special case in which a subset of particles makes up a rigid body. The
term “acceleration” likewise encompasses an angular counterpart.) An essential feature of
the method consists of expressing constraint equations in vector form rather than entirely
in terms of scalars and matrices as is customary. A constraint equation that has been
differentiated once or twice with respect to time, so that it contains the acceleration of a
point or the angular acceleration of a rigid body, is said to be written at the acceleration
level. Likewise, a constraint equation at the velocity level is one that has been differentiated
at most once, so that it contains the velocity of a point or the angular velocity of a rigid
body. It so happens that the method discussed in Refs. [26] and [27] can be applied whenever
constraints can be described at the acceleration level by a set of independent equations that
are linear in acceleration; therefore, it is applicable to constraint equations that are nonlinear
in velocity when written at the velocity level.

The method in question yields expressions in vector form for constraint forces, and for
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torques). Thus, the directions of these vectors are identified, together with the specific point
at which a constraint force must be applied, and the particular body upon which a constraint
torque must be exerted. Such information about the vector quantities is of interest in its
own right, and is to be preferred over the information contained in a matrix whose elements
are scalar generalized constraint forces. In the process of constructing generalized constraint
forces, information about the direction, magnitude, and point or body of application of
constraint forces and torques becomes lost; in principle, each generalized constraint force is
a sum of contributions from every constraint force and torque acting on a mechanical system.
Although generalized constraint forces can be computed in a straightforward manner from
knowledge of constraint forces and torques, usually it is impractical to invert the process
and recover the original information about constraint forces and torques from generalized
constraint forces.

Anderson is concerned in Ref. [28] with configuration constraints and with motion con-
straints described by nonholonomic equations that are linear in the motion variables. Al-
though such constraints are not the direct subject of the present investigation, Anderson
makes an observation that is nevertheless relevant to our discussion. Often, a Lagrange
multiplier or undetermined multiplier used to treat a constrained system is not related in a
clear way to any particular constraint force or torque. In the method introduced here, each
multiplier has a straightforward relationship to a constraint force or torque.

The emphasis in this paper is on analytic derivation of equations of motion that do or do
not contain evidence of forces and torques needed to impose motion constraints described
with inherently nonlinear nonholonomic equations. This stands in contrast to methods of
computational dynamics, where the object is numerical formulation and solution of equa-
tions of motion. With knowledge of constraint forces and torques obtained by inspection of
constraint equations written in vector form, and the two new approaches developed here, the
analyst can form explicit equations of motion by hand or with the aid of symbolic algebra
software. Equations that do not contain evidence of constraint forces can be formed directly;
they need not be obtained from numerical manipulations of equations in which evidence of
constraint forces is present.

The remainder of the paper is organized as follows. First, a treatment of nonlinear

nonholonomic constraint equations is undertaken in Sec. 2 for a generic system of particles;



the results are applicable whether or not a subset of particles makes up a rigid body. The
method of Ref. [26] is used to identify directions of constraint forces and the particles to which
they must be applied. The constraint forces are used together with extensions to Kane’s
method (Ref. [30]) to obtain two new ways of deriving dynamical equations of motion. The
first of these is useful when one is interested in the time histories of the constraint forces;
it produces dynamical equations that contain evidence of the constraint forces needed to
satisfy the nonlinear nonholonomic constraint equations. On the other hand, the second
approach can be used when one is not interested in the constraint forces but requires explicit
dynamical equations governing the motion of the constrained system; constraint forces are
not in evidence in the minimal equations of motion obtained with this approach. The
novelty in the second case rests in the use of nonholonomic partial accelerations rather than
the nonholonomic partial velocities employed in Kane’s method. The methods proposed
in Sec. 2 are first compared in Sec. 3 to two of the approaches in the existing literature,
and then applied in Sec. 4 to an example in which the velocities of two particles must
remain perpendicular. The resulting equations of motion are solved numerically. Constraint
forces are identified in Sec. 5 for two other examples in which the velocities of two particles
must either remain parallel, or equal in magnitude. In connection with Appell’s particle,
a constraint force is identified in Sec. 6; a second demonstration of the two approaches for
obtaining equations of motion is performed, and the equations are compared to existing
results. Finally, Sec. 7 contains the essential steps that must be taken to extend the ideas
presented in Sec. 2 from a discussion in terms of a system of particles to the practical case
in which a subset of the particles makes up a rigid body. Concluding remarks are supplied

in Sec. 8.

2. Equations of Motion for Complex Nonholonomic Systems

Thomas R. Kane has been developing and extending an approach to solving problems
in dynamics for the past five decades. An early paper, Ref. [29], and two highly influential
books, Refs. [30] and [31], are but three of the notable publications by Kane and his col-
leagues. Kane’s method enjoys widespread application in the areas of multibody dynamics
(Ref. [32]), dynamics of complex spacecraft (Refs. [31] and [33]), and robotic devices (Ref.

[34]). Two well-known computer programs, discussed in Refs. [35], [36], and [37], employ
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computer algebra in carrying out Kane’s method to derive equations of motion specific to
the system of interest, and subsequently to create software for numerical solution of the
equations.

Kane’s method can be used to construct dynamical equations of motion belonging to a set
that is minimal in number; in other words, there are as many equations as there are degrees
of freedom in the mechanical system. In pursuing this approach, constraint forces may be
treated in the same way as other contact forces and distance forces, or the constraint forces
may be left out of the picture, because in either case they do not contribute to the equations
of motion. For this reason such forces are referred to as noncontributing. On the other hand
it is important to note that, when time histories of these forces are of interest, Kane’s method
contains provisions for bringing them into evidence selectively. In this case the dynamical
equations are greater in number than the degrees of freedom of the system. Whether or
not the constraint forces contribute depends on whether dependent and independent motion
variables, or only independent motion variables, are included in expressions for velocities of
points, and angular velocities of rigid bodies, when such expressions are inspected to identify
vectors known as partial velocities and partial angular velocities.

Kane’s method is set forth in full detail in Ref. [30]. The analyst chooses to form one of
the following three sets of dynamical equations of motion, depending upon whether a system
S is subject to configuration constraints and/or motion constraints, and what constraint

forces, if any, are of interest.

FEY+FT=0 (r=1,...,n+M) (1)
F. +FF =0 (r=1,...,n) (2)
E, +F =0 (r=1,...,n—m) (3)

The quantities without a superscript x are referred to as generalized active forces, whereas
the quantities with a superscript x are known as generalized inertia forces. Configuration
constraints imposed on S are described by M independent holonomic constraint equations,
and motion constraints are represented by m independent nonholonomic constraint equations
that are linear in the motion variables. The configuration of S in a Newtonian reference
frame N is described by n generalized coordinates.

The superscript + is not used in Ref. [30]; we employ it here to signify equations formed
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according to Secs. 4.9, 6.3, and 7.6 therein for the purpose of bringing into evidence forces
associated with holonomic constraint equations. Such forces make contributions to F,.™ but
not to F, or F,. Constraint forces that must be applied to satisfy any linear nonholonomic
equations contribute to F, and to F,*, but not to F,. The apparatus of Ref. [30] deals only
with holonomic constraint equations and linear nonholonomic constraint equations; there
are no provisions whatsoever for dealing with nonlinear nonholonomic constraint equations.
Consequently, F, as dealt with in Ref. [30] contain no evidence of constraint forces of any
kind. In what follows we propose extending Kane’s method in order to deal with nonlinear
nonholonomic constraint equations.

It is instructive to recall that configuration constraints are, in general, expressed at
the position level with nonlinear holonomic constraint equations. However, when these
relationships are expressed at the velocity level they are linear in the velocity vectors or, what
is the same, linear in the motion variables as shown in Ref. [26]. Similarly, motion constraints
in general are described at the velocity level by nonlinear nonholonomic constraint equations
but, when expressed at the acceleration level, they are linear in the acceleration vectors.
In other words, when written in scalar form the latter relationships are linear in the time
derivatives of motion variables.

It is also important to remember that the partial velocities used to form Eqs. (1) are
obtained from velocity expressions that do not account for configuration constraints, whereas
the partial velocities employed in constructing Eqs. (2) and (3) are collected from velocity
expressions that do account for configuration constraints. It is precisely for this reason that
forces associated with holonomic constraint equations contribute to F,.* but not to F, or FT.

Two important conclusions follow from these observations. First, because inherently
nonlinear nonholonomic constraint equations written at the acceleration level are linear in
acceleration vectors, the forces needed to satisfy those constraints can be identified with
the approach described in Ref. [26]. Second, those forces can be brought into, or left out
of, evidence in equations of motion by making use of partial accelerations obtained from
acceleration expressions that respectively do not, or do, account for the associated motion
constraints.

Suppose that a simple nonholonomic system S (Ref. [30]) is made up of particles P, ..., P,.

The configuration of S in a Newtonian reference frame N is described by generalized coor-



dinates ¢i,...,q,, and the motion of S is characterized by independent motion variables
ui, ..., u,, where p Sn—m Suppose further that S is subject to ¢ independent nonlinear

nonholonomic constraint equations

ho (Vv P NP =0 (s=1,...,0) (4)

Ny Pi is the velocity of particle P; (i = 1,...,v) in N, and where ¢ denotes time.

where
In this case S is referred to as a complex nonholonomic system. Differentiation of these

relationships with respect to ¢ in N yields

14
S Nah Wi +Z,=0 (s=1,....0) (5)
i=1

where W, are vector functions of qi, ..., gn, u1,...,u, and tin N, and Z; are scalar functions

of the same variables. The acceleration of P, in N is represented by ~ a’i. When these
independent relationships are satisfied the motion variable time derivatives %y, ..., %, are no
longer independent of one another, as discussed presently.

By virtue of Newton’s second law, Egs. (5) have certain implications regarding the con-
straint forces needed for their satisfaction. According to Ref. [26] one can inspect Egs. (5)

and conclude that constraint forces are given by
Cis = AW (t=1,...,v;s=1,....0) (6)

where A, are scalar multipliers whose time histories may, or may not, be of interest. The
constraint force C, is evidently parallel to W, and in general it must be applied to P; in
order to satisfy the constraint equations (5). One may use terminology from Golubev’s Ref.
[4] to refer to C;, as an ideal servoconstraint force. A non-ideal servoconstraint force could be
formed as AW, + C, where C | is a force perpendicular to W,;,. When available actuators
are incapable of exerting an ideal servoconstraint force, it may be possible to satisfy the
constraint with a non-ideal force. In this paper we limit the discussion to the ideal case.
The fundamental definition of Kane’s generalized active forces involves the dot product of
two vectors; C,, is one such vector. Knowledge of the direction and point of application of
C,s, and its relationship to A, is important for its own sake. It is at least as important as
having a collection of generalized constraint forces in hand, if not more so. The technique

of inspecting Eqs. (5) systematically establishes the direction and point of application of a
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constraint force very soon after a constraint equation is available at the acceleration level in
vector form, generally much sooner and with less labor than when working with constraint
equations written entirely in terms of scalars and matrices.

The constraint forces formed according to Eqs. (5) and (6) do make contributions to F,
therefore Eqgs. (3) can be used if such constraint forces are of interest. A new set of equations
are developed for use in place of Eqs. (3) in the event that these constraint forces are not of
interest.

The contributions of C;, to F, are revealed by expressing Egs. (3) in terms of fundamental

definitions from Ref. [30],
Fr + F: = Z N‘?rpi : (Ri - miNaP’)
i=1

v 4
:ZNGTPZ" (frl-Z/\st‘s—miNaPi):o (r=1,...,p) (7)
=1

s=1

where F, FT* , and V¥ Fi respectively denote the rth nonholonomic generalized active force
for S in N, nonholonomic generalized inertia force for S in N, and nonholonomic partial
velocity of P;in N. The mass of P, is indicated by m;. The resultant R,; of all contact forces
and distance forces acting on P; is regarded as the sum of the constraint forces Zf;:l AsW g
that must be applied to ensure satisfaction of Egs. (5), added to the resultant of all other
forces, f;. Equations (7) together with Eqs. (5) furnish the number of relationships needed
to solve for the unknown quantities 4, ..., %y, A1, ..., A,. One employs these relationships if
the time histories of Ay, ..., A, are of interest.

A reduced or minimal set of dynamical equations to which C;, do not contribute is given

by

I~ =~ v 4
r+ ::ZNafl‘ (fi—i-Z)\sWis—miNaP’)
i=1 s=1
=> Mal. (fi—miNaPi):() (r=1,...,¢ (8)
i=1
where
cEp—t (9)

is the number of degrees of freedom of S in N. When speaking of ]:i and ]5;* it is convenient

to refer to them, respectively, as the rth nonholonomic generalized active force for S in N
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and the rth nonholonomic generalized inertia force for S in N, but the double tilde notation

should be used to indicate they have been formed with NYa’i, the rth nonholonomic partial

acceleration of P; in N, rather than Vv /. When one is not interested in time histories

of A1,..., A, one can construct Eqs. (8) directly by forming the dot products indicated in
the second line rather than the first line. Moreover, Egs. (7) need not be constructed first.
Directly forming Eqs. (8) thus eliminates the need for assembling a constraint Jacobian
and an orthogonal complement, and subsequently using the latter matrix to annihilate the
former.
It is important to realize that the nonholonomic partial accelerations Ya’i in Eqs. (8)
Ng P

are distinct from the nonholonomic partial velocities “v,." in Egs. (7). In addition, one must

have practical instructions for obtaining the vectors Ya’i. Finally, it is essential to point

out that use of the vectors Ya ! makes it unnecessary, in general, to include the constraint

forces in Egs. (8).

The acceleration of P; in N can be written uniquely in terms of 1y, . .., u,,
NaPi:zp:Nafiur+NatPi (t=1,...,v) (10)
r=1
and, also uniquely, in terms of the independent motion variable time derivatives 4, ..., .,
Naﬂzzijiﬂur+N@ﬁ (i=1,...,v) (11)
r=1

Equations (10) and (11) are analogous to Eqs. (2.14.2) and (2.14.4) in Ref. [30], where it
is established that a holonomic partial velocity v, is distinct from a nonholonomic partial
velocity v,. Similarly, the partial acceleration Ya'# is decidedly different from the nonholo-
nomic partial acceleration Na!i because the right hand member of Egs. (11) involves only
the independent motion variable time derivatives.
Equations (10) can be obtained from Eq. (2.14.4) of Ref. [30] by differentiation with
N, P

respect to ¢ in NV, in which case the partial acceleration “a, is seen to be identical to the

nonholonomic partial velocity of P; in N,

N, P & N

a v i (i=1,...,v;r=1,....p) (12)

2
T T

. . P .
and the acceleration remainder Va,* is defined to be

Nali = Z(dt {fri>u,,+ 7 v, (i=1,...,v) (13)



Substitution from Eqgs. (10) into (5) gives

p v v
Z( Nafi-Wis>ur+ZNatP"-W,-5+ZS:0 (s=1,...,0) (14)
r=1 \i=1 i=1

The coefficients of 1, and the remaining terms can be abbreviated respectively by means of

two definitions,

aSTéZNaf"-Wis (s=1,...,6r=1,...,p) (15)
i=1
and
WEZ 4+ Naf Wi (s=1,...,0) (16)
i=1
where oy, and 7, are functions of ¢,...,qn, u1,...,u,, and the time ¢. These definitions

allow Egs. (14) to be rewritten in a form that is linear in the time derivatives of the motion

variables

p
> agt, +79,=0 (s=1,...,0) (17)

r=1

These relationships express the dependence of ¢ time derivatives of the motion variables,
Say Ucti, - .., Up, o0 the remaining ones ;,...,%.. It is assumed that these independent
equations can in fact be solved for .1, ..., 4, in terms of 4., ..., %.. The dependent motion

variable time derivatives are written in terms of the independent ones in a manner analogous

to Egs. (2.13.1) of Ref. [30],
Uerr = Y Apstis + By (r=1,...,0) (18)
s=1

With a relationship for ¥ af* in hand having the form of Egs. (10), one simply embeds
the acceleration level constraint equations by rewriting ey, ..., %, in terms of 4, ..., %,
to obtain an expression in the form of Eqs. (11). Nonholonomic partial accelerations Va !
are subsequently obtained in the same way as partial velocities, namely by inspecting the
resulting relationship for acceleration to determine the vector coefficients of w, for r =
1,...,c

When dealing with simple nonholonomic systems and the associated constraint equations
(2.13.1) of Ref. [30], the analyst chooses which p of uy, ..., u, to regard as independent; of
course, the remaining motion variables are then regarded as dependent. The choice is made

during the process of deriving explicit equations of motion. The same is true in the case

of Egs. (18) here; the analyst chooses which ¢ of 1, ..., 1, are considered independent. In
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neither case is the decision based on the result of numerical procedures used in connection
with the computational method of coordinate partitioning discussed in Refs. [38] and [39].
One does not, for instance, “take advantage of the numerical structure of the Jacobian
matrix” (Ref. [39]). As Anderson notes in Ref. [28], coordinate partitioning is an iterative,
computationally expensive procedure that cannot be used in explicit symbolic formulation
of equations of motion.

The remainder of this section is devoted to a discussion of the contributions of the
constraint forces C;s (i = 1,...,v;8 = 1,...,/) to generalized active forces. The contribu-
tions to F, (r =1,...,p) are examined first, and consideration of the contributions to ET
(r=1,...,c) follow.

Nonholonomic generalized active forces for S in N, F,, are defined by Eqs. (4.4.1) in Ref.

[30] as the sum of dot products of pairs of vectors:

EEY PR, (r=1,...p) (19)

Let C,; represent the resultant of the constraint forces C;s applied to P; in order to ensure

satisfaction of Eqgs. (5), so that

l ¢
Czézczszz)\swzs (Z:Lay) (20)

The resultant R; of all contact forces and distance forces acting on P; can then be regarded
as the sum of the constraint force, C;, and the resultant of all other forces, f;. Hence, F,
is made up of contributions (F,)¢ from the constraint forces acting on S and (F,.)# from all
other forces acting on S,
Fr= (F)e+ (F)s éZ PN (r=1p) (21)
i=1 i=1

The contribution from the constraint forces can be singled out, and it is given by

v J4 4
(FT)C - Z N{/rpi ° Z /\sWis - Z Asasr (T = 17 s ap) (22)
=1 s=1 s=1

where, keeping in mind Eqs. (12), ay, has the same meaning as in Egs. (15). As is true when
obtaining any generalized active force by using the techniques of Ref. [30], the recommended

approach is to form the dot products indicated in Eqs. (19), (21), and (22).
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It can be shown that, in general, the constraint forces C,;; make no contribution to any

of ﬁr. A general proof is omitted in the interest of brevity; however, the result can be stated

as
~ A v v 0 v
( T)C: Nérpi'ci: Nérpi' Z)\SWiS:ZAS Néflwzs
i=1 i=1 s=1 s=1 =1
=0 (r=1,...,c (23)
Therefore, it can be concluded that
ZNéf"-WiS:() (r=1,...,¢; s=1,...,0) (24)
i=1

In words, Eqs. (23) state that motion constraints described by inherently nonlinear nonholo-
nomic constraint equations require the application of forces that make no contributions to
any of the nonholonomic generalized active forces Fi. The utility of this result in practice is
that, when directly forming Eqs. (8) for a particular system, the constraint forces C; may

be included in R; or they may be omitted; in either case they will not contribute to FN’T.

3. Comparison with Other Methods

The works cited in the reference list present many ways of constructing equations of mo-
tion for systems subject to motion constraints described by nonlinear nonholonomic equa-
tions. We compare the methods proposed in Sec. 2 with two of those existing approaches.

In Refs. [40] and [41], Udwadia and Kalaba describe a method for obtaining general
equations of motion for discrete mechanical systems. The dynamical equations are referred
to variously as nonminimal, unreduced, or full order, because there are more equations than
there are system degrees of freedom. Another distinguishing feature of the equations is
that they are free of Lagrange multipliers or any other unknowns representing the constraint
forces. A critical step in the derivation of the nonminimal equations is observed to be the use
of constraint equations that have been differentiated an appropriate number of times so that
they are expressed at the acceleration level; the result is that holonomic and nonholonomic
systems are treated in a unified way. The nonholonomic constraint equations expressed
at the velocity level can be either linear or nonlinear in the time derivatives of generalized
coordinates. The constraint equations expressed at the acceleration level need not be linearly

independent.

14



The equations of Udwadia and Kalaba are expressed in terms of ¢, and ¢, rather than the
more general quantities u, and u,. Therefore, in the interest of making a comparison, we in-
voke the limitation that u, is chosen to be simply ¢,. As noted earlier, Eqgs. (7) together with
Egs. (5) [or their alternative forms, Eqs. (17) or (18)] can be solved for the unknown motion
variable time derivatives, and the multipliers, in terms of the motion variables, generalized
coordinates, and time. If one subsequently eliminates the multipliers from Egs. (7), the
resulting relationships are equivalent to Udwadia and Kalaba’s nonminimal, multiplier-free
equations for the case of independent acceleration level constraint equations. A disadvantage
of Udwadia and Kalaba’s approach, then, is that time histories of the multipliers are un-
available, even in the event they are of particular interest. To be sure, generalized constraint
forces are available with their method; however, this state of affairs is unsatisfactory for the
reasons mentioned in Sec. 1. Even with generalized constraint forces in hand, one is not able
to separate out the individual vectorial constraint forces and torques acting on the particles
and rigid bodies of the system, or determine to which particles and bodies the individual
forces and torques must be applied. Our method for obtaining such useful information, cen-
tered around Egs. (5) and (6), contains no counterpart in the work of Udwadia and Kalaba.
Finally, they offer nothing in the way of a minimal equation set such as our Egs. (8). That is
to say, when constraint forces (even generalized constraint forces) are of no interest whatso-
ever, their approach involves unnecessary overhead in deriving and solving a greater number
of equations of motion than is absolutely necessary. The number of unnecessary equations
of motion will in that case be equal to the number of constraint equations.

Huston and Passerello (Ref. [25]) were the first to approach the matter of extending
Kane’s method to deal with nonlinear nonholonomic constraint equations; their work is
refined in Ref. [11]. A similar viewpoint for dealing with linear nonholonomic constraint
equations is presented in Refs. [42] and [10].

There are certain concepts that the exposition in Sec. 2 has in common with that of
Ref. [11]. The authors of that work recognize constraint equations that are nonlinear at the
velocity level become linear at the acceleration level, and they note the relationship between
partial acceleration and nonholonomic partial velocity expressed in Eqgs. (12). They make
use of these observations to form equations of motion that are equivalent to Egs. (7), and

form generalized constraint forces that are expressed with the final term in Egs. (22). It
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is pointed out that the undetermined multipliers can be eliminated and a reduced set of
equations of motion can be obtained.

There exist a number of differences between what is presented here and in Ref. [11].
In that work, the development is restricted to motion variables that are each defined as

the time derivative of a single generalized coordinate. Remainder terms such as Vv/* or

NgF needed to account for prescribed motion are not included in the formulation. The
development requires partial velocities to be expressed in a vector basis fixed in an inertial
reference frame, which is not necessarily convenient or efficient. In contrast, the motion
variables used here are fully general linear combinations as in Egs. (2.12.1) of Ref. [30],

NG are included [see Egs. (13)], and all partial velocities (for

velocity remainder terms
that matter, all vectors) introduced herein are considered basis-independent quantities just
as they are in Ref. [30].

In Ref. [11], equations containing the multipliers are formed first; the multipliers are sub-
sequently eliminated and a reduced set of equations of motion similar to Eqgs. (8) is obtained
by premultiplication with an orthogonal complement matrix. (An analogous approach is
taken in Refs. [10] and [42] in connection with linear nonholonomic constraint equations.)
As is well known, an orthogonal complement is not unique. In simple problems an orthogonal
complement can be obtained analytically, as in Ref. [11]. Usually, however, it is produced
numerically via the zero-eigenvalue theorem, singular value decomposition, QR decompo-
sition, successive multiplication of Householder transformations, etc. As noted earlier, the
Appell-Hamel mechanism is used to illustrate the method proposed in Ref. [11] even though
it involves contrived nonlinearity in nonholonomic constraint equations.

The present work puts forth two significant advances over the material in Ref. [11]. First,
information about the direction and point of application of constraint forces is obtained by
inspecting constraint equations written in vector form at the acceleration level. As demon-
strated in Sec. 7, the direction and body of application of a constraint torque can be obtained
in the same way. In Ref. [11] the undetermined multipliers are related in a clear way to scalar
generalized constraint forces, but not to constraint forces and torques in vector form. Sec-
ond, it is discovered here that nonholonomic partial accelerations can be used to construct
Egs. (8) directly and analytically. This approach circumvents the need to form Eqs. (7) first

and, afterwards, carry out what are usually two numerical procedures, namely production
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and application of an orthogonal complement. The absence of orthogonal complements is a
desirable feature common to the methods of Ref. [30] and this work. There is no introduction
of the nonholonomic partial acceleration in Ref. [11], or of the nonholonomic partial angular
acceleration that is defined in Sec. 7. In contrast to nonunique orthogonal complements,
the nonholonomic partial accelerations and nonholonomic partial angular accelerations pro-
posed here are unique once a set of independent motion variable time derivatives has been
chosen, and they are formed by the same definite process of inspection used to obtain partial

velocities and nonholonomic partial velocities.

4. Two Particles with Perpendicular Velocities

An example is provided to illustrate application of Egs. (7) and (8) to form equations of
motion in which constraint forces respectively are and are not in evidence. A system of two
individual particles is subject to a requirement that the velocity in a Newtonian reference
frame N of one particle must remain perpendicular to the velocity in N of the other particle.
The associated nonholonomic constraint equation is inherently nonlinear. Implementation
of the constraint would require the sort of computations that are associated with a control
system, as well as ideal actuators and sensors; thus, the example features a servo-constraint.
The demonstration is followed by discussion of a similar example from the literature in which
the constraint is imposed by purely mechanical means, and it is shown that the nonholonomic
constraint equation can in that case be expressed as a linear relationship.

Two pucks moving on an air-bearing table fixed in a Newtonian reference frame N are
modeled as particles P; with a mass of m;, and P, with a mass of my. Let two orthogonal
unit vectors n; and ns be fixed in N and define the plane of the table, and let unit vector
n; = n; X ny be normal to the plane. An external force f; = oin; + oony is applied to P
whereas a force fy = o3ny + o4ny is applied to P,. The motion of this system is regarded
as unconstrained. Suppose that the velocities vt and ¥v 2 of P, and P, in N are to be
constrained such that they must remain perpendicular at all times.

Let m; = 1 kg, moy = 2 kg, and let f; and fy be characterized by the constants o7 = 1.0
N, 09 =0N, 03 =1.0N, and 04, =0 N. At t = 0 the velocities of P, and P, in N are given
by YvP =0.3n; + 0.4, m/s, and Yv 72 = 0.4n; — 0.30y m/s. The initial position vectors

p; from a point O fixed in N to P; are given by p; = 1n; — 2n, m, and p, = 1n; + 2n, m.
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The remainder of this section is divided into four parts. First, a constraint equation
is written in the form of Eqgs. (5) and subsequently inspected to identify constraint forces
according to Eqgs. (6). This exercise can yield important information about the constraint
forces, even without forming or solving equations of motion according to (7) or (8). Second,
Egs. (7) are employed to produce dynamical equations of motion in which the constraint
forces play a part, and these equations are solved numerically together with kinematical
differential equations. Third, an alternative set of equations of motion in which constraint
forces do not play a part, are formed by carrying out the steps indicated in Egs. (8), and
results of a numerical solution are discussed. Finally, a very closely related published example

involving a classical mechanical system is examined.

4.1. Identification of Constraint Forces

The constraint can be expressed by the relationship
Nyfe . NyPr— (25)

This constraint equation is nonlinear in the velocity vectors because more than one velocity
appears in a dot product; it is also nonlinear in motion variables, as will become apparent.
Differentiation with respect to ¢t in /N brings the constraint equation to the acceleration level,
where it is seen to be linear in the acceleration vectors because only one such vector appears
in each dot product.

NaP2 . NVPI + NaPI . NVP2 — 0 (26)

With Egs. (5) and (6) in mind, it can be concluded that the constraint requires application
of the forces

C, = Vv, C,=\"v (27)

to P, and P respectively. A constraint force can be applied to a puck, for example, by four
orthogonally mounted thrusters. The constraint forces C; and Cs need not be of equal mag-
nitudes because the constraint does not require ¥v*2 and Vv’ to be equal in magnitude.
The constraint force C; is perpendicular to Cy when the constraint is satisfied. All of this
valuable information concerning the vectors C; and C,, including their relationship to A, is

obtained by inspecting Eqs. (26) rather than by attempting to infer it from examination of
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generalized constraint forces. The vector forms in Egs. (27) are required for forming the dot

products indicated in Egs. (7).

4.2. Constraint Forces In Evidence

Equations of motion containing evidence of C; and C, can be derived according to Egs.
(7). The unconstrained system possesses four degrees of freedom in N, thus the motion can

be characterized by four motion variables defined operationally as

N N

P ~ ~ P. ~ ~
vil= uiNg + UgNy, vii= UsN] + UgNo (28)

These relationships are inspected to identify the vector coefficients of uq, us, ug, and uy; that

is, the nonholonomic partial velocities

NgP _ & NoP _ & NgP _ NgPi _
Vil =n, Vol =Ny, vyt =0, v,'=0 (29)

N~ P N~ P NePy o NePy o
V2 =0, V2 =0, Vi? =1y, V% =ny (30)

The partial velocities are referred to as nonholonomic, and the notation Vv is used to
indicate that the expressions in Egs. (28) would have accounted for any nonholonomic con-
straint equations linear in the motion variables, had any such equations been applicable.

Dynamical equations of motion formed according to Egs. (7) are readily written as
mlﬂl =01+ /\Ug, m1U2 =09 + )\U4, mgug =03+ )\Ul, m2ﬂ4 =04+ )\Ug (31)

The constraint equation expressed at the velocity level in vector form by Eq. (25) becomes,
in scalar form,

ULUZ + UoUy = 0 (32)

This relationship is nonlinear in the motion variables. As pointed out earlier, Ref. [30]
contains no provisions for dealing with such a constraint equation, therefore it cannot be
used when forming familiar holonomic partial velocities or nonholonomic partial velocities.
It is for this reason that nonholonomic partial accelerations are introduced in this paper;
these vectors can be used to construct equations of motion devoid of A, as is demonstrated
shortly. Now, the constraint equation at the acceleration level is linear in the time derivatives
of the motion variables,

u3u1 + U4ﬂ2 + U1ﬂ3 + UQ’[L4 =0 (33)
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An analytical solution of the linear system of equations (31) and (33) for the five unknowns

is manageable, and is given by

_m1(03u1 + o4uy) + mo(o1us + oauy)

A= 34
ma(u1? + ug?) + mo(us? + us?) (34)
o1 + Aug . 09 + Ay . o3 + Ay . o4+ Aug
U = ————, llg= ", Uyg=—, Up= (35)
mq mq mso ma

The configuration of P, and P, in N is described by four generalized coordinates introduced

operationally as
P1 = @10 + 2Ny, Py = @301 + quNy (36)

Four kinematical differential equations are given simply by
Gr = Uy (r=1,2,3,4) (37)

The dynamical and kinematical differential equations are integrated numerically with a
variable step-size algorithm, using an absolute error of 1x 1078 and a relative error of 1x1077.
The unconstrained trajectories (A = 0) of P, and P, are displayed in the upper left of Fig. 1,
to be compared to the constrained trajectories shown in the upper right. It is clear that Vv 1
and Vv ™2 are becoming parallel in the absence of constraint forces, whereas they remain
perpendicular when C; and C, are applied. A time history of A is shown in the lower left
of Fig. 1. The constraint requires Vv 2 to remain perpendicular to ~v1; hence, the cosine
of the angle between the two vectors calculated as cos = Vv T2 . Ny P /(| Ny Po|| Ny i)
which should be 0, can be used as a measure of the failure of the numerical solution to satisfy
the constraint. As seen in the lower right of Fig. 1, the solution meets the constraint very

well.

4.8. Constraint Forces Not In Evidence

Although use of Egs. (7) has been demonstrated first, one can of course bypass these
relationships completely in favor of Eqgs. (8) if a time history of A is not of interest. One can
virtually eliminate the small error evident in the time history of cos#, and obtain dynamical
equations of motion in which A does not appear, by appealing directly to Eqs. (8). First,

the accelerations in N of P; and P, are expressed as

N N

P, BN A P BN .A
a’l = 4N + UsNy, a’? = Us3n; + uyny (38)
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Figure 1: Two Particles with Perpendicular Velocities

The motion variable time derivatives wuq, w9, and u3 can be chosen as independent. This

leaves 14 as dependent, and one then substitutes from Eq. (33) to arrive at

1
N _P A A N _P A . . Lo\ A
a’l = N + gy, a'? = ugn; — —(uszly + uqlis + uqtz)ny (39)
U2

The nonholonomic partial accelerations of P, and P, in N are identified as the vector coef-

ficients of 4, 19, and s,

Nélplzfll, N52Pl:flg, Niifl: (40)
~ us , ~ Uy . ~ A Uy .
Nalz = ——“ny, NaJr = ——“n,, Nalr =n; — —ny (41)
U2 U2 U2

These vectors are evidently fewer in number than, and distinct from the nonholonomic partial
velocities in Egs. (29) and (30). Once they are in hand, nonholonomic generalized active

forces for S in N can be formed according to the expressions

Fo=YaP . (f + ANV 4 YAl (5 AP (r=1,2,3) (42)
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The first of these is given by

Fo=fi - (B4 AV — By (f 4+ AV R
Uz

Uz
Uus
_ o us 43
01 u204 ( )
Similarly,

ﬁg = 09 — %04 (44)

Ug
ﬁg :0'3—@04 (45)

Ug

The multiplier A is clearly absent from E 1, Eg, and Eg, and thus the constraint forces C; and

C, do not contribute to the equations of motion. Considering the result stated in Sec. 2,

one would be justified in omitting C; and C, from Egs. (42) and (43), and thereby reducing

the labor involved in forming dot products. The nonholonomic generalized active forces are

obtained without first constructing relationships according to Eqs. (7), and without forming

a Jacobian matrix or its orthogonal complement, and multiplying them together.
Nonholonomic generalized inertia forces are given by

~

« _ Nz Py N_P Nz P, N _P _
Fr="a"1-(—m;"at)+ a2 (—my " a'?) (r=1,2,3) (46)
or
Z;i* . . Uus . . .
= —mytly — mgﬁ(ugul + ugtia + uq3)
2
uz\?| . UgUyg . Uus .
=—|my+mg(— ) | U —me—— 1ty — myg—— U3 (47)
Uz Uz U2
E‘* . . Uy . . .
9 = —MilUy — m2ﬁ(u3u1 + uqtla + u1ts)
2
2
. Uguy . Uy . Uiy . A
= —1y 2U1— mi+mo | — U — My 2’LL3 (8)
Uz U2 Uz
ﬁ* . . U1 . . .
3 = —MaU3 — MQW(U;;UQ + ugtg + U1U3>
2
2
ujug . UiUyg . Uy .
= —Mg—— U — Ma——-Ug — My |1+ (— ) | i3 (49)
Uz Usg Uz
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The mass matrix associated with these equations of motion is symmetric. After expressing
uy as —ujus/uy as required by Eq. (32), the dynamical equations of motion E« + F’: =

(r =1,2,3) and the kinematical differential equations (37) are integrated numerically using
the initial conditions given in the problem statement. The paths of P, and P, are identical
to those shown in the upper right plot of Fig. 1, and the absolute value of cos f remains less

than 7.64 x 10~!7 throughout the simulation.

4.4. A Classical Mechanical System

In Refs. [13] and [14] Zekovich provides examples in which velocities of two particles are
to remain perpendicular to one another. However, an additional configuration constraint is
imposed on P, and P,; they are connected by a “fork” that allows relative translation along
the line joining P, and P,. In other words, P; is regarded as fixed in a rigid body B, and
a prismatic joint makes it possible for P, to move on B. A relationship having the form
of Eq. (32) is given, and put forth as an example of a nonlinear nonholonomic constraint
equation. However, the nonlinearity is contrived. The development in Ref. [13] is greatly
simplified by working with a set of motion variables to be defined presently; furthermore,
they are used to show that the relevant nonholonomic constraint equations can be written
as linear expressions.

Let perpendicular unit vectors by and b, be fixed in B such that they lie in the plane of
motion of P; and P, and b, is in the direction of the prismatic joint that permits P, to slide
on B. Unit vector 133 is perpendicular to b, and E)Q, and to the plane of the motion. Four
motion variables are introduced operationally by writing Vv 1 = my —|—u2f)2, NpB = ugf)3,
and BvP2 = y,b;. The angular velocity of B in N is denoted by Yw?®, and the velocity
of P in B is indicated by Bv'2. Hence, ¥v = (u; + ug)by + (up + qsus)bs, where ¢4
is the distance between P, and P,. The perpendicular velocity constraint is expressed as
NyPeo Ny Pr— ) (uy + ug) + ug(ug + qaus) = 0.

Zekovich begins the analysis by attaching a sharp-edged circular disk, or blade, at P, with
the edge perpendicular to 131; the resulting constraint is expressed linearly as Vv It . b, =
u; = 0, and the corresponding Eq. (8) in Ref. [13] is likewise linear. With u; = 0, the
Ny P

velocity constraint is rewritten as Ny P = ug(ug + qaug) = 0, which corresponds to

Eq. (9) of Ref. [13]. Zekovich then notes the constraint can be satisfied in either of two
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ways. The first possibility is imposition of the constraint expressed by the linear equation
NyPi.by = uy = 0, in which case P, is fixed in N and the blade at P, is no longer
necessary. The second possibility also involves a constraint described by a linear relationship
NyP by, = uy + quuz = 0; such a restriction can be imposed by fixing a blade at Py
with the edge orthogonal to by. The presence of perpendicular constraint forces exerted by

perpendicular blades is in keeping with the result of Eqs. (27), although it contradicts the
direction of Ry indicated in Fig. 3a of Ref. [13].

5. Other Examples

Other restrictions on the motion of two separate particles give rise to nonholonomic
constraint equations that are inherently nonlinear. Constraint forces required to ensure that
the velocities in N of the two particles remain parallel, or equal in magnitude, are discussed
briefly. This is followed with a mention of two examples involving a single particle.

First consider the requirement that ¥vft and Vv 2 be parallel to each other. Allow
the plane containing ¥v* and Vv to be oriented arbitrarily in N; without loss of three-
dimensional generality, define the unit vector nz to be perpendicular to this plane. The
constraint can then be expressed as follows. The vector ng x Vv is perpendicular to fg
and to Vvt by construction; therefore, requiring Vv *2 to be parallel to Vv ! is the same
as requiring

NyPro(ng x Nv 1) =0 (50)

This constraint equation is observed to be nonlinear in the velocity vectors because more
than one velocity appears in a dot product. Differentiation with respect to ¢ in IV brings the
constraint equation to the acceleration level, where it is seen to be linear in the acceleration
vectors.

N | P>

a”. (fg x YvP) — Valt.(fag x Yv2) =0 (51)

In view of Egs. (5) and (6), the constraint requires application of the forces
CQ = /\(flg X NVPI), Cl = —/\<f13 X NVP2) (52)

to P, and P respectively. The constraint forces C; and C; need not be of equal magnitudes

because the constraint does not require Vv 2 and Vv to be equal in magnitude. Moreover,

24



C; and C, may have the same direction or opposite directions depending on whether the
directions of ¥v% and Vv 2 are opposite or the same. As is the case in the example in
Sec. 4, important information about constraint forces is obtained by inspecting a constraint
equation written at the acceleration level in vector form. Extracting the same information
from generalized constraint forces would be significantly more arduous. The relationship
between the multiplier and the two constraint forces is clear-cut.

The first example in Refs. [13] and [14] is similar to the preceding situation, but an
additional configuration constraint is imposed on P; and Ps; they are connected by a rod
of fixed length 2L. It is said that the requirement of parallel velocities can be achieved
in practice by attaching at the rod’s midpoint a blade that is perpendicular to the rod.
A relationship is given with the form of Eq. (50) written entirely in terms of scalars, and
offered as an example of a nonlinear nonholonomic constraint equation. However, in this
instance the nonlinearity is contrived because the constraint dictated by the blade can in
fact be described by a linear nonholonomic constraint equation. There appears to be some
recognition of this in Ref. [13]. The directions of the constraint forces obtained in Egs. (52)
are seen to be the same as those indicated in the diagram on the right side of Fig. 2a in Ref.
[13].

Next, suppose that Vvt and Yv 2 are required to have equal magnitudes rather than
parallel directions or perpendicular directions. The constraint can be expressed by the
relationship

NVP2.NVP2_NVP1.NVP1:O (53)

which is nonlinear in the velocity vectors. At the acceleration level, the constraint equation

is linear in the acceleration vectors,

NaPQ. NVPQ_ NaP1° NVP1:O (54)
According to Egs. (5) and (6), the constraint requires application of the forces
Cy = \Vv?, C,=-\Vvh (55)

to P and P respectively. It is seen that C; and C; have equal magnitudes when the con-
straint is obeyed. Again, constraint force information is obtained by inspecting a constraint

equation in vector form rather than by examining a collection of scalar generalized constraint
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forces, and the relationship of the multiplier to the constraint forces is completely evident.
Another advantage to expressing Eqs. (53)—(55) in vector form is that they apply in the
general three-dimensional case, as do Egs. (50)-(52), and Eqgs. (25)-(27).

The second example in Ref. [13] involves two particles whose velocities are to remain
equal in magnitude; however, an additional configuration constraint is imposed on P; and
P; as they are connected by a rod of fixed length. Zekovich observes the velocities are made
equal in magnitude by placing a blade at the rod’s midpoint and making the edge parallel
to the rod. An expression having the same form as Eq. (53), written entirely with scalars, is
offered as a nonlinear nonholonomic constraint equation. As is the case with Zekovich’s first
example, the nonlinearity is contrived and it can easily be shown that a linear nonholonomic
constraint equation describes the constraint dictated by the blade. The diagram on the right
side of Fig. 2b in Ref. [13] shows a constraint force in the direction of ¥v % and the other
constraint force in the direction opposite to Vv 2; this result can be made to agree with
Egs. (55) by renaming the two particles.

Jankowski has developed an approach for dealing with constraint equations that are not
necessarily linear in acceleration. A procedure is set forth in Ref. [21] for forming dynami-
cal equations of motion in which Lagrange multipliers do appear, and then the multipliers
are eliminated by employing an orthogonal complement matrix to obtain a reduced set of
equations. The paper concludes with an example involving a single particle P. It is readily
demonstrated that Eqs. (7) and (8) can be used to obtain the results reported in Ref. [21]
when the magnitude of the velocity ¥v of P in N must have a prescribed time history;
that is, YvF . Nv? —(t)* = 0. Moreover, inspection of this constraint equation at the
acceleration level indicates the constraint force applied to P is in the direction of ¥v ', and
Jankowski reaches the same conclusion. However, Eqgs. (7) and (8) are not applicable to the
subsequent case in which the magnitude of the acceleration ¥ a” of P in N is a prescribed

function of the time ¢, Ya®” . YaP —qa(t)* =0

6. Appell’s Particle

As mentioned earlier, the literature contains ample discussion of an example proposed by
Appell in which a single particle must move in a uniform gravitational field so as to satisfy

an inherently nonlinear nonholonomic constraint equation. A constraint force is identified
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in connection with this example, and a final brief demonstration of the use of Egs. (7) and

(8) shows that they lead to results obtained by Smith® and Van Dooren (Ref. [23]).

6.1. Identification of Constraint Force

Three motion variables wu;, us, and us are introduced such that the velocity ¥v in a

Newtonian reference frame N of a particle P is written as

NVP = u1ﬁ1 + Ugﬁz -+ U3ﬁ3 (56)

where ny, Ny, and n3 are a right-handed set of mutually perpendicular unit vectors fixed in

N. Appell’s restriction on the velocity of P is often expressed by the relationship
U32 = az(ulz + U22) (57)

where a is a constant. It is pointed out by Smith that the relationship describes a requirement

for the angle v between Vv’ and ns, the vertical direction, to remain constant. In fact, the
constant a is cos<y/sin~y. The nonlinear nonholonomic constraint equation is differentiated

with respect to time to bring it to the acceleration level
2U37:L3 = 2&2(u1ﬂ1 + UQQILQ) (58)

where it is linear in 4, 19, and ug; it can be rewritten as

2 2
R a R R o a ~ ~
Nal . g — u—(ulNaP -0y +uyMal ony) = Val. [ng - u—(ulnl +ugny)| =0 (59)
3 3
where Y a’ is the acceleration of P in N. Inspection of this equation according to Egs.

(5) and (6) indicates that a constraint force C must be applied to P such that the force is
parallel to the vector within the square brackets; that is,

2
C=)\ flg — %(U1ﬁ1 + Ugflg)] (60)
3

This result is in agreement with what is presented by Smith, who shows that C - ¥v¥ =0
when Vv % obeys the constraint. The advantage of inspecting Eq. (59) and immediately

obtaining the vector form in Eq. (60) is readily apparent; the result is hardly obvious.

3 C. V. Smith, Jr., “Comments on Geometric Constraints, Virtual Displacements, and Ideal Constraint

Forces,” private communication, Sept. 25, 2002.
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6.2. Constraint Force In Evidence

If one is interested in obtaining a time history of A, equations of motion can be formed
by carrying out the instructions contained in Eqgs. (7). To begin, inspect Eq. (56) to identify

the vector coefficients of the motion variables.

N P

. N=P
Vv, = 1y, Vo

= 1y, NgF =1y (61)

Next, identify the force acting on P even when the constraint is not satisfied. The
gravitational force acting on P is denoted by f = —mgns where m is the mass of P and the
constant g represents the gravitational force per unit mass. Three dynamical equations of
motion obtained with Egs. (7) can be written in terms of vectors as ¥v.I' - (f+C—mY a?) =

n, - (f+C—-m"a?)=0 (r=1,2,3), or in terms of scalars
miy = —Aa*u Jus, mily = —\a*usy/us, mus = A —mg (62)

in which case they resemble certain expressions found by Smith. When one substitutes us

obtained from the constraint equation (57), the results are identical to Egs. (3.7) of Ref. [23],

Uy U2
) )
Vu? + ug? Vg2 4 ug?

The fourth relationship needed to determine the unknowns 1, s, 13, and X is provided by

mi; = —Aa miy = —Aa mis = A\ —mg (63)

Eq. (58); when it is solved for @3 and substitution is performed in the third of Eqs. (63), one

obtains

N N az( i+ tuniin) a Aa(ui? + ug?)
=m m—(uity + Usly) = maqg —
g Uus3 H 2 g Vui? +ug? | Vur? + ug?

1 = mg — \a* (64)
where the second step is made with the aid of Eq. (57) together with the first and second of
Egs. (63). A solution for A is now at hand, and it can be used as a replacement in the first

and second of Egs. (63) to yield

mg )
= 71 + a2 = mg Sln2 ’y (65)
) gauy g sin y cos -y uy (66)
Ul = — —_— —
' (1+ a®)Vui? + us? Vur? + ug?
iy = — gais B _gsinwcosqu (67)

(rovarTw VT
A variation of Appell’s example is considered in Ref. [24], where ¢ = 1 and the grav-

itational force acting on P is replaced with a force of arbitrary magnitude and direction,
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f = m(F,n; + F,ny, + F,ng). The results of applying the method of Udwadia and Kalaba,
reported in Eqgs. (36) therein, are seen to be in agreement with Eqgs. (62) and (65) here after
setting [, = 0, F, = 0, and F, = —g. Conversely, what has been done here with this
example so far can be suitably modified so as to reproduce their Eqs. (36) when the lone

independent constraint equation is dealt with.

6.3. Constraint Force Not In Evidence

If one is not interested in a time history of A, one should appeal directly to Egs. (8) and
forego use of Egs. (7) altogether. The dynamical equations of motion (66) and (67), which
do not contain A, are then reproduced. After embedding the acceleration level constraint

equation (58) in M a®,

a(ulul + Ugﬂg) N

N_P __ - & A
a’ = ung + uong + \/m ns (68)
the required nonholonomic partial accelerations of P in N are readily identified to be
~ . au - . au .
Nal =n, + ! Naf =1y + 2___hy (69)

These vectors are clearly not the same as the nonholonomic partial velocities of P in N
recorded in Eqgs. (61). The two equations of interest are then produced by referring to Eqs.
8), Yal - (f+C—-—mMa?)="al.(f—m%Yal) =0 (r =1,2). Although some effort is
required because the equations are coupled in 7, and s, Egs. (66) and (67) are recovered.
No Jacobian or orthogonal complement matrices are involved in obtaining the results in this

fashion.

7. A System Containing a Rigid Body

In practice, the set of particles belonging to a system consists of certain subsets that make
up rigid bodies. It is important to be able to deal easily with such a system. What follows is a
presentation of the essential steps needed to extend the discussion in Sec. 2 to encompass rigid
bodies. The results allow one to deal with an inherently nonlinear nonholonomic constraint

N,A. N,B N,,A

w?B =0, where Yw4 and Nw?

equation such as are the angular velocities in an
inertial reference frame N of two unconnected rigid bodies A and B respectively. One is

then in a position to identify the directions of the constraint torques that must be applied to

29



A and B in order to keep Yw# perpendicular to Yw?. It also becomes possible to derive,
directly, explicit analytical equations that govern the constrained motion of the two bodies
even though the equations are devoid of multipliers.
When particles P, ..., P; make up a rigid body B, the acceleration Y a’ in N of a
generic particle P; of B can be written in terms of the angular acceleration Ya? of B in
N, B*

N, the angular velocity Yw?® of B in N, and the acceleration ¥ a®?” in N of B*, the mass

center of B,
NaPi:NaB*—l—NO{BXI'Z'—i—NwBX(NWBXI'i) (fl:laaﬂ) (7())

where r; is the position vector from B* to P;. Now, Ya? can be expressed uniquely as

Naf =% NaPa, + Vel (71)
r=1

where N&TB is called the rth nonholonomic partial angular acceleration of B in N. Substi-

tution from this relationship and from Eqs. (11) into (70) yields
>Rl V=Y YA Y
+ (i NaBa, + N&tB> xri+ YwPx (NP xr) (i=1,...,p) (72)
r=1
from which one obtains

Nali = MaP  + VaP xri+ Yl x (NwB xr) (i=1,...,8) (73)

and

NgPh = NaP" 4 NP xr, (r=1,...,¢i=1,...,0) (74)

The latter relationship is the nonholonomic partial acceleration analog to nonholonomic par-
tial velocity expressions like Eqs. (4.6.5) and (4.11.16) in Ref. [30] used in the case of simple
nonholonomic systems to obtain contributions of B to F, and F*. Hence, the contribution

of B to ﬁr is given by

~ B
(F)p =Y Yal . R,
=1
B B
=Y (Maf + Y&l xr;) Ry = "2 Y R+ Y& Yni xRy
=1 =1 =1
=N R+ MaP.-T (r=1,...,¢ (75)



where the set of all contact forces and distance forces R; acting on the particles of B is
equivalent to a force R whose line of action passes through B*, together with a couple whose
torque is T. The constraint forces and torques that must be applied to B in order to satisfy
nonlinear nonholonomic constraint equations may be included in R and T, or they may be
omitted; in either case they will not contribute in aggregate to ]?r. With a similar exercise

the contribution of B to P:T* is found to be

(1>

B
_ > NEP LV al
=1

B

~ * -~ A

S (YAE + NP xn) - mi Nl
=1

(F)p

B B

-~ * . ~ .

:—NarB . E miNaPZ—Naf- E r; xm; ¥ ali
i=1 i=1

= V3P R+ Y&k T (r=1,...,0) (76)

.
r

where R* and T* are, respectively, the well-known inertia force and inertia torque for B in
N, formed for use with Kane’s method.
The procedure for obtaining directly a minimal set of dynamical equations of motion

for a complex nonholonomic system is seen to bear a very close resemblance to Kane’s

method for simple nonholonomic systems, the only difference being that one uses ¥a?" and
NaP (r =1,...,¢), vectors that are distinct from the familiar vectors v 2" and N&F

(r=1,...,p).

One may be interested in the constraint forces acting on a rigid body, and therefore form
equations of motion according to Egs. (7). In that event it becomes desirable to adapt the
process of inspecting a constraint equation written at the acceleration level so that one may
identify the direction of a constraint force and the point to which it is applied, together with
the direction of a constraint torque and the body upon which it is exerted.

In a constraint equation having the form of (5), the terms associated with P, ..., Pz can
be rewritten:

B
Z NaPi : Wis + Zs
i=1
B
= Z[NaQ+ NaP xri+ YwP x (Yw? x1;)] - Wi, + Z,
i=1
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B B B
=Ma? > Wi+ Yo Y x Wi+ [NwP x (Nw? x )] - Wy + Z,
i=1 =1

i=1

SN W, 4+ Va7, + 27 (s=1,...,0) (77)

where r; is the position vector from a point @ fixed in B to P; (i = 1,...,3). The point
@ need not be the mass center of B. As discussed in connection with Egs. (5) and (6),
the appearance of the vector W, in Eqgs. (77) requires the application of a constraint force
Cis = \sW,, to P,. After selecting the line of action of W, such that it passes through P,
and defining the resultants

W, 2 W, C,=

i=1 %

C, (s=1,...,0) (78)

B B
=1
the set of forces Cy,,...,Cgs applied to B is regarded as equivalent to a single force C,
whose line of action passes through @), together with a couple whose torque is T,. The
resultant C; is given by
B B
C, = ; Cis = Y AW = AW, (s=1,...,0) (79)

=1

and the torque Ty is equal to the moment of Cy,, ..., Cgs about @,
B B
Ts:ZriXciszzriX)\SWis:)\sTs (321,...,€) (80)
i=1 i=1

where 7, is the moment of Wy, ..., Wg, about @,

B
T EY X Wi, (s=1,...,0) (81)

i=1
One can therefore inspect a constraint equation written at the acceleration level and
conclude that the appearance of the dot product ¥ a® . W, requires that B is subject to a
constraint force C, = A\;W applied to ), and the appearance of the dot product Ya® - 7,

means B must be acted upon by a couple whose constraint torque is Ty = A7 (s = 1,...,0).

The contribution of B to Egs. (7) is thus represented by

(Fr)p = Yo R4 Y02 T, (F)p= 2R+ Y0P T  (r=1,...,p) (82)

T

where the set of all contact forces and distance forces R; acting on the particles of B is

equivalent to a force R whose line of action passes through (), together with a couple whose
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torque is T. All constraint forces C; applied to () are included in the resultant R, and all
constraint torques T exerted on B are included in T. The vectors ¥v@ and Y& are (Ref.
[30]), respectively, the rth nonholonomic partial velocity of @ in N and the rth nonholonomic
partial angular velocity of B in N. If the system S to which B belongs is not subject to
motion constraints described by equations that are inherently nonlinear in velocity (¢ = 0),
then S is a simple nonholonomic system and Egs. (82) become precisely the relationships
provided in Ref. [30] for such a system. If all nonlinearities in the nonholonomic constraint
equations are contrived, then S is in fact a simple nonholonomic system and should be

treated as such.

8. Conclusions

In dealing with motion constraints that are expressed at the velocity level with relation-
ships that are nonlinear in velocity, there is a distinction to be made between nonholonomic
constraint equations in which the nonlinearity is inherent, and those in which the nonlinear-
ity is contrived. Methods are proposed in this paper for dealing with equations of the former
type.

Certain forces and torques are required to ensure satisfaction of nonholonomic constraint
equations that are inherently nonlinear in velocity. One may be interested in expressing
these constraint forces and torques in vector form so that their directions are known, and
there may also be interest in knowing the specific points at which the constraint forces must
be applied or the particular bodies upon which the constraint torques are to be exerted.
In that case, one may write constraint equations at the acceleration level in vector form,
in terms of dot products of vectors, and determine the desired information by the simple
process of inspection. Such information is not available from any of the methods found in the
existing literature, where constraint equations are invariably expressed in scalar or matrix
form. The methodology presented herein provides the information readily and stands as one
of the paper’s main contributions. As demonstrated here by several examples, this method
is especially advantageous in cases where the required direction of a constraint force is not
otherwise obvious.

When one wishes to construct equations containing evidence of constraint forces and

constraint torques, solution of which yields time histories of those forces and torques, one
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forms equations of motion with Kane’s method as though a simple nonholonomic system is
involved. The vector expressions for constraint forces and torques obtained by inspection
are included with the vector expressions for the usual applied forces and torques. In this
way, generalized constraint forces are obtained by using a fundamental definition involving
dot products of vectors, rather than by forming the product of a Jacobian matrix and an
array of multipliers as recommended in the current literature. The multipliers introduced
here bear a clear relationship to constraint force and torque vectors, whereas this is not the
case with other methods.

On the other hand, when the constraint forces and torques in question are not of in-
terest, one may form equations of motion that do not involve those forces and torques in
any way. Such equations can be constructed directly, in explicit analytical form, without
first formulating equations that do contain evidence of the constraint forces and torques.
This is accomplished by employing vectors known as nonholonomic partial accelerations and
nonholonomic partial angular accelerations; these vectors are distinct from the well-known
nonholonomic partial velocities and nonholonomic partial angular velocities used to form
Kane’s equations for simple nonholonomic systems, and they are obtained with the same
simple process of inspection. The use of an orthogonal complement matrix is required when
one employs existing extensions made to Kane’s method for the purpose of dealing with
nonlinear nonholonomic constraint equations. Construction of minimal equations of motion
without resorting to an orthogonal complement represents a significant advantage over such

approaches, and constitutes another major contribution of the paper.
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